无线连接知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

Wireless Connectivity Knowledge Base

讨论

排序依据:
This is some information of Bluetooth Low Energy about the White List. I hope this information help you to understand the White List. The device to connect is saved on the white list located in the LL block of the controller. This enumerates the remote devices that are allowed to communicate with the local device. Since device filtering occurs in the LL it can have a significant impact on power consumption by filtering (or ignoring) advertising packets, scan requests or connection requests from being sent to the higher layers for handling. The Withe List can restrict which device are allowed to connect to other device. If is not, is not going to connect.      Once the address was saved, the connection with that device is going to be an auto connection establishment procedure.This means that the Controller autonomously establishes a connection with the device address that matches the address stored in the While List. Figure 1. White List Procedure NOTE: For more details download the Specification of the Ble​
查看全文
Thread is a secure, wireless, simplified IPv6-based mesh networking protocol developed by industry leading technology companies, including Freescale, for connecting devices to each other, to the internet and to the cloud. Before starting a Thread Network implementation, users should be familiar with some concepts and how they are related to Thread protocol. IPv6 Addressing Devices in the Thread stack support IPv6 addressing IPv6 addresses are 128-bit identifiers (IPv4 is only 32-bit) for interfaces and sets of interfaces.  Thread supports the following types of addresses: Unicast:  An identifier for a single interface.  A packet sent to a unicast address is delivered to the interface identified by that address. Multicast: An identifier for a set of interfaces (typically belonging to different nodes).  A packet sent to a multicast address is delivered to all interfaces identified by that address. NOTES There are no broadcast addresses in IPv6, their function being superseded by multicast addresses. Each device joining the Thread Network is also assigned a 16-bit short address as specified in IEEE 802.15.4. 6LoWPAN All Thread devices use 6LoWPAN 6LoWPAN stands for “IPv6 over Low Power Wireless Personal Networks”. 6LoWPAN is a set of standards defined by the Internet Engineering Task Force (IETF), which enables the efficient use of IPv6 over low-power, low-rate wireless networks on simple embedded devices through an adaptation layer and the optimization of related protocols. Its main goal is to send/receive IPv6 packets over 802.15.4 links. Next figure compares IP and 6LoWPAN protocol stacks: The following concepts would explain the transport layer. ICMP Thread devices support the ICMPv6 (Internet Control Message Protocol version 6) protocol and ICMPv6 error messages, as well as the echo request and echo reply messages. The Internet Control Message Protocol (ICMP) is an error reporting and diagnostic utility and is considered a required part of any IP implementation. ICMPs are used by routers, intermediary devices, or hosts to communicate updates or error information to other routers, intermediary devices, or hosts. For instance, ICMPv6 is used by IPv6 nodes to report errors encountered in processing packets, and to perform other internet-layer functions, such as diagnostics. ICMP differs from transport protocols such as TCP and UDP in that it is not typically used to exchange data between systems, nor is it regularly employed by end-user network applications.  The ICMPv6 messages have the following general format: The type field indicates the type of the message.  Its value determines the format of the remaining data. The code field depends on the message type.  It is used to create an additional level of message granularity. The checksum field is used to detect data corruption in the ICMPv6 message and parts of the IPv6 header. ICMPv6 messages are grouped into two classes: error messages and informational messages.  Error messages are identified as such by a zero in the high-order bit of their message Type field values.  Thus,   error messages have message types from 0 to 127; informational messages have message types from 128 to 255. UDP The Thread stack supports UDP for messaging between devices. This User Datagram Protocol  (UDP)  is defined  to  make available  a datagram   mode of  packet-switched   computer communication  in  the environment  of an  interconnected  set  of  computer  networks, assuming that the Internet  Protocol (IP) is used as the underlying protocol. With UDP, applications can send data messages to other hosts on an IP network without prior communications to set up special transmission channels or data paths. UDP is suitable for purposes where error checking and correction is either not necessary or is performed in the application, avoiding the overhead of such processing at the network interface level. The UDP format is as follows: Source Port is an optional field, when meaningful, it indicates the port of the sending  process,  and may be assumed  to be the port  to which a reply should be addressed  in the absence of any other information.  If not used, a value of zero is inserted. Destination Port has a meaning within the context of a particular internet destination address. Length is the length in octets of this user datagram including this header and the data.   (This means the minimum value of the length is eight.) Checksum is the 16-bit one's complement of the one's complement sum of a pseudo header of information from the IP header, the UDP header, and the data, padded  with zero octets at the end (if  necessary)  to  make  a multiple of two octets. References White papers available at http://threadgroup.org/ “6LoWPAN: The Wireless Embedded Internet” by Zach Shelby and Carsten Bromann RFC 4291, RFC 4944, RFC 4443 and RFC 768 from https://www.ietf.org
查看全文
When developing portable applications using batteries, it is important to keep track of the remaining battery level to inform the user and take action when it drops to a level that might be critical for the correct device functionality. A common measurement method consists of taking a sample of the current battery voltage and correlate it to a percentage depending on its capacity. Then this value is reported to the user in a visual manner. MKW40 is a system on chip (SoC) that embeds a processor and a Bluetooth® Low Energy (BLE)/802.15.4 radio for wireless communications. This posts describes how to obtain the current battery level and report it via BLE using this part. Hardware considerations Typically, the battery voltage is regulated so the MCU has a stable power supply across the whole battery life. This causes the ADC supply voltage to be lower than the actual battery voltage. To address this, a voltage divider is used to adequate the battery voltage to levels that can be read by the ADC. Figure 1 Typical battery level divider circuit The MKW40 includes a voltage divider on its embedded DC-DC converter removing the need to add this voltage divider externally. It is internally connected to the ADC0 channel 23 so reading this channel obtains the current level of the power source connected to the DC-DC converter in. Figure 2 DC-DC converter with battery voltage monitor Software implementation Software implementation consists in acquiring the ADC value, correlate it with a percentage level and transmit it using BLE. The connectivity software includes functions to perform all those actions. A voltage divider connected to the battery and internally wired to an ADC channel is embedded in the SoC. For the MKW40Z it is the ADC0 single ended channel 23 (ADC0_CH23) . There are some examples in the Kinetis Software Development Kit (KSDK) documentation explaining how to configure the ADC module. The connectivity software includes a function named BOARD_InitAdc in the file app.c where this is initialized. void BleApp_Init(void) {     /* Initialize application support for drivers */     BOARD_InitAdc(); <-- Initialization function         /* Initialize Software-timer */     SwTimer_Init();           /* Status Indicator fade initialization */     status_indicator_fade_init();     /* Initialise ECG Acquisition system */     ecg_acquisition_init();     /* Initialize battery charger pin configuration */     power_manager_init();     /* Create Advertising Timer */     advertisingTimerId = SwTimer_CreateTimer(TimerAdvertisingCallback); } Once initialized, this ADC channel must be read to obtain the current voltage present in the divisor. There are also some cool examples in the KSDK documentation on how to do this. The obtained value is a digital representation of the voltage in the divisor and is relative to the VDDA or VREFH voltage (depending on what is used as reference for the ADC). Since the battery voltage varies over the time (unless you use a voltage regulator or use the DC-DC converter in buck mode), the most accurate way to get the battery voltage is to obtain the actual voltage that is referencing the ADC