NXP Designs Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

NXP Designs Knowledge Base

Discussions

Sort by:
Demo Owner David Lopez This demo is an overview of our power management simulation and validation tools. Our tools will help you accelerate power management validation with ISO 26262 compliance. Through this demo you will discover how NXP develop innovative validation tool to cover multiple use case, and accelerate product validation in line with ISO26262. The leading device use to develop this tool is MC33908, System Basic Chip with DC/DC and highest functional safety level.  In addition this tool is also covering the validation of MCU and SBC attachment.  This tool contain a database made through the collection of different car OEM "non-ISO" pulse with fast execution.   Features Transient simulation tool platform Accelerate power management validation with ISO 26262 compliance Global OEM use cases database Featured NXP Products Analog and Power Management|NXP
View full article
Demo This solution showcases the i.MX 6QuadPlus along with the MMPF0100 Power Management to enable the 2D/3D cluster, infotainment and rear view camera.      Features: High performance smooth 3D graphics based on the i.MX 6QuadPlus applications processor running on Linux. On the fly rendering of the infotainment menu. Seamlessly integrate extremely responsive instruments and highly complex 3D content Optimal usage of the CPU and GPU to achieve high-end graphics on the power effective and system cost effective i.MX Switch between HD video playback and the rear view camera on the secondary display Menu can be blended over the map (BG layer) using transparency   _______________________________________________________________________________________________________________________ Featured NXP Products: Product Link i.MX 6QuadPlus Processor i.MX 6QuadPlus Applications Processors | Quad Arm® Cortex®-A9 with extreme graphics performance and enhanced power manag…  i.MX 6DualPlus Processor i.MX 6DualPlus Applications Processors | Dual Arm Cortex-A9 for extreme graphics performance| 1.2 GHz | NXP  14-Channel Configurable Power Management IC 14-Channel Configurable Power Management IC | NXP  SABRE for Automotive Infotainment Based on the i.MX 6 Series SABRE|Automotive-Infotainment|i.MX6 | NXP    _________________________________________________________________________________________________________________________   Screen shot 1: Cluster with 3D maps Real-Time 3D map (created in Blender): 640 abstract buildings. 20 different building types. 3 “special” buildings. One building type. 5x5 map grid. Dynamic, directional lighting. Calculating and updating car chase camera every frame. Smooth 3D animations even at 30 Hz. This is no video!     Screen shot 2: Secondary Display playing Video or RearView Camera
View full article
Demo The demo session focuses on demonstrating the transport of human voice over the Bluetooth Smart protocol on Kinetis Wireless platforms running the Kinetis Bluetooth Low Energy stack. The intended setup is made up of two Kinetis Wireless KW41Z evaluation boards connected to an audio codec board with a headset (headphones + microphone) connected at each end. The audience can use the headsets for a full duplex voice communication experience. This demo session is aimed at showcasing the performance of the Kinetis KW41Z platform Demo Features Full duplex voice samples transport over Bluetooth LE transport using Kinetis KW41Z enabled with the Kinetis BLE v4.2 stack SGTL5000 audio codec for sample processing and Kinetis K24F for used for compression Interactive component through a pair of headsets for demonstrating the full duplex voice capabilities NXP Recommends Product Link Kinetis® KW41Z-2.4 GHz Dual Mode: Bluetooth® Low Energy and 802.15.4 Wireless Radio Microcontroller (MCU) based on Arm® Cortex®-M0+ Core https://www.nxp.com/products/wireless/thread/kinetis-kw41z-2.4-ghz-dual-mode-bluetooth-low-energy-and-802.15.4-wireless-radio-microcontroller-mcu-based-on-arm-cortex-m0-plus-core:KW41Z?&fsrch=1&sr=1&pageNum=1 Ultra-Low-Power Audio Codec https://www.nxp.com/products/audio/audio-converters/ultra-low-power-audio-codec:SGTL5000?&fsrch=1&sr=1&pageNum=1 Kinetis® K24 120 MHz MCU Tower® System Module TWR-K24F120M|Tower System Board|Kinetis® MCUs | NXP 
