Wireless Connectivity Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Wireless Connectivity Knowledge Base

Discussions

Sort by:
Matter support in Visual Studio Code (VS Code) is now open to all developers. MCUXpresso extension for VS Code v24.12.71 integrates the Matter toolchain for development on Windows, macOS and Linux.  It can be installed by visiting Microsoft’s Marketplace for VS Code. The following steps will set up your Windows system to develop Matter on NXP devices. This Getting Started process takes ~1 hour.  This is similar time it takes with flawless CLI setup. Import Matter repo takes ~30 minutes (Clone Matter repo; run bootstrap setup script)  Import first project for a board takes @~10 minutes (SDK repo download - 1st time every board) Additional projects can then be quickly imported/built. 1. Install Pigweed Project Automation Tool Pigweed is used for easier automation of building, testing, and linting GN and CMake projects.  Matter uses GN, so Pigweed is used by the maintainers of the project.  Complete the following to allow the Matter Bootstrap to properly modify/install the repository. Launch a Terminal in Administrator mode to allow operations to complete successfully. Ensure that Developer Mode is enabled. This can also be done by running the following command as an administrator: REG ADD HKLM\Software\Microsoft\Windows\CurrentVersion\AppModelUnlock /t REG_DWORD /v AllowDevelopmentWithoutDevLicense /d 1 /f\"" Enable long file paths. This can be done using  regedit  or by running the following command as an administrator: REG ADD HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem /v LongPathsEnabled /t REG_DWORD /d 1 /f  Enable Git symlinks: git config --global core.symlinks true For more information on these settings visit Get started with Pigweed - Pigweed  2. Install Visual Studio Code (VS Code) Microsoft allows users to quickly install VS Code from https://code.visualstudio.com/download. The link allows the user to select the appropriate download for their OS.  The following instructions are for a Windows installation.  However, most of the following steps also apply to Mac and Linux users. It can be helpful for new users to directly install VS Code and the NXP extension.  This can be done by sharing one of two links:  vscode:extension/NXPSemiconductors.mcuxpresso https://marketplace.visualstudio.com/items?itemName=NXPSemiconductors.mcuxpresso  If VS Code exists on the system, the user will be taken to the NXP MCUXpresso for VS Code extension in the Microsoft Marketplace.  If VS Code is NOT installed on the system the user will be guided through the install of VS Code.  At this point the VS Code application should be installed on the laptop. 3. Install MCUXpresso for VS Code Extension The user can install or update the MCUXpresso for VS Code extension from within VS Code.  The following steps outline how.  A short clip is included to show the steps. Open VS Code.  Launch program from desktop. Open the Extensions Marketplace.  Click on Icon of 4 blocks in left navigation  or use Ctrl-Shft-X. Search "NXP" or "Mcuxpresso" in the Extension search window at the top left. MCUXpresso for VS Code extension will be displayed.  Click on listing. Click on blue Install button in the Extension Overview that is opened in the editor. The Extension is properly installed when the following NXP icon is shown in left navigation.  At this point the VS Code application now includes the NXP MCUXpresso extension. 4. Run MCUXpresso Installer for Tool Dependencies It is now necessary to install other tool dependencies to properly use VS Code for MCUXpresso, Zephyr and/or Matter. NXP provides the MCUXpresso Installer utility to simplify properly meeting these tool dependencies.  The following steps list how to use the installer for a Matter system.  A short clip is included to show the steps. Click on "Open MCUXpresso Installer" found under Quickstart Panel in upper left. The MCUXpresso Installer will launch if already installed.  NOTE: If the Installer is not found, the user should select the blue "Download" button in the bottom right notification. Select the following from the MCUXpresso Installer list of available tools: Matter Developer Arm GNU Toolchain Standalone Toolchain Add-ons LinkServer Click the blue "Install" button and wait until installation progress shows complete Restart VS Code so that new settings are active At this point the VS Code application now includes the NXP MCUXpresso extension, and the laptop has any other tools required to begin Matter installation. 5. Import NXP Matter Repository The MCUXpresso for VS Code extension simplifies how the user can add Matter to their workspace.  The repository import wizard automates most of the steps required for a user to get started with Matter. The following steps show how to add Matter Repository.  2 short clips are included to show the steps. Click on "Import Repository" found under Quickstart Panel in upper left. Click Repository found in the wizard's Remote tab. Select "NXP Matter".  This automatically targets the NXP/Matter repo found on GitHub. Enter a desired location to clone/store the NXP Matter repository.  Closer to C:/ is better. Select "release/v1.4.0" listed as an available version under Revision: Click Import The import process can take ~30 minutes depending on network bandwidth and IT software. NOTE: This is similar amount of time when using CLI in a terminal.   After the repo is cloned, the Matter Bootstrap script is used to setup matter environment. At this point the user laptop has a valid Matter workspace.  