first. For this, the MKW40Z includes a 1V reference voltage channel wired to another ADC channel: ADC0_CH27. Reading this ADC channel obtains the number of counts that correspond to 1V, and VREF can be calculated using the next formula. Once the VRef voltage has been obtained, it is possible to determine the voltage present in the battery voltage divisor by using the following formula. The obtained voltage is still only a portion of the actual battery voltage. To obtain the full voltage, the obtained value must be multiplied by the divisor relation. This relation is selected in the DC-DC register DCDC_REG0:DCDC_VBAT_DIV_CTRL and can be: VBATT, VBATT/2 or VBATT/4. After the full VBAT voltage is obtained, it must be correlated to a percentage depending on the values set for 0% and 100%. Using the slope method is a good approach to correlate the voltage value. For this, the slope m must be calculated using the formula. Where V100% is the voltage in the battery when it is fully charged, and V0% is the voltage in the battery when it is empty. Once m has been calculated, the battery percentage can be obtained using the formula: The Connectivity Software includes a function that obtains the current battery voltage connected to the DC-DC input and returns the battery percentage. It is included in the board.c file. uint8_t BOARD_GetBatteryLevel(void) {     uint16_t batVal, bgVal, batLvl, batVolt, bgVolt = 100; /*cV*/         bgVal = ADC16_BgLvl();     DCDC_AdjustVbatDiv4(); /* Bat voltage  divided by 4 */     batVal = ADC16_BatLvl() * 4; /* Need to multiply the value by 4 because the measured voltage is divided by 4*/         batVolt = bgVolt * batVal / bgVal;         batLvl = (batVolt - MIN_VOLT_BUCK) * (FULL_BAT - EMPTY_BAT) / (MAX_VOLT_BUCK - MIN_VOLT_BUCK);     return ((batLvl <= 100) ? batLvl:100);    } Reporting battery level After the battery level has been determined it can be now reported via BLE. The Connectivity Software includes predefined profile files to be included in custom applications. Battery profile is included in the files battery_service.c and .h, under the Bluetooth folder structure. To make use of them, make sure that they are included in your project. Then, include the file battery_interface.h in your BLE application file. An example using the included BLE applications is shown. In app.c (Connectivity Software examples application file) include the battery service interface #include "battery_interface.h" In the variable declaration section, create a new basConfig_t variable. This is needed to configure a new service. static basConfig_t      basServiceConfig = {service_battery, 0}; The new service needs to be created after the BLE stack has been initialized. When this happens, the function BleApp_Config is executed. Inside this function, the battery service is started.    /* Start services */ hrsServiceConfig.sensorContactDetected = mContactStatus; #if gHrs_EnableRRIntervalMeasurements_d    hrsServiceConfig.pUserData->pStoredRrIntervals = MEM_BufferAlloc(sizeof(uint16_t) * gHrs_NumOfRRIntervalsRecorded_c); #endif    Hrs_Start(&hrsServiceConfig);     Bas_Start(&basServiceConfig);         /* Allocate application timers */     mAdvTimerId = TMR_AllocateTimer(); mMeasurementTimerId = TMR_AllocateTimer(); mBatteryMeasurementTimerId = TMR_AllocateTimer(); Function Bas_Start is used for this purpose. This function starts the battery service functionality indicating that it needs to be reported by the BLE application. After a central has successfully connected to the peripheral device, the battery service must be subscribed so it’ measurements can be reported to the central. For this, the function Bas_Suscribe is used inside the connection callback. Following code shows its implementation in the connectivity software. It takes place in the connection callback function BleApp_ConnectionCallback in app.c switch (pConnectionEvent->eventType) {         case gConnEvtConnected_c:         {             mPeerDeviceId = peerDeviceId;             /* Advertising stops when connected */             mAdvState.advOn = FALSE; #if gBondingSupported_d                /* Copy peer device address information */             mPeerDeviceAddressType = pConnectionEvent->eventData.connectedEvent.peerAddressType;             FLib_MemCpy(maPeerDeviceAddress, pConnectionEvent->eventData.connectedEvent.peerAddress, sizeof(bleDeviceAddress_t)); #endif  #if gUseServiceSecurity_d                        {                 bool_t isBonded = FALSE ;                                if (gBleSuccess_c == Gap_CheckIfBonded(peerDeviceId, &isBonded) &&                     FALSE == isBonded)                 { Gap_SendSlaveSecurityRequest(peerDeviceId, TRUE, gSecurityMode_1_Level_3_c);                 }             } #endif                        /* Subscribe client*/             Bas_Subscribe(peerDeviceId);                    Hrs_Subscribe(peerDeviceId);                                                         /* UI */                        LED_StopFlashingAllLeds();                         /* Stop Advertising Timer*/             mAdvState.advOn = FALSE;             TMR_StopTimer(mAdvTimerId);                        /* Start measurements */ TMR_StartLowPowerTimer(mMeasurementTimerId, gTmrLowPowerIntervalMillisTimer_c, TmrSeconds(mHeartRateReportInterval_c), TimerMeasurementCallback, NULL);               } Once the service has been subscribed, a new measurements can be registered by using the Bas_RecordBatteryMeasurement function at any time. Bas_RecordBatteryMeasurement(basServiceConfig.serviceHandle, basServiceConfig.batteryLevel); This function receives the battery service handler previously defined (static basConfig_t basServiceConfig = {service_battery, 0}) and the current battery level percentage as input parameters. When a disconnection occurs, the battery service must be unsubscribed so no further updates are performed during disconnection. For this, the Bas_Unsuscribe function must be used after a disconnection event. case gConnEvtDisconnected_c:         {             /* Unsubscribe client */             Bas_Unsubscribe();             Hrs_Unsubscribe();             mPeerDeviceId = gInvalidDeviceId_c; Now, updated battery levels can be reported by the BLE device letting the user know when a battery must be replaced or recharged.
查看全文
Many applications make use of 32 kHz clocks to keep tracking of real-time or to have a low power time reference for the system. Most of the systems might use a 32.768 kHz XTAL for this purpose. However, there might be some exceptions in which the application requires compensate the frequency of this clock due to temperature changes, aging, or just because the clock provides from a source which frequency is close to the ideal 32.768 kHz, but it presents some variations. QN908x devices require a 32 kHz clock source for some applications like running the BLE stack in low power. 32.768 kHz XTALs are more accurate so they are used to generate a 32 kHz source by compensating for the ppm difference. This provides us with tools to compensate for any external 32 kHz source by first obtaining the ppm difference from the ideal frequency. The solution consists in determining how off is the external clock input frequency from the ideal 32 kHz by making a comparison with a trusted clock in the system, typically the 32 MHz / 16 MHz XTAL. This process is executed in the background in an interrupt-based system so the application can initialize or run other processes in the meantime. Then, the results of the ppm calculation are reported to the main application to compensate for the changes and provide for a more accurate clock source. This example makes use of the following peripherals in the QN908x RTC Seconds Timer CTIMER DMA The RTC Seconds Timer uses the 32 kHz clock source as a reference. It contains an internal 32000 cycles counter that increases each 32 kHz clock period. On overflow, it rises the SEC_INT flag to indicate that one second has elapsed. The CTIMER makes use of the APB clock which derives from the 32 MHz / 16 MHz clock. This timer is used in free-running mode with a Prescaler value of 1 to count the number of APB pulses. The algorithm consists of counting the amount of APB pulses (trusted clock reference) elapsed by the time the RTC SEC_INT flag is set. Ideally, if both clocks are in the right frequency, the number of APB pulses must be equal to the reference clock frequency. For example, if the APB clock is 16 MHz, by the time the SEC_INT flag sets, the CTIMER counter must have a value of 16 x 10 6 counts. Assuming our reference clock is ideal, the difference between the CTIMER counter value and 16 x 10 6 can be used to obtain the ppm difference given the following formula. Where f 0 is the ideal APB frequency (16 MHz) and f 1 is the real measured frequency (CTIMER counter value). Since the pulses counted using the CTIMER correspond to the time it took to the RTC Seconds Timer to count one second, we can extrapolate the obtained ppm value as a difference in the 32 kHz clock source from the ideal 32 kHz. To prevent from any application or task servicing latency, the algorithm makes use of the DMA to