View full article
Demo Owner: Mark Houston   Kinetis V series is a family of devices targeting motor and power control applications for the mass market with a strong focus on enablement. See two elements of that story: a product benchmark showing relative product performance and the Kinetis motor suite -- a tool that speeds your development time to market.       Features Motor speed capabilities Comparison to standard controllers Smooth transitions Featured NXP Products Kinetis V Kinetis V1 Kinetis V3 Kinetis V4 Development Tools Kinetis Motor Suite Design Resources Kinetis Motor Suite Fact Sheet
View full article
Demo This demo showcases an OpenWRT based Thread Border router running on i.MX6UL and the various options to configure and use routing, firewall and out of band commissioning for Thread networks in combination with WiFi, Ethernet and NFC. OpenWRT is an open source Linux distribution for embedded devices specifically designed for residential gateways and routers. When enhanced with the Kinetis Thread protocol it offers the perfect solutions for creating a Linux based Thread Border Router Large and dense mesh network consisting in 64+ Thread nodes Each node is router capable, network decides dynamically which nodes become active routers Multiple application functionality run in parallel: Device addressing and identification Lighting demonstration with multicast Occupancy sensing demonstration Border Router with Network management web GUI   Features: Application layer communication based on generic CoAP framework CoAP messaging aligned with current ZigBee or OIC frameworks Kinetis KW2xD and Kinetis KW41 ARM Cortex-M4/M0+ MCUs with large on-board memory (up to 512KB flash/128 KB RAM) enable multiple applications to run on a common Thread IP network fabric. 1 i.MX6UL ARM Cortex-A7 with Kinetis KW2xD Linux Border Router used for interfacing with network management GUI Network management and interoperable Thread diagnostics framework used to monitor node state Nodes are enabled for OTA Updates _____________________________________________________________________________________________ Featured NXP Products: Product Link i.MX6UltraLite Evaluation Kit i.MX6UltraLite Evaluation Kit | NXP  Freedom Development Platform for Kinetis® KW2x MCUs FRDM-KW24D512|Freedom Development Platform|Kinetis | NXP  _____________________________________________________________________________________________
View full article
Demo         This was a super fun project to work on and is popular around the office and on the road.  Now I have two of these for a truly amazing barrage of Nerf darts!  It's also always a lot of fun to tear things down and the Nerf gun had some cool plastic work and the shooting mechanism is more simple than what I originally guess.  But I digress, this post is about how you can build one of these yourself.  Please leave any questions or comments in the section below and I will try to answer and make refinements to this guide as we go.   The shopping list (aka Bill of Materials or BOM)   If you shop around you might be able to find better prices or substitute parts.   Type Part Qty Price URL UBEC HKU5 1 $             5.33 http://www.hobbyking.com/hobbyking/store/__16663__HobbyKing_HKU5_5V_5A_UBEC.html LiPo TURNIGY 2200mAh 3S 20C 1 $             7.89 http://www.hobbyking.com/hobbyking/store/__8932__Turnigy_2200mAh_3S_20C_Lipo_Pack.html Servo S5030DX 1 $           28.63 http://www.hobbyking.com/hobbyking/store/__18862__Hobbyking_S5030DX_Digital_MG_Servo_X_Large_HV_164g_0_20s_30kg.html Servo HK15138 1 $             3.12 http://www.hobbyking.com/hobbyking/store/__16269__HK15138_Standard_Analog_Servo_38g_4_3kg_0_17s.html Relay PCB COM-11041 1 $             3.95 https://www.sparkfun.com/products/11041 Relay Components Various 1 $             3.00 https://www.sparkfun.com/wish_lists/36307 Nerf