The workspace is now capable of importing and building Matter projects. 6. Import First Matter Project The MCUXpresso for VS Code extension includes an Import Example wizard that simplifies adding Matter projects to a workspace.  The following instructions show how to import a project from the NXP Matter repository.   A short clip is included to show the steps. Click "Import Example from Repository" from the Quickstart Panel in the upper left. Select the Matter Repository from the drop-down options for Repository. Select the desired Toolchain from the drop-down options for Toolchain.  A GNU Toolchain should be available from previous MCUXpresso Installer steps. Select the target board from the drop-down options for Board.  The listed boards are supported in the NXP Matter repo. Select the desired project from the Template drop-down options.  Currently there are "contact-sensor-app" and "lighting-app". Click Create blue button. At this point there is a Matter project in the workspace.  The project can be explored with the provided project properties and file explorer views. 7. Build Matter Project Building the project is the final step for Getting Started with a Matter project in VS Code.  The extension has properly setup the project toolchain and will build successfully.  The NXP extension reduces the setup time by not importing the SDK for all supported boards.  The board SDK is automatically imported/cloned when it is not located on the 1st build for a board.  Successive projects for the same board will not require this additional step/delay. The following steps show how to build a matter project in the workspace.  A short clip is included to show the steps.  Select the Matter project listed under the Projects pane located in the primary left sidebar.  When selected, project control icons are revealed to the left of the project name. Click on the Build icon.   Verify the build was successful by viewing the binary files with File Explorer.  Click the File Explorer icon to the right of project name or in the upper left of the side bar navigation.  The binary is found under the project's \out\debug folder. This exercise on "Getting Started with Matter" is completed.  At this point the Matter project imported to the workspace was successfully built. 
View full article
The MCX W23 is a family of devices. All devices are Arm Cortex®-M33 based wireless microcontrollers for embedded applications supporting Bluetooth Low Energy 5.3. It can be used to develop IoT solutions. MCX W23xA supports LV_SM mode. MCX W23xB supports HV_SM and XR_SM mode. These devices include: • Up to 128 kB of on-chip SRAM • Up to 1024 kB on-chip flash • Quad SPI interface for operation from external SPI NVM • Five general-purpose timers (CTIMER) • One SCTimer/PWM • One RTC/alarm timer • One 24-bit multirate timer (MRT) • Windowed watchdog timer (WWDT) • Three flexible serial communication peripherals (each of which can be a USART, SPI, or I2C interface) Building on NXP's strong history of providing industrial edge solutions, the MCX W series offers a wide operating temperature range from -40 °C to 125 °C . The Arm Cortex-M33 provides a security foundation, offering isolation to protect valuable IP and data with TrustZone technology. It simplifies the design and software development of digital signal control systems with the integrated digital signal processing (DSP) instructions. To support security requirements, the MCX W23 also offers support for SHA-1, SHA2-256, AES, RSA, ECC, UUID, dynamic encryption, and decryption of the flash data using a PRINCE engine, debug authentication, and TBSA-M compliance.   Bluetooth Specifications The MCX W23 is compatible with the Bluetooth Low Energy 5.3 specification: – Bluetooth Low Energy 5.3 controller subsystem (QDID 200592) – Bluetooth Low Energy 5.3 host subsystem (QDID 226395) – Includes a 48-bit unique bluetooth device address – Up to 4 simultaneous connections supported The MCX W23 supports the following Bluetooth Low Energy features: – Device privacy and network privacy modes (version 5.0) – Advertising extension PDUs (version 5.0) – Anonymous device address type (version 5.0) – Up to 2 Mbps data rate (version 5.0) – Long range (version 5.0) – High-duty cycle, nonconnectable advertising (version 5.0) – Channel selection algorithm #2 (version 5.0) – High output power (version 5.0) – Advertising channel index (version 5.1) – Periodic advertising sync transfer (PAST) (version 5.1) – Supports LE power control feature (version 5.2) RF antenna: 50 Ω single-ended RF receiver characteristics: – Sensitivity −94 dBm in Bluetooth Low Energy 2 Mbps – Sensitivity −97 dBm in Bluetooth Low Energy 1 Mbps – Sensitivity −100 dBm in Bluetooth Low Energy 500 kbps – Sensitivity −102 dBm in Bluetooth Low Energy 125 kbps – Accurate RSSI measurement with ±3 dB accuracy Flexible RF transmitter level configurability: – TX mode 1 (TXM1): Range from −31 dBm to +2 dBm when VDD_RF exceeds 1.1 V – TX mode 2 (TXM2): Range from −28 dBm to +6 dBm when VDD_RF exceeds 1.7   Bluetooth_5.0_Feature_Overview  Bluetooth_5.1_Feature_Overview  Bluetooth_5.2_Feature_Overview Bluetooth_5.3_Feature_Overview   Training MCX W Series Training - NXP Community   Equipment Wireless Equipment: This article provides the links to the Equipment that helps to the project development    Useful Links Transmitter Maximum Output Power Override Application Note   Development Tools  NXP MCUXpresso: MCUXpresso IDE offers advanced editing, compiling and debugging features with the addition of MCU-Specific debugging. Supports connections with all general-purpose Arm Cortex-M.  