automatically capture the CTIMER Counter value when the SEC_INT flag is set. The program flow is described in the diagram below. As a way of demonstrating this algorithm, two APIs were implemented to calculate the ppm value and apply the compensation to the system. Both APIs are included in the file fsl_osc_32k_cal .c and .h files. OSC_32K_CAL_GetPpm (osc_32k_cal_callback_t pCallbackFnc): Initializes the required timers and DMA and starts with the CTIMER capture. A callback is passed so it can be executed once the ppm calculation sequence completes. OSC_32_CAL_ApplyPpm (int32_t ppmMeasurement): Uses the previously calculated ppm passed as an input parameter to compensate the RTC and the BLE timer used during sleep mode. OSC_32K_CAL_GetPpm is called every time the ppm value of the 32 kHz source clock needs to be calculated. It takes around one second to complete (depending on how off the 32 kHz source clock is from the ideal frequency) and the application cannot enter into low power state during this time. The registered callback function is executed once the calculation is complete. The ppm calculation is performed into the DMA callback. It consists of obtaining the CTIMER counter difference and use it as f 1 in the formula shown before. The ppm values are calculated using floating point unit. /* Calculate PPMs */ ppmResult = (float)((float)1-((float)ApbClockFreq/(float)ApbCountDiff)); ppmResult *= (float)1048576;‍‍‍‍‍‍ Then OSC_32_CAL_ApplyPpm must be called using the ppm value obtained after calling OSC_32K_CAL_GetPpm. This API programs the necessary values in the RTCàCAL register and the BLE Sleep timer registers to compensate for the differences in the 32 kHz source clock. Finally, the user must account for all those other APIs that make use of the 32 kHz clock frequency and update the values accordingly. For the particular case of the NXP BLE Stack, there are two APIs that need to be updated to return the clock frequency after the calibration has been applied. uint32_t PWRLib_LPTMR_GetInputFrequency(void) { uint32_t result = 32000; int32_t ppm = 0; if ( RTC->CTRL & RTC_CTRL_CAL_EN_MASK) /* is calibration enabled ? */ { /* Get the current calibration value */ if (RTC->CAL & RTC_CAL_DIR_MASK) { /* Backward calibration */ ppm -= (int32_t) (RTC->CAL & RTC_CAL_PPM_MASK); } else { /* Forward calibration */ ppm += (int32_t) (RTC->CAL & RTC_CAL_PPM_MASK); } /* Obtain the uncalibrated clock frequency using the formula * fUncal = 32000 - (ppm*0.03125) where 0.03125 is the number * of Hz per PPM digit obtained from (768 Hz/0x6000 PPM) */ result -= (float) ppm * (float) 0.03125; } else { #if (defined(BOARD_XTAL1_CLK_HZ) && (BOARD_XTAL1_CLK_HZ == CLK_XTAL_32KHZ)) result = CLOCK_GetFreq(kCLOCK_32KClk); /* 32,768Khz crystal is used */ #else result = CLOCK_GetFreq(kCLOCK_32KClk); /* 32,000Khz internal RCO is used */ #endif } return result; }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ uint32_t StackTimer_GetInputFrequency(void) { uint32_t prescaller = 0; uint32_t refClk = 0; uint32_t result = 0; #if FSL_FEATURE_SOC_FTM_COUNT refClk = BOARD_GetFtmClock(gStackTimerInstance_c); prescaller = mFtmConfig.prescale; result = refClk / (1 << prescaller); #elif FSL_FEATURE_RTC_HAS_FRC int32_t ppm = 0; (void)prescaller; /* unused variables */ (void)refClk; /* suppress warnings */ result = 32000; if ( RTC->CTRL & RTC_CTRL_CAL_EN_MASK) /* is calibration enabled ? */ { /* Get the current calibration value */ if (RTC->CAL & RTC_CAL_DIR_MASK) { /* Backward calibration */ ppm -= (int32_t) (RTC->CAL & RTC_CAL_PPM_MASK); } else { /* Forward calibration */ ppm += (int32_t) (RTC->CAL & RTC_CAL_PPM_MASK); } /* Obtain the uncalibrated clock frequency using the formula * fUncal = 32000 - (ppm*0.03125) where 0.03125 is the number * of Hz per PPM digit obtained from (768 Hz/0x6000 PPM) */ result -= (float) ppm * (float) 0.03125; } else { #if (defined(BOARD_XTAL1_CLK_HZ) && (BOARD_XTAL1_CLK_HZ == CLK_XTAL_32KHZ)) result = CLOCK_GetFreq(kCLOCK_32KClk); /* 32,768Khz crystal is used */ #else result = CLOCK_GetFreq(kCLOCK_32KClk); /* 32,000Khz internal RCO is used */ #endif } #elif FSL_FEATURE_SOC_CTIMER_COUNT refClk = BOARD_GetCtimerClock(mCtimerBase[gStackTimerInstance_c]); prescaller = mCtimerConfig[gStackTimerInstance_c].prescale; result = refClk / (prescaller + 1); #else refClk = BOARD_GetTpmClock(gStackTimerInstance_c); prescaller = mTpmConfig.prescale; result = refClk / (1 << prescaller); #endif return result; }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍
查看全文
1.    Introduction   1.1 Document Purpose This post entry provides a detailed description of how to integrate the NFC Reader Library to a KW3x Bluetooth Low Energy application.   1.2 Audience The goal of this post is to serve as a guide for software developers who want to use, adapt and integrate the NFC Reader Library to an SDK wireless connectivity example.   1.3 References and Resources - NFC Reader Library:  nxp.com/pages/:NFC-READER-LIBRARY - NCF3320: nxp.com/products/:NCx3320  - CLRC663 plus: nxp.com/products/:CLRC66303HN - FRDM-KW36 board: nxp.com/demoboard/FRDM-KW36 - KW35/KW36 SDK: https://mcuxpresso.nxp.com/en/select - MCUXpresso IDE: nxp.com/products/: MCUXpresso-IDE   2. NFC Reader Library Overview   The NXP NFC Reader Library is a modular software library written in C language, which provides an API that enables customers to create their own software stack and applications for the NXP contactless reader ICs: - PN512; - CLRC633 family; - PN7462 family; - PN5180; This API facilitates the most common operations required in NFC applications such as: - reading or writing data into contactless cards or tags; - exchanging data with other NFC-enabled devices; - allowing NFC reader ICs to emulate cards. The NFC Reader Library is designed in a way to be easily portable to many different microcontrollers with a multi-layered architecture:   As main blocks, we have: - Application Layer (AL) - implements the command sets to interact with MIFARE cards and NFC tags. - NFC activity - implements a configurable Discovery loop for the detection of contactless cards, NFC tags or other NFC devices. - HCE and P2P components, for the emulation of Type 4 tags and P2P data exchange respectively. - Protocol abstraction layer (PAL) - contains the RF protocol implementation of the ISO14443, Felica, vicinity and NFC standards. - Hardware abstraction layer (HAL) - implements the drivers for controlling the NFC frontends RF interface and capabilities. - Driver Abstraction Layer (DAL) - implements the GPIO pinning, the timer configuration and the physical interface (BAL) between the host MCU and the reader IC. - OSAL module, in charge of abstracting the OS or RTOS specifics (tasks events, semaphores, and threads)   3. The KW3x Wireless Microcontroller Overview The KW3x wireless microcontrollers (MCU are highly integrated single-chip devices that enable Bluetooth Low Energy (Bluetooth LE) and Generic FSK connectivity for automotive, industrial and medical/healthcare embedded systems.   The KW36/35 Wireless MCU integrates an Arm® Cortex®-M0+ CPU with up to 512 KB flash and 64 KB SRAM and a 2.4 GHz radio that supports Bluetooth LE 5.0 and Generic FSK modulations. The Bluetooth LE radio supports up to 8 simultaneous connections in any master/slave combination. The KW36A/36Z includes an integrated FlexCAN module enabling seamless integration into an automotive or industrial CAN communication network, enabling communication with external control and sensor monitoring devices over Bluetooth LE.   For more details please refer to the NXP website information: https://www.nxp.com/products/wireless/bluetooth-low-energy:BLUETOOTH-LOW-ENERGY-BLE.   4. NFC Reader Library – integration with FRDM-KW36 The current NFC Reader Library v5.21.01 is not containing support for Kinetis KW3x MCU. We will use a reference the K82 NFC Reader Library package: www.nxp.com/pages/:NFC-READER-LIBRARY. The steps required to integrate the library are: - Hardware preparation (the connection between FRDM-KW36 and NFC reader board); - Setting up the development environment (SDK download, workspace); - Preparing adaptation files for FRDM-KW3x board; - Integrating NFC application to Wireless_UART Bluetooth LE example; - Running the demo;   4.1 Hardware preparation Hardware required: - NCF3320 Antenna v1.0 board as an NFC transceiver; - FRDM-KW36 board as host MCU, used to load and run the Bluetooth Low Energy Stack and NFC application logic;   The communication between the boards will be via the SPI communication using the following pin configuration: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Master board (FRDM-KW36)         Connects to            Slave board (NCF3320 Antenna v1.0)           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PTB0  (J2-pin10)                                      -                    IRQ PTB1  (J2-pin9)                                         -                    Reset PTA16 (J2-pin1 - SPI1_Sout)                   -                    MOSI PTA17 (J1-pin5 - SPI1_Sin)                     -                    MISO PTA18 (J1-pin7 - SPI1_SCK)                   -                    