Gun Nerf Dart Tag Swarmfire Blaster 1 $           44.99 http://www.toysrus.com/product/index.jsp?productId=11267568 Controller FRDM-K64F 1 $           29.00 FRDM-K64F | mbed Servo Arm Double Servo Arm X-Long 1 $             3.20 http://www.hobbyking.com/hobbyking/store/__19468__CNC_Alloy_Double_Servo_Arm_X_Long_Futaba_.html Servo Arm Heavy Duty Alloy Arm 1 $             5.63 http://www.hobbyking.com/hobbyking/store/__18350__Heavy_Duty_Alloy_1in_Servo_Arm_Futaba_Red_.html Servo Linkage Alloy Pushrod with Ball-Link 65mm 1 $             2.10 http://www.hobbyking.com/hobbyking/store/__25834__Alloy_Pushrod_with_Ball_Link_65mm.html Lazy Susan Shepherd 6 in. Lazy-Susan Turntable 1 $             4.49 http://www.homedepot.com/p/Shepherd-6-in-Lazy-Susan-Turntable-9548/100180572#.UYk5UqLql8E Metal Rod 3/8 in. x 36 in. Zinc Threaded Rod 1 $             2.87 http://www.homedepot.com/p/3-8-in-x-36-in-Zinc-Threaded-Rod-17340/202183465#.UYk5pqLql8E Frame 1/2 MDF 2ftx4ft 1 $           10.45 http://www.homedepot.com/p/1-2-in-x-2-ft-x-4-ft-Medium-Density-Fiberboard-Handy-Panel-1508108/202089097?N=btn1#.UYk6CqLql8E   The build   Two main pieces to construct in this phase.  The base turret and the actual hacking of the Nerf gun.   All your base.. The base of the turret is pretty rudimentary, lot's of room for improvement here.  I used 1/2 MDF and some carpentry skills.  Here is some instruction on how to build a MDF box.  Atop the box is a lazy Susan (ball bearing ring) so that the top-plate can rotate smoothly.  We considered leaving this element out, but worried that it would put to much strain on the servo.   On the subject of servos, a few tidbits of wisdom for you as you build this thing.  First, the left/right servo needs to be dead center of the lazy susan, if your off too much things will start to bind which is not good for your servo.  Second, I used large higher torque servos which cost a bit more, they might be overkill, but it certainly performs well.   I did a quick dimensionally accurate rendering of the design in Sketchup. Files are here.   Hacking the Nerf   Now for the fun stuff.   There is no shortage of screws with this Nerf Gun.  So get out your Phillips screwdriver and go to town. There are two electrical systems in the Nerf that we are going to tap into.  One is the power switch and the other is the electrical trigger. This is the electrical trigger.  The trigger goes to our relay, which is either on or off.  We did try at first to use a 7.2V R/C car battery, but the Nerf draws too much power and didn't fire.  Going up to a 11.1V LiPo fixed that right up. This is the power switch. In Nerfinator 1.0 everything was hardwired together, which prevented us from completely pulling the Nerf from the base and made repairs difficult to say the least.  Nerfinator 2.0 we put this handy connector which allowed us to completely and easily remove the Nerf from the base.  Shipping this thing around the country will take a toll on it!  On that subject, Nerf 1.0, stopped cycling to the next position for us at the Austin Mini Maker Faire.  After a through inspection of the operational mechanics inside the Nerf (really cool BTW) it was a little bitty spring that was causing the piston not to fully retract.  We replaced the spring with 1/2 a ballpoint pin spring and to our surprise it all worked again. Electrical Connection Diagram   Added High-Level Block Diagram.  Need to add pinouts.  You'll have to read the code for now to figure it out.     Code   Mbed was the programming tool of choice for this build.   Receive Side (RX) - The receiver is the base side.  This one takes input from the remote and controls the servo movement. NerfGun_nRF24L01P_RX - a mercurial repository | mbed Transmit Side (TX) - The transmitter is the remote side.  This one senses the users movement (accelerometer) and sends that data to the base station. NerfGun_nRF24L01P_TX - a mercurial repository | mbed   Finishing Touches   In the first passes of this build we just used a bare development board as the remote control.  We found that when given the remote they would not orientate it properly, so 3D Printed Controller STL files   Development Team John McLellan - Amplification/Motivation Clark Jarvis - Software/Hardware Iain Galloway and Angus Galloway - Design and print of controller FRDM_case_sunday_PART_REV_001.STL.zip