VSCode: MCUXpresso for Visual Studio Code (VS Code) provides an optimized embedded developer experience for code editing and development. Zephyr RTOs  NXP Application Code Hub: Application Code Hub (ACH) repository enables engineers to easily find microcontroller software examples, code snippets, application software packs and demos developed by our in-house experts. This space provides a quick, easy and consistent way to find microcontroller applications. NXP SPSDK: Is a unified, reliable, and easy to use Python SDK library working across the NXP MCU portfolio providing a strong foundation from quick customer prototyping up to production deployment. NXP SEC Tool: The MCUXpresso Secure Provisioning Tool us a GUI-based application provided to simplify generation and provisioning of bootable executables on NCP MCU devices. NXP OTAP Tool: Is an application that helps the user to perform an over the air firmware update of an NXP development board. Support If you have questions regarding MCX W23, please leave your question in our Wireless MCU Community! here
View full article
Board pictures (KW47-M2) Connectors (KW47-M2) Part Identifier Connector Type Description J3 2x5 pin header SWD DNP J8 1x6 pin header UART1 – FTDI DNP J9 1x6 pin header Power connector DNP Jumpers (KW47-M2) Part Identifier Connector Type Description JP5 2x3 pin header supply power source selection jumper: 1-2 shorted (default configuration): Use this configuration to set target MCU in DCDC mode.  3-4 shorted: Use this configuration to set target MCU in LDO/Bypass mode. All MCU power domains are supplied by P3V3_DUT.  JP4 1x2 pin header Target MCU boot configuration enable jumper: • Open (default setting): ISP mode is disabled • Shorted: ISP mode is enabled Push Buttons (KW47-M2) Part Identifier Switch name Description SW1 Reset button Resets the target MCU. This causes peripherals to reset to their default state. After this, MCU ROM bootloader will be executed. LED D1 turns on at SW1 press. SW2 User PB General purpose input. This pin supports low-power wakeup capabilities through Wake-Up Unit (WUU). LEDs (KW47-M2) Part Identifier Switch name Description D1 Reset LED Indicates a system reset event. When reset is triggered—such as by pressing the SW1 reset button—the D1 LED turns ON. D2 Led Green User indicator, indicates system activity   Power Configurations (KW47-M2) Populate J9 PWR connector. To run KW47 M2 as standalone, supply 3.3V to P3V3_DUT power rail Figure 1 J9 M10 Configuration (KW47-M2)   To get the KW47 M2 up and running, you need to select a power configuration through JP5 jumper. For more information on KW47 power configurations, refer to RM: Part Identifier pin Description JP5 1-2 1-2 shorted (default setting): Sets target MCU to DCDC mode. This mode is the recommended configuration. JP5 3-4 3-4 shorted: Sets target MCU to LDO mode.     External power configuration (KW47-M2) Enable KW47-M2 by supplying power through J9 connector: Note: When using DCDC or LDO mode, it is recommended to supply P3V3_DUT power rail only. Part Identifier pin Description J9 5 Use this pin to supply P3V3_DUT power rail with 3.3V. To get KW47-M2 up and running, it is recommended to set KW47 to DCDC mode and supply P3V3_DUT only. J9 3 Use this pin to supply P1V8_LDO power rail with 1.8V. This power rail is intended for an accurate control of VDD_RF power domain, but it is not necessary. J9 1 Use this pin to supply P1V1_EXT power rail with 1.1V. This power rail is intended for an accurate control of VDD_CORE power domain, but it is not necessary.   Installing LinkServer software in your PC To program the KW47-M2 for the first time, you will need to download the LinkServer software and follow the following steps to install it on your PC. Download the installer for LinkServer distributed via nxp.com. Run the LinkServer installer. Accept the license agreement by clicking on the checkbox in red. Then click the “Next >” button. See the picture below.   Click “Next >” in the following installation steps that refer to the destination folder where the software will be installed. The following window summarizes the installation information. Click the “Install” button to start the installer.     Once the Link Server software has been installed successfully, you can close the installer by clicking the “Finish” button.   Programming the NBU in the KW47-M2 board The following steps guide you to program the NBU software for the KW47-M2 Place a jumper in the JP4 header while holding pressed the reset SW on the module board, attach the USB connector J8 (FTDI connector) to your computer. Then, release the reset SW after you plugged the USB cable on your computer.   Verify what COM Port was assigned to your KW47-M2 board. You can check the COM Port assigned in the Windows “Device Manager” program. Search for “Ports (COM & LPT)” and save the COM Port number. In this example the COM Port assigned was “COM19”   Navigate to your computer to the MCU-Link installation folder. The default installation path is located at “C:\nxp\LinkServer_25.3.31\MCU-LINK_installer Locate the “bin” folder and open it. Run the script “blhost” within a windows command prompt.   Type “blhost.exe -p COMX write-memory 0x48800000”, drag and drop the NBU binary file. When the process is ready you will see the response status "success"  
View full article