SCK PTA19 (J2-pin3 - SPI1_CS)                     -                    CS GND   (J3-pin7)                                        -                    GND ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   4.2 Setting up the development environment   Install MCUXpresso IDE (for this example we are using v10.2.0 build 759)   - Go to MCUXpresso-IDE webpage and download the latest version of IDE: www.nxp.com/products/: MCUXpresso-IDE. - Install the IDE;     Get the latest NFC Reader Library release (for this example we are using v5.21.00) - Go to NXP NFC Reader Library webpage (www.nxp.com/pages/:NFC-READER-LIBRARY) - Go to the Downloads tab and click on the download button - Download the NFC Reader Library for Kinetis K82F package:     Generate a downloadable SDK package for FRDM-KW36 board (SDK_2.2.1_FRDM-KW36) - Navigate to https://mcuxpresso.nxp.com/en/select and select FRDM-KW36 board; - Select Build MCUXpresso SDK. - As toolchain, please make sure that the MCUXpresso IDE is selected. - Use Download SDK button to start downloading SDK package:   Create MCUXpresso workspace - Open MCUXpresso IDE and create a workspace; - Drag and drop the SDK_2.2.1_FRDM-KW36 into the installed SDKs tab of the MCUXpresso IDE;   - Import Wireless_Uart Example to the current workspace:     4.3 Preparing adaptation files for FRDM-KW3x board This chapter describes the Driver Abstraction Layer (DAL) changes required for FRDM-KW36: - unzip the NFC Reader Library and navigate to boards folder:   - Create an equivalent file for FRDM-KW36 (Board_FRDM_KW36FRc663.h) by setting the right configuration for GPIOs and handlers; - Below are the differences required for FRDM-KW36 board in comparation with a FRDM-K82F board:   - Add the FRMD-KW36 to …DAL\cfg\BoardSelection.h file:   #ifdef PHDRIVER_FRDM_KW36FRC663_BOARD #include <Board_FRDM_KW36FRc663.h> #endif   - In KinetisSDK folder, update the following dependencies: o PIT Driver IRQ name:   o Open drain and pin lock configuration: - phDriver_KinetisSDK.c:   - phbalReg_KinetisSpi.c:   - add PHDRIVER_FRDM_KW36FRC663_BOARD define to …\NxpNfcRdLib\types\ph_NxpBuild_Platform.h file to enable the right NFC transceiver:     4.4  Integrating NFC application to Wireless_UART Bluetooth LE example In this chapter we will integrate the BasicDiscoveryLoop NFC example to Wireless_UART Bluetooth LE application. For this, the following steps are required: - On the wireless_uart project location create an “nfc” folder:   - Copy from modified NFC Reader Library the DAL, NxpNfcRdLib and phOsal folders:   - On the wireless_uart project location, “source” folder create a new “nfc” subfolder to integrate the BasicDiscovery loop files:   - Some changes will be required on the BasicDiscoveryLoop files: o Main function renamed to NFC_BasicDiscoveryLoop_Start; o Removed drivers/OS initialization; (all the changes can be observed in the attachment) - Update MCUXpresso workspace by pressing F5 to see the latest changes:   - Update the linker information (Project Properties -> C/C++ Build -> Settings) and preprocessor defines (Project Properties -> C/C++ Build -> Preprocessor):     - Add dependencies: o PIT module/ PIT module initialization; o Update LED, SW configuration; o Increase heap size (gTotalHeapSize_c); o Add functionality for NFC in wireless_uart.c application; (all the changes can be observed in the attachment);   Considering the attached ZIP archive, we can be easily dragged and drop, frdmkw36_w_uart_ncf3320_basic_discovery.zip file, to the MCUXpresso workspace:       4.5 Running the demo - Create hardware connection based on chapter 4.1; - Open a serial terminal on the corresponding COM port for FRDM-KW36 board. The BaudRate used is 115200. - Press SW2 on FRDM-KW36 to start advertising. - Open Mobile APP - IOT toolbox - Wirreless UART.  The FDRM-KW36 board will be listed as NXP_WU:   - Create Bluetooth LE connection. The serial log will contain the log for Bluetooth LE operations:     - Use NFC Cards close to NCF3320 Antenna v1.0 board to initiate discovery demo. - Once the card is detected, an event is sent to the mobile application including technology and UUID of the card: (https://www.youtube.com/watch?v=wCCz5zDIwHE&feature=youtu.be)     Attached is the source code for this example application (frdmkw36_w_uart_ncf3320_basic_discovery).
查看全文
Our customer is evaluating RF characteristics using FRDM-MKW24. Regarding Tx max power, they have one question. The spec of max tx power is +8dBm and I could verify the power using TWR-KW24d512 before. They observed tx power with tx un-modulated cnt transmission and informed that the power was about +2dBm. That is to say, "Power 31" in Connectivity_Test means to +2dBm. I feel that it is small... Would you comment regarding the spec of the max tx power on FRDM-MKW24? Regards, Koichi
查看全文
The connectivity software is an add-on of the Kinetis SDK, therefore the demos are referenced to a KSDK path variable named "KSDK_PATH" in IAR. The KSDK_PATH variable contains the path of the installation folder for the KSDK version in your PC. Taking as an example the MRB-KW01 SMAC Connectivity Software, we can realize that this variable is used to reference for libraries. In particular, this SMAC software for the MRB-KW01 works with KSDK 1.2, that is why you could have troubles if the variable is referenced to another KSDK version (for example KSDK 1.1). Follow the next steps to modify the KSDK_PATH variable in your computer: 1. Right click on "computer", then click "properties" 2. A Control Panel window will be opened. Click on "Advanced system settings" 3. A system Properties windows will be opened. Select the "Advanced" tab, then click "Environment Variables". 4. Select the KSDK_PATH variable and assure that it stores the correct path needed for your project. In case that you need to modify the variable, then click "Edit" 5. Finally click "Ok" to close all tabs and you will be able to run your connectivity software without problems. Best regards, Luis Burgos.
查看全文
In this document we will be seeing how to create a BLE demo application for an adopted BLE profile based on another demo application with a different profile. In this demo, the Pulse Oximeter Profile will be implemented.  The PLX (Pulse Oximeter) Profile was adopted by the Bluetooth SIG on 14th of July 2015. You can download the adopted profile and services specifications on https://www.bluetooth.org/en-us/specification/adopted-specifications. The files that will be modified in this post are, app.c,  app_config.c, app_preinclude.h, gatt_db.h, pulse_oximeter_service.c and pulse_oximeter_interface.h. A profile can have many services, the specification for the PLX profile defines which services need to be instantiated. The following table shows the Sensor Service Requirements. Service Sensor Pulse Oximeter Service Mandatory Device Information Service Mandatory Current Time Service Optional Bond Management Service Optional Battery Service Optional Table 1. Sensor Service Requirements For this demo we will instantiate the PLX service, the Device Information Service and the Battery Service. Each service has a source file and an interface file, the device information and battery services are already implemented, so we will only need to create the pulse_oximeter_interface.h file and the pulse_oximeter_service.c file. The PLX Service also has some requirements, these can be seen in the PLX service specification. The characteristic requirements for this service are shown in the table below. Characteristic Name Requirement Mandatory Properties Security Permissions PLX Spot-check Measurement C1 Indicate None PLX Continuous Measurement C1 Notify None PLX Features Mandatory Read None Record Access Control Point C2 Indicate, Write None Table 2. Pulse Oximeter Service Characteristics C1: Mandatory to support at least one of these characteristics. C2: Mandatory if measurement storage is supported for Spot-check measurements. For this demo, all the characteristics will be supported. Create a folder for the pulse oximeter service in  \ConnSw\bluetooth\profiles named pulse_oximeter and create the pulse_oximeter_service.c file. Next, go to the interface folder in \ConnSw\bluetooth\profiles and create the pulse_oximeter_interface.h file. At this point these files will be blank, but as we advance in the document we will be adding the service implementation and the interface macros and declarations. Clonate a BLE project with the cloner tool. For this demo the heart rate sensor project was clonated. You can choose an RTOS between bare metal or FreeRTOS. You will need to change some workspace configuration.  In the bluetooth->profiles->interface group, remove the interface file for the heart rate service and add the interface file that we just created. Rename the group named heart_rate in the bluetooth->profiles group to pulse_oximeter and remove the heart rate service source file and add the pulse_oximeter_service.c source file. These changes will be saved on the actual workspace, so if you change your RTOS you need to reconfigure your workspace. To change the device name that will be advertised you have to change the advertising structure located in app_config.h. /* Scanning and Advertising Data */ static const uint8_t adData0[1] =  { (gapAdTypeFlags_t)(gLeGeneralDiscoverableMode_c | gBrEdrNotSupported_c) }; static const uint8_t adData1[2] = { UuidArray(gBleSig_PulseOximeterService_d)}; static const gapAdStructure_t advScanStruct[] = { { .length = NumberOfElements(adData0) + 1, .adType = gAdFlags_c, .aData = (void *)adData0 }, { .length = NumberOfElements(adData1) + 1, .adType = gAdIncomplete16bitServiceList_c, .aData = (void *)adData1 }, { .adType = gAdShortenedLocalName_c, .length = 8, .aData = "FSL_PLX" } }; We also need to change the address of the device so we do not have conflicts with another device with the same address. The definition for the address is located in app_preinclude.h and is called BD_ADDR. In the demo it was changed to: #define BD_ADDR 0xBE,0x00,0x00,0x9F,0x04,0x00 Add the definitions in ble_sig_defines.h located in Bluetooth->host->interface for the UUID’s of the PLX service and its characteristics. /*! Pulse Oximeter Service UUID */ #define gBleSig_PulseOximeterService_d         0x1822 /*! PLX Spot-Check Measurement Characteristic UUID */ #define gBleSig_PLXSpotCheckMeasurement_d      0x2A5E /*! PLX Continuous Measurement Characteristic UUID */ #define gBleSig_PLXContinuousMeasurement_d     0x2A5F /*! PLX Features Characteristic UUID */ #define gBleSig_PLXFeatures_d                  0x2A60 /*! Record Access Control Point Characteristic UUID */ #define gBleSig_RecordAccessControlPoint_d     0x2A52 We need to create the GATT database for the pulse oximeter service. The requirements for the service can be found in the PLX Service specification. The database is created at compile time and is defined in the gatt_db.h.  Each characteristic can have certain properties such as read, write, notify, indicate, etc. We will modify the existing database according to our needs. The database for the pulse oximeter service should look something like this. PRIMARY_SERVICE(service_pulse_oximeter, gBleSig_PulseOximeterService_d)     CHARACTERISTIC(char_plx_spotcheck_measurement, gBleSig_PLXSpotCheckMeasurement_d, (gGattCharPropIndicate_c))         VALUE_VARLEN(value_PLX_spotcheck_measurement, gBleSig_PLXSpotCheckMeasurement_d, (gPermissionNone_c), 19, 3, 0x00, 0x00, 0x00)         CCCD(cccd_PLX_spotcheck_measurement)     CHARACTERISTIC(char_plx_continuous_measurement, gBleSig_PLXContinuousMeasurement_d, (gGattCharPropNotify_c))         VALUE_VARLEN(value_PLX_continuous_measurement, gBleSig_PLXContinuousMeasurement_d, (gPermissionNone_c), 20, 3, 0x00, 0x00, 0x00)         CCCD(cccd_PLX_continuous_measurement)     CHARACTERISTIC(char_plx_features, gBleSig_PLXFeatures_d, (gGattCharPropRead_c))         VALUE_VARLEN(value_plx_features, gBleSig_PLXFeatures_d, (gPermissionFlagReadable_c), 7, 2, 0x00, 0x00)     CHARACTERISTIC(char_RACP, gBleSig_RecordAccessControlPoint_d, (gGattCharPropIndicate_c | gGattCharPropWrite_c))         VALUE_VARLEN(value_RACP, gBleSig_RecordAccessControlPoint_d, (gPermissionNone_c), 4, 3, 0x00, 0x00, 0x00)         CCCD(cccd_RACP) For more information on how to create a GATT database you can check the BLE Application Developer’s Guide chapter 7. Now we need to make the interface file that contains all the macros and declarations of the structures needed by the PLX service. Enumerated types need to be created for each of the flags field or status field of every characteristic of the service. For example, the PLX Spot-check measurement field has a flags field, so we declare an enumerated type that will help us keep the program organized and well structured. The enum should look something like this: /*! Pulse Oximeter Service - PLX Spotcheck Measurement Flags */ typedef enum {     gPlx_TimestampPresent_c                      = BIT0,     /* C1 */     gPlx_SpotcheckMeasurementStatusPresent_c     = BIT1,     /* C2 */     gPlx_SpotcheckDeviceAndSensorStatusPresent_c = BIT2,     /* C3 */     gPlx_SpotcheckPulseAmplitudeIndexPresent_c   = BIT3,     /* C4 */     gPlx_DeviceClockNotSet_c                     = BIT4 } plxSpotcheckMeasurementFlags_tag; The characteristics that will be indicated or notified need to have a structure type that contains all the fields that need to be transmitted to the client. Some characteristics will not always notify or indicate the same fields, this varies depending on the flags field and the requirements for each field. In order to notify a characteristic we need to check the flags in the measurement structure to know which fields need to be transmitted. The structure for the PLX Spot-check measurement should look something like this: /*! Pulse Oximeter Service - Spotcheck Measurement */ typedef struct plxSpotcheckMeasurement_tag {     ctsDateTime_t              timestamp;             /* C1 */     plxSpO2PR_t                SpO2PRSpotcheck;       /* M */     uint32_t                   deviceAndSensorStatus; /* C3 */     uint16_t                   measurementStatus;     /* C2 */     ieee11073_16BitFloat_t     pulseAmplitudeIndex;   /* C4 */     uint8_t                    flags;                 /* M */ }plxSpotcheckMeasurement_t; The service has a configuration structure that contains the service handle, the initial features of the PLX Features characteristic and a pointer to an allocated space in memory to store spot-check measurements. The interface will also declare some functions such as Start, Stop, Subscribe, Unsubscribe, Record Measurements and the control point handler. /*! Pulse Oximeter Service - Configuration */ typedef struct plxConfig_tag {     uint16_t      serviceHandle;     plxFeatures_t plxFeatureFlags;     plxUserData_t *pUserData;     bool_t        procInProgress; } plxConfig_t; The service source file implements the service specific functionality. For example, in the PLX service, there are functions to record the different types of measurements, store a spot-check measurement in the database, execute a procedure for the RACP characteristic, validate a RACP procedure, etc. It implements the functions declared in the interface and some static functions that are needed to perform service specific tasks. To initialize the service you use the start function. This function initializes some characteristic values. In the PLX profile, the Features characteristic is initialized and a timer is allocated to indicate the spot-check measurements periodically when the Report Stored Records procedure is written to the RACP characteristic. The subscribe and unsubscribe functions are used to update the device identification when a device is connected to the server or disconnected. bleResult_t Plx_Start (plxConfig_t *pServiceConfig) {         mReportTimerId = TMR_AllocateTimer();         return Plx_SetPLXFeatures(pServiceConfig->serviceHandle, pServiceConfig->plxFeatureFlags); } All of the services implementations follow a similar template, each service can have certain characteristics that need to implement its own custom functions. In the case of the PLX service, the Record Access Control Point characteristic will need many functions to provide the full functionality of this characteristic. It needs a control point handler, a function for each of the possible procedures, a function to validate the procedures, etc. When the application makes a measurement it must fill the corresponding structure and call a function that will write the attribute in the database with the correct fields and then send an indication or notification. This function is called RecordMeasurement and is similar between the majority of the services. It receives the measurement structure and depending on the flags of the measurement, it writes the attribute in the GATT database in the correct format. One way to update a characteristic is to create an array of the maximum length of the characteristic and check which fields need to be added and keep an index to know how many bytes will be written to the characteristic by using the function GattDb_WriteAttribute(handle, index, &charValue[0]). The following function shows an example of how a characteristic can be updated. In the demo the function contains more fields, but the logic is the same. static bleResult_t Plx_UpdatePLXContinuousMeasurementCharacteristic ( uint16_t handle, plxContinuousMeasurement_t *pMeasurement ) {     uint8_t charValue[20];     uint8_t index = 0;     /* Add flags */     charValue[0] = pMeasurement->flags;     index++;     /* Add SpO2PR-Normal */     FLib_MemCpy(&charValue[index], &pMeasurement->SpO2PRNormal, sizeof(plxSpO2PR_t));     index += sizeof(plxSpO2PR_t);         /* Add SpO2PR-Fast */     if (pMeasurement->flags & gPlx_SpO2PRFastPresent_c)     {       FLib_MemCpy(&charValue[index], &pMeasurement->SpO2PRFast, sizeof(plxSpO2PR_t));       index += sizeof(plxSpO2PR_t);     }        return GattDb_WriteAttribute(handle, index, &charValue[0]); } The app.c handles the application specific functionality. In the PLX demo it handles the timer callback to make a PLX continuous measurement every second. It handles the key presses and makes a spot-check measurement each time the SW3 pushbutton is pressed. The GATT server callback receives an event when an attribute is written, and in our application the RACP characteristic is the only one that can be written by the client. When this event occurs, we call the Control Point Handler function. This function makes sure the indications are properly configured and check if another procedure is in progress. Then it calls the Send Procedure Response function, this function validates the procedure and calls the Execute Procedure function. This function will call one of the 4 possible procedures. It can call Report Stored Records, Report Number of Stored Records, Abort Operation or Delete Stored Records. When the project is running, the 4 LEDs will blink indicating an idle state. To start advertising, press the SW4 button and the LED1 will start flashing. When the device has connected to a client the LED1 will stop flashing and turn on. To disconnect the device, hold the SW4 button for some seconds. The device will return to an advertising state. In this demo, the spot-check measurement is made when the SW3 is pressed, and the continuous measurement is made every second. The spot-check measurement can be stored by the application if the Measurement Storage for spot-check measurements is supported (bit 2 of Supported Features Field in the PLX Features characteristic). The RACP characteristic lets the client control the database of the spot-check measurements, you can request the existing records, delete them, request the number of stored records or abort a procedure. To test the demo you can download and install the nRF Master Control application by Nordic Semiconductor on an Android Smartphone that supports BLE. This app lets you discover the services in the sensor and interact with each characteristic. The application will parse known characteristics, but because the PLX profile is relatively new, these characteristics will not be parsed and the values will be displayed in a raw format. Figure 1. nRF Master Control app
查看全文
Our customer, who is considering MKW40, is asking NXP regarding max input voltage of PSWITCH and DCDC_CFG pins. Especially they plan to use buck mode with input voltage 4.2[v] as shown below. Would you comment if max voltage of PSWITCH and DCDC_CFG pins is 4.2[v] as well as DCDC_IN pin? Regards, Koichi
查看全文
KW01 demo code for 315/434MHz application is ready. The demo code located in the "software Development Tools" FXTH87|Tire Pressure Monitor Sensor|Freescale
查看全文
Introduction This document describes the steps needed to enable System View tool emphasizing in connectivity software stack for the QN9080CDK MCU.   Software Requirements QN908XCDK SDK 2.2.0 SystemView Software J-Link Software and Documentation Pack     Hardware Requirements QN9080CDK Board with J-Link debug interface   Enabling SystemView in IAR Embedded Workbench IDE   1. Unzip your QN908XCDK SDK. Open your desired project from:<SDK_install_path>/boards/qn908xcdk/wireless_examples/<Choose_your_project>/freertos/iar/<Your_project.eww>   2. Select the project in the workspace, press the right mouse button and select “Add->Add Group...” option       3. Create a new group called “SEGGER”, click on the “OK” button. Repeat the step 1 and create other groups called “Config” and “FreeRTOS_SEGGER”.     The workspace will be updated as shown below       4. Create folders called “SEGGER”, “Config” and “FreeRTOS_SEGGER” in the Windows directory at the following path:     <QN9080_SDK_root>/boards/qn908xcdk/wireless_examples/bluetooth/<your_example>/freertos       5. Add the following files in the recently created folders (SEGGER, Config and FreeRTOS_SEGGER) on Windows directory (the default SysView installation path is C:\Program Files (x86)\SEGGER\SystemView_V252c):   For the SEGGER folder:        All files located at <SysView_installation_path>\Src\SEGGER   For the Config folder:       All files located at <SysView_installation_path>\Src\Config   For the FreeRTOS_SEGGER folder:       <SysView_installation_path>\Src\Sample\FreeRTOSV9\SEGGER_SYSVIEW_FreeRTOS.c       <SysView_installation_path>\Src\Sample\FreeRTOSV9\SEGGER_SYSVIEW_FreeRTOS.h       <SysView_installation_path>\Src\Sample\FreeRTOSV9\Config\SEGGER_SYSVIEW_Config_FreeRTOS.c     6. Go to the workspace and click the right mouse button on “SEGGER”, “Config” and “FreeRTOS_SEGGER” groups, then select “Add->Add Files...” option. Add the following files:   For the SEGGER group:         All files in <QN9080_SDK_root>/boards/qn908xcdk/wireless_examples/bluetooth/<your_example>/freertos/SEGGER folder    For the Config group:        All files in <QN9080_SDK_root>/boards/qn908xcdk/wireless_examples/bluetooth/<your_example>/freertos/Config folder   For the FreeRTOS_SEGGER group:        All files in <QN9080_SDK_root>/boards/qn908xcdk/wireless_examples/bluetooth/<your_example>/freertos/FreeRTOS_SEGGER folder   The workspace will be updated as shown in the picture below       7. Select the project in the workspace and press Alt + F7. Go to “C/C++ Compiler” window and select “Preprocessor”. Include in “Additional include directories” view the following paths:   $PROJ_DIR$ /../Config $PROJ_DIR$ /../FreeRTOS_SEGGER $PROJ_DIR$ /../SEGGER       8. Go to “Assembler”, click on “Preprocessor”. Include the last paths on “Additional include directories” view as shown below. Click the OK button.     9. Replace the following files in the workspace with the files attached in this post (IAR files.zip). Make sure that each new file is located on the same path as the respectively last one.   freertos/FreeRTOS.h freertos/task.h freertos/tasks.c freertos/portable/portasm.s freertos/portable/port.c freertos/portable/portmacro.h   10. Add #include "SEGGER_SYSVIEW_FreeRTOS.h" at the end of the FreeRTOSConfig.h file located at source/FreeRTOSConfig.h in the workspace.       11. Search the “SEGGER_SYSVIEW_Config_FreeRTOS.c” file at FreeRTOS_SEGGER folder in the workspace. Modify the SYSVIEW_RAM_BASE value to the lowest RAM address (default 0x20000000 in QN9080) and add an extern declaration to the SystemCoreClock variable: extern uint32_t SystemCoreClock;‍‍       12. Search the “fsl_os_abstraction_free_rtos.c” file at framework/OSAbstraction folder in the workspace. Add #include "SEGGER_SYSVIEW.h" at the top of the file. Search the main function and add the following call to function inside:   SEGGER_SYSVIEW_Conf(); SEGGER_SYSVIEW_Start();‍‍‍‍‍‍‍‍‍‍        13. Build and run your example. Run SystemView in your PC.     Enabling SystemView in MCUXpresso IDE 1. Install your QN908XCDK SDK in MCUXpresso IDE and import any freertos example from "wireless_examples" folder.  2. Select the project in the workspace, press the right mouse button and select "New->Source Folder" option     3. Create a new folder called “SEGGER”, click on the “Finish” button. Repeat the step 1 and create other folders called “Config” and “FreeRTOS_SEGGER”.     The workspace will be updated as shown below     4. Add the following files in the SEGGER, Config and FreeRTOS_SEGGER folders on the workspace dragging and dropping (the default SysView installation path is C:\Program Files (x86)\SEGGER\SystemView_V252c):   For the SEGGER folder:        All files located at <SysView_installation_path>\Src\SEGGER   For the Config folder:       All files located at <SysView_installation_path>\Src\Config   For the FreeRTOS_SEGGER folder:       <SysView_installation_path>\Src\Sample\FreeRTOSV9\SEGGER_SYSVIEW_FreeRTOS.c       <SysView_installation_path>\Src\Sample\FreeRTOSV9\SEGGER_SYSVIEW_FreeRTOS.h       <SysView_installation_path>\Src\Sample\FreeRTOSV9\Config\SEGGER_SYSVIEW_Config_FreeRTOS.c   When dragging and dropping, a new window will appear. Select "Copy files" in the button group and click "OK".       5. Select the project in the workspace, then go to "Project->Properties". The project properties window will be deployed.       6. Go to "C/C++ Build->Settings->Tool Settings->MCU C Compiler->Includes" view. Click on the "Green plus icon" in the "Include paths" view. A new window will appear, click on "Workspace..." button.       7. Select SEGGER, Config and FreeRTOS_SEGGER folders and click "OK", then click "Apply and Close" in the Project Properties window.   .   8. Replace the following files in the workspace with the files attached in this post (MCUXpresso files.zip).   freertos/FreeRTOS.h freertos/task.h freertos/tasks.c freertos/port.c freertos/portmacro.h   9. Add #include "SEGGER_SYSVIEW_FreeRTOS.h" at the end of the FreeRTOSConfig.h file located at source/FreeRTOSConfig.h in the workspace.     10. Search the “SEGGER_SYSVIEW_Config_FreeRTOS.c” file at FreeRTOS_SEGGER folder in the workspace. Modify the SYSVIEW_RAM_BASE value to the lowest RAM address (default 0x20000000 in QN9080) and add an extern declaration to the SystemCoreClock variable: extern uint32_t SystemCoreClock;‍‍   11. Search the “fsl_os_abstraction_free_rtos.c” file at framework/OSAbstraction/Source folder in the workspace. Add #include "SEGGER_SYSVIEW.h" at the top of the file. Search the main function and add the following call to function inside: SEGGER_SYSVIEW_Conf(); SEGGER_SYSVIEW_Start();‍‍‍‍‍‍‍‍‍‍‍‍   12. Build and run your example. Run SystemView in your PC.
查看全文
By default, FRDM-KW36 board includes a 32MHz XTAL (YI) as shown in Figure 1 but there are cases where a 26MHz XTAL is needed instead of 32MHz XTAL for FRDM-KW36 or a custom KW36 board.   Figure 1. 32MHz XTAL from FRDM-KW36 schematics Wireless connectivity demos from FRDM-KW36 Sofware Development Kit are configured to run with a 32MHz XTAL by default, but it's very easy to modify the software to operate with a 26MHz XTAL. Follow next steps to configure a FRDM-KW36 wireless connectivity demo to operate with a 26MHz XTAL: 1. In clock_config.h file, change BOARD_XTAL0_CLK_HZ define from 32000000U to 26000000U as shown in Figure 2.   Figure 2. BOARD_XTAL0_CLK_HZ define in clock_config.h 2. Add RF_OSC_26MHZ=1 line in preprocessor: If using IAR IDE: Right click on your project, then click options (Figure 3). Figure 3. IAR project options Go to C/C++ Compiler tab, then Preprocessor, and add RF_OSC_26MHZ=1 line in defined symbols window (Figure 4). Figure 4. IAR Preprocessor If using MCUXpresso IDE: Right click on your project, select Properties, go to Settings under C/C++ Build, then Preprocessor under MCU C Compiler (Figure 5). Figure 5. MCUXpresso Preprocessor Click on add button from Defined symbols, write RF_OSC_26MHZ=1 and click OK to finish (Figure 6). Figure 6. MCUXpresso Defined symbols To finish, re-compile your project and it will be ready to operate with a 26MHz XTAL. FRDM-KW36 SDK can be downloaded from the MCUXpresso webpage.
查看全文
Introduction This document is a quick start guide to load a new software image in a KW36 device through FSCI (Freescale Serial Communication Interface) bootloader software. Also, it contains all the steps needed to install the software required in a Windows host to handle the FSCI communication protocol. Software Requirements IAR Embedded Workbench IDE or MCUXpresso IDE. FRDM-KW36 SDK. Hardware Requirements FRDM-KW36 board. Downloading the SDK When downloading the SDK, select your specific IDE or simply choose all toolchains as shown below. In the option "Add software component", ensure to select all middleware components as depicted below. Installing FSCI Host in Windows OS The host software for the Windows OS was designed to work in a Python environment. The following steps are to download and install the software needed to use FSCI in a Windows OS. Visit the Python web site and download the latest Python 2.7.x MSI installer package for Windows OS. Open the MSI installer package. When customizing the installation options, check "Add python.exe to Path" as shown below Complete the rest of the steps for the Python installation process. Unzip the FRDM-KW36 SDK. Depending on your Python environment architecture, copy the HSDK.dll from <SDK_root>\tools\wireless\host_sdk\sdk-python\lib\<x86_or_x64> to <Python_directory>\DLLs (default in C:\Python27\DLLs). Download and install Visual C++ Redistributable Packages for Microsoft Visual Studio 2013 depending on the Windows architecture (vcredist_x86.exe or vcredist_x64.exe) from the Microsoft web site. Download and install the Microsoft Visual C++ Compiler for Python 2.7 from the following web site. To run Python scripts from the Command Prompt of Windows, we must create a system variable named PYTHONPATH. Search “System” in the Windows browser. Go to Advanced system settings -> Environment Variables… -> System variables. Click on the “New…” button and create the PYTHONPATH variable with the following value: <SDK_root>\tools\wireless\host_sdk\hsdk-python\src. Programming the FSCI bootloader on FRDM-KW36 board Attach the FRDM-KW36 board to your PC. Drag and drop the “bootloader_fsci_frdmkw36.bin” from the previously unzipped SDK file, you can find this file in: <SDK_root>\tools\wireless\binaries to your board. Like a common USB device. Creating a binary image to reprogram the device   IAR Embedded Workbench Open the connectivity project that you want to program through the FSCI bootloader from your SDK. This example will make use of the heart rate sensor project, located at the following path: <SDK_root>\boards\frdmkw36\wireless_examples\bluetooth\hrs\freertos\iar\hrs_freertos.eww. Open the project options window (Alt+F7). In Linker -> Config window, edit the “Configuration file symbol definitions” add the “gUseBootloaderLink_d=1” linker flag as shown below. Go to the “Output Converter” window and ensure that the output file is in binary format (.bin), otherwise, deselect the “Override default” checkbox, expand the “Output format” combo box and select “Raw binary. Click the OK button. Rebuild the project. The binary will be saved at: <SDK_root>\boards\frdmkw36\wireless_examples\bluetooth\hrs\freertos\iar\debug   MCUXpresso IDE Import your FRDM-KW36 SDK to MCUXpresso. Drag and drop your SDK on the "installed SDK's" toolbar. (In this step, it is not necessary to unzip the package). Open any connectivity project that you want to program through the FSCI bootloader from your SDK. This example will make use of the heart rate sensor project. Go to Project -> Properties, a new window will appear. Then, open the C/C++ Build -> Settings -> Linker -> Miscellaneous. Press the icon below, a new window will be deployed. Add “--defsym=gUseBootloaderLink_d=1”. Click on “Apply and Close”. Build the project. Deploy the “Binaries” icon in the workspace. Click the right mouse button on the “.axf” file. Select “Binary Utilities -> Create binary” option. The binary file will be saved at “Debug” folder in the workspace with “.bin” extension. Reprogramming an FRDM-KW36 board using the FSCI bootloader The following steps are to test the FSCI bootloader in a Windows OS. Search "Command Prompt" in the Windows browser. Run the "fsci_bootloader.py" Python script. Type the “python.exe” path in the console (default C:\Python27\python.exe). Drag and drop the “fsci_bootloader.py” from: <SDK_root>\tools\wireless\host_sdk\hsdk-python\src\com\nxp\wireless_connectivity\test\bootloader on the command prompt screen. Search the COM Port of your FRDM-KW36 board and type in the console. You can find it typing ‘Device manager’ from windows home and then search it in Ports (COM & LPT) toolbar. As you can see in this example the port may change depending on each case. Search the binary image file (created in the last section). Drag and drop on the screen. Press “Enter” to start the firmware update trough FSCI bootloader. Automatically the KW36 device will trigger to run the new software. To see all your process running, you can download the ‘IoT Toolbox’ from the app store to your smartphone and connect your device with the board to verify the random data that the heart rate sensor example generates.
查看全文
       My customer asks if QN9080 can be tested with MT887x. We co-work with Anritsu Taiwan to integrate QN9080 and MT887x to perform 1M bps, 2M bps and Frame error rate test. This document will address the QN9080 setup and MT887x connection setup. We show the 1M bps, 2M bps and frame error rate results. The Anritsu equipment is applied to MT8870, MT8872 model name.        If you would like to perform the same test environment. You may contact Anritsu to get the latest "Auto-test tool " released by Anritsu and follow their SOP document to install "Auto-test tool" into PC to perform this RF validation test. 
查看全文
Hello community, This time I bring to you a document which explains what are the ZigBee Test Client commands and how to use it. Before to read this guide, I widely recommend to take a look into the document Running a demo with BeeKit (802.15.4 MAC, SMAC and ZigBee BeeStack). This guide requires the BeeKit Wireless Connectivity Toolkit​ and the Test Tool for Connectivity Products applications.     I hope you find this guide useful. Enjoy this guide! Any feedback is welcome. Best regards, Earl Orlando Ramírez-Sánchez Technical Support Engineer NXP Semiconductors
查看全文
MyWirelessAPP Demo Beacon(End device) code for RTS development
查看全文
Hello everyone, Over The Air Programming (OTAP) NXP's custom Bluetooth LE service provides the developer a solution to upgrade the software that the MCU contains. It removes the need for cables and a physical link between the OTAP client (the device that is reprogrammed) and the OTAP server (the device that contains the software update). This post explains how to run the OTAP Client Software that comes within the FRDM-KW36 package: Reprogramming a KW36 device using the OTAP Client Software. As it is mentioned in the last post, the OTAP Client can reprogram the KW36 while it is running, with new software using Bluetooth LE. However, this implementation for most of the applications is not enough since once you have reprogrammed the new image, the KW36 can not be reprogramed a second time using this method. For these applications that require to be updated many times using Bluetooth LE during run-time, we have created the following application note, that comes with a functional example of how to implement the OTAP Client software, taking advantage of this service. You can download the software clicking on the link in blue and the documentation is in the link in green. Please visit the following link: DOCUMENTS and Application Notes for KW36 In the "DOCUMENTS" section, you can found more information of the KW36. In the "Application Note" section, you can found more software and documentation of interesting topics like this.        Best Regards.
查看全文
Introduction This document describes the hardware considerations for the schematic and layout of the MKW36A512VFT4 device. This MCU is packaged into a 48-pin HVQFN - 7x7 mm, dissimilar to MKW36Z512VHT4 which comes packaged into a 48-pin LQFN - 7x7 mm (the last one takes part of FRDM-KW36).   Pin Layout  The MKW36A512VFT4 MCU is pin to pin compatible with the MKW36Z512VHT4 (FRDM-KW36) MCU, except for the DCDC pins. The following figure shows the distribution of the pins in the MKW36A512VFT4 MCU (left), compared with the MKW36Z512VHT4 (FRDM-KW36 MCU, right). Surely, this is the most important consideration for MKW36A512VFT4, since you can not simply move the FRDM-KW36 layout on your design. Minimum BOM The following figures show the minimum BOM necessary for each DCDC mode in KW36. For more information about DCDC modes and hardware guidelines, please visit: MKW4xZ/3xZ/3xA/2xZ DC-DC Power Management Bypass Mode   Buck Auto-Start Mode   Buck Manual-Start Mode     Layout Recommendations The footprint and layout are critical for RF performance, hence if the recommended design is followed exactly in the RF region of the PCB, sensitivity, output power, harmonic and spurious radiation, and range, you will succeed. For more information of layout recommendations, please visit Hardware Design Considerations for MKW35A/36A/35Z/36Z Bluetooth Low Energy Devices. The footprint recommended for the MKW36A512VFT4 is shown in the figure below. NXP prefers to use a top layer thickness of no less than 8-10 mils. The use of a correct substrate like the FR4 with a dielectric constant of 4.3 will assist you in achieving a good RF design. Other recommendations during EMC certification stages are: - Specific attention must be taken on 4 pins PTC1, 2, 3 & 4 if they are used on the application. - 4 decoupling capacitors of 3pF are mandatory on those pins and be positioned as close as possible. - Wires from those 4 pins must be underlayer. - NXP recommends putting the vias under the package in case the customer HW design rules allow it. Some recommendations for a good Vdd_RF supply layout are: - Vdd_RF1 and Vdd_RF2 lines must have the same length as possible, linked to pointA (‘Y’ connection). - 12pF decoupling capacitor from Vdd_RF wire must be connected to the Ground Antenna. The purpose is to get the path as short as possible from Vdd_RF1/Vdd_RF2 to the ground antenna. - 12pF decoupling capacitor from the Vdd_RF3 pin must be as close as possible. Return to ground must be as short as possible. So vias (2 in this below picture) must be placed near to the decoupling capacitor to get close connection to the ground layer. The recommended RF stage is shown in the following figure. The MKW36A512VFT4 has a single-ended RF output with a 2 components matching network composed of a shunt capacitor and a series inductor. Both elements transform the device impedance to 50 ohms. The value of these components may vary depending on your board layout. Avoid routing traces near or parallel to RF transmission lines or crystal signals. Maintain a continuous ground under an RF trace is critical to keep unaltered the characteristic impedance of the transmission line. Avoid routing on the ground layer that will result in disrupting the ground under RF traces. For more information about RF considerations please visit: Freescale IEEE 802.15.4 / ZigBee Package and Hardware Layout Considerations.
查看全文
Introduction In some applications, is it necessary to keep updated the software running in many MCU's that take part in the system, fortunately, Over The Air Programming, it's a custom Bluetooth LE service developed to send "over the air" software updates for the KW MCU series. FRDM-KW36 SDK already provides the "otap_client" software, that can be used together with the "otap_bootloader" such as it is described in the following community post: Reprogramming a KW36 device using the OTAP Client Software to reprogram the KW36. This example can be modified to store code for another MCU and later send the software update to this device as depicted in the figure below. This post guides you on modifying the OTAP client software to support software updates for other MCU's. Preparing the OTAP client software The starting point of the following modifications is supposing that there is no need to perform over the air updates for the KW36 MCU, so the use of the "otap_bootloader" is obsolete and will be removed in this example. In other words, KW36 will be programmed only with the "otap_client" code. Open the MCUXpresso settings window (Project->Properties->"C/C++ Build->MCU settings") and configure the following fields. Save the changes. For external storage: For internal storage: Locate the "app_preinclude.h" file, and set the storage method, as follows: For external storage: #define gEepromType_d       gEepromDevice_AT45DB041E_c For internal storage: #define gEepromType_d        gEepromDevice_InternalFlash_c Locate the "main_text_section.ldt" linker script into the "linkscripts" folder, and delete it from the project.  Search in the project for "OTA_SetNewImageFlag();" and "ResetMCU();" functions in the "otap_client.c" file (source->common->otap_client->otap_client.c) and delete or comment. (For reference, there are 4 in total). Locate the following code in "OtaSupport.h" (framework->OtaSupport->Interface) and delete or comment. extern uint16_t gBootFlagsSectorBitNo;‍‍‍‍‍‍ void OTA_SetNewImageFlag(void);‍‍‍‍‍‍‍ Locate the following code in "OtaSupport.c" (framework->OtaSupport->Source) and delete or comment. extern uint32_t __BootFlags_Start__[]; #define gBootImageFlagsAddress_c ((uint32_t)__BootFlags_Start__)‍‍‍‍‍‍‍‍‍‍‍‍ #if !gEnableOTAServer_d || (gEnableOTAServer_d && gUpgradeImageOnCurrentDevice_d) /*! Variables used by the Bootloader */ #if defined(__IAR_SYSTEMS_ICC__) #pragma location = "BootloaderFlags" const bootInfo_t gBootFlags = #elif defined(__GNUC__) const bootInfo_t gBootFlags __attribute__ ((section(".BootloaderFlags"))) = #elif defined(__CC_ARM) volatile const bootInfo_t gBootFlags __attribute__ ((section(".BootloaderFlags"))) = #else #error "Compiler unknown!" #endif { {gBootFlagUnprogrammed_c}, {gBootValueForTRUE_c}, {0x00, 0x02}, {gBootFlagUnprogrammed_c}, #if defined(CPU_K32W032S1M2VPJ_cm4) && (CPU_K32W032S1M2VPJ_cm4 == 1) {PLACEHOLDER_SBKEK}, {BOOT_MAGIC_WORD} #endif }; #endif /* !gEnableOTAServer_d || (gEnableOTAServer_d && gUpgradeImageOnCurrentDevice_d) */‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ uint16_t gBootFlagsSectorBitNo; gBootFlagsSectorBitNo = gBootImageFlagsAddress_c/(uint32_t)((uint8_t*)FSL_FEATURE_FLASH_PFLASH_BLOCK_SECTOR_SIZE);‍‍‍‍ gBootFlagsSectorBitNo = gBootImageFlagsAddress_c/(uint32_t)((uint8_t*)FSL_FEATURE_FLASH_PAGE_SIZE_BYTES);‍‍‍‍ void OTA_SetNewImageFlag(void) { #if (gEepromType_d != gEepromDevice_None_c) && (!gEnableOTAServer_d || (gEnableOTAServer_d && gUpgradeImageOnCurrentDevice_d)) /* OTA image successfully written into the non-volatile storage. Set the boot flag to trigger the Bootloader at the next CPU Reset. */ union{ uint32_t value; uint8_t aValue[FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE]; }bootFlag; #if defined(CPU_K32W032S1M2VPJ_cm4) && (CPU_K32W032S1M2VPJ_cm4 == 1) uint8_t defaultSBKEK[SBKEK_SIZE] = {DEFAULT_DEMO_SBKEK}; #endif uint32_t status; if( mNewImageReady ) { NV_Init(); bootFlag.value = gBootValueForTRUE_c; status = NV_FlashProgramUnaligned((uint32_t)&gBootFlags.newBootImageAvailable, sizeof(bootFlag), bootFlag.aValue); if( (status == kStatus_FLASH_Success) && FLib_MemCmpToVal(gBootFlags.internalStorageAddr, 0xFF, sizeof(gBootFlags.internalStorageAddr)) ) { bootFlag.value = gEepromParams_StartOffset_c + gBootData_ImageLength_Offset_c; status = NV_FlashProgramUnaligned((uint32_t)&gBootFlags.internalStorageAddr, sizeof(bootFlag), bootFlag.aValue); } #if defined(CPU_K32W032S1M2VPJ_cm4) && (CPU_K32W032S1M2VPJ_cm4 == 1) if( status == kStatus_FLASH_Success ) { /* Write the default SBKEK for secured OTA */ status = NV_FlashProgramUnaligned((uint32_t)&gBootFlags.sbkek, SBKEK_SIZE, defaultSBKEK); } #endif if( status == kStatus_FLASH_Success ) { mNewImageReady = FALSE; } } #endif }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   At this point, the FRDM-KW36 can receive and store any image for any MCU and can request a further software update from the OTAP server device.    Adding API's to reprogram the "MCU X" on OTAP client software Once the software update has been downloaded from the OTAP Server into the OTAP Client, the developer should request the software update from the OTAP Client to the "MCU X" through a serial protocol such as UART, SPI, CAN, etc. You should develop the API's and the protocol according to the requirements for your system to send the software update to the "MCU X" (as well as the bootloader for the MCU X). The handling your protocol can be integrated into the OTAP client code replacing "ResetMCU()" (The same code removed in step 4) in the code by "APISendSoftwareUpdateToMCUX()" for instance, since at this point the image was successfully sent over the air and stored in the memory of the KW36. 
查看全文