View full article
The Attach demo consists of a 3 board stack up using the Arduino connectors on the Kinetis FRDM-KL26Z board. The demo runs from a Li Ion polymer battery and consists of 1x FRDM-KL26Z board, 1x FRDM-BATT board (including battery and loudspeaker) and 1x Arduino LCD touch screen board. The code builds using either CodeWarrior V10.6 or IAR EWARM V7.20.2. The software uses eGUI to drive the Arduino LCD and runs demos for the following Sensors - FXOS8700 (combined 3-axis Accelerometer and Magnetometer) and FXAS21000 (3-axis MEMs Gyro). The demo also includes 7-element eCompass code for which full source code is available. Finally, the board also uses the MC34673 1.2A charger for Li Ion batteries, charging is accomplished via either of the USB ports on the FRDM-KL26Z. All datasheets, schematics, source code and bill of materials are included in the zip archive. NOTE: software update which now includes 10-element eCompass software and Kalman filtering code creating a far more accurate eCompass solution. Recommended Products Product Link Freedom Development Platform for Kinetis® KL16 and KL26 MCUs (up to 128 KB Flash) FRDM-KL26Z|Freedom Development Platform|Kinetis® MCU | NXP 
View full article
Demo Owner: b14714 The motor control development toolbox is a comprehensive set of tools that plug into the MATLAB™/Simulink™ model-based design environment for rapid application development on MCUs.  The SFIO Toolbox is a new addition that can control Simulink system models by SFIO algorithms running directly on NXP DSC and Kinetis MCU hardware. NXP FreeMASTER debug monitor and data visualization tool interfaces provide an interface to monitor signals in real time for data logging and signal calibration. Features The motor control development toolbox is a comprehensive set of tools that plug into the MATLAB™/Simulink™ model-based design Auto code generation straight to the Micro. NXP developed a library and embedded target to interface with MATLAB and SimuLink Customers can directly go from the model based environment to the MCU without having to write C code by hand Featured NXP Products Motor Control
View full article
  Introduction   In this document, we are focusing on the usage of two functions of FreeRTOS: Creation of tasks and the use of queues as a way to trigger a generic functionality in our application. NXP’s SDK abstraction layer for the QN908x is intended to give the customer a simpler way of FreeRTOS usage and control functionalities. Hardware Requirements: QN9080DK Software Requirements: MCUXpresso IDE v11.1.0 or newer QN908XCDK SDK with BLE stack and examples (It can be downloaded from the SDK Builder) This document is based on the Wireless UART example from the SDK. Setting up the required variables and definitions Import the FreeRTOS version of the wireless_uart example included in the QN9080’s SDK.   Note: Be sure to select UART as your debug console.    2. In order to change the default role of the QN9080 board it is required to change the definition of the mGapRole variable, from gGapCentral_c to gGapPeripheral_c in PROJECT_FILE_NAME > source > wireless_uart.c > BleApp_Config(). //wireless_uart.c //static void BleApp_Config(void) { /* By default, always start node as GAP central */ //mGapRole = gGapCentral_c; mGapRole = gGapPeripheral_c; (void)Serial_Print(gAppSerMgrIf, "\n\rWireless UART starting as GAP Peripheral, press the role switch to change it.\n\r", gAllowToBlock_d); mAdvState.advOn = TRUE; mScanningOn = FALSE; //...}‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍    3. It is important to change the macro value of: osNumberOfMessageQs in PROJECT_FILE_NAME > framework > OSAbstracion > Interface > fsl_os_abstraction_config.h to a value > 0.  //fsl_os_abstraction_config.h #ifndef osNumberOfMutexes #define osNumberOfMutexes 5 #endif #ifndef osNumberOfMessageQs #define osNumberOfMessageQs 1 #endif #ifndef osNumberOfMessages #define osNumberOfMessages 10 #endif‍‍‍‍‍‍‍‍‍ //...‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Then, to start the task implementation it is needed to edit the file: PROJECT_FILE_NAME > framework > OSAbstracion > Source > fsl_os_abstraction_free_rtos.c.        First, we create the prototype of the main task function, then define the task using the “OSA_TASK_DEFINE” definition. The syntax should be the following: This function is part of the thread Management, it helps the user define the creation of a new thread, controlling the priority and stack requirements. The following parameters are used in the function definition. name: Should be the name of the function used as our task priority: The scheduler will grant a minor or major priority to our function with this parameter. instances: This parameter give us the control to limit the number of instances in order to manage the memory in the most optimal way. stackSz : This parameter has a default value, which is defined by the abstraction layer as: gMainThreadStackSize_c as 1024 bytes. useFloat : This parameter is part of the thread definition structure, is a Boolean, It defines if the thread will use floating point.   //fsl_os_abstraction_free_rtos.c /*! ********************************************************************************* ************************************************************************************* * Private functions ************************************************************************************* ********************************************************************************** */ OSA_TASK_DEFINE(startup_task, gMainThreadPriority_c, 1, gMainThreadStackSize_c, 0) ; void vfnTaskPWM(void* param); //New Task Definition OSA_TASK_DEFINE(vfnTaskPWM, 1, 1, 500, FALSE ); osaTaskId_t gAppTestTask1Id = 0; // TestTask1 Id osaTaskId_t pwmTask_queue = 0; //get defines from wireless_uart int main (void) { /* Initialize MCU clock */ hardware_init(); OSA_TaskCreate(OSA_TASK(startup_task), NULL); //Task and Queue creation. gAppTestTask1Id = OSA_TaskCreate(OSA_TASK(vfnTaskPWM), NULL); //Task Creation pwmTask_queue = OSA_MsgQCreate(1); //Scheduler starting vTaskStartScheduler(); return 0; } //..‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   4. The function: OSA_TaskCreate returns a taskID it is required to create a osaTaskId_t variable as the following: osaTaskId_t gAppTestTask1Id = 0; and also another osaTaskId_t variable for the FreeRTOS queue we will be using : osaTaskId_t pwmTask_queue = 0.‍‍‍‍‍‍‍ 5. Inside the main function we will create our task in the same fashion the startup_task is created: gAppTestTask1Id = OSA_TaskCreate(OSA_TASK(vfnTaskPWM), NULL);‍‍‍‍‍‍‍ 6. We also need to create the queue using the same type of variable and using the OSA_MsgQCreate() function to create a new Queue: pwmTask_queue = OSA_MsgQCreate(1);‍‍‍‍‍‍‍ 7. After this statements the scheduler should start: vTaskStartScheduler(); 8. In the wireless_uart.c file it is required to add pwmTask_queue, created for the queue as an extern variable. //wireless_uart.c static uint8_t gAppSerMgrIf; static uint16_t mAppUartBufferSize = mAppUartBufferSize_c; static volatile bool_t mAppUartNewLine = FALSE; static volatile bool_t mAppDapaPending = FALSE; extern osaMsgQId_t pwmTask_queue; /************************************************************************************ ************************************************************************************* * Private functions prototypes ************************************************************************************* ************************************************************************************/ /* Gatt and Att callbacks */ static void BleApp_AdvertisingCallback(gapAdvertisingEvent_t *pAdvertisingEvent);‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Tasks and Queues implementation in our application code In this example we implemented the use of OSA_MsgQPut() to place the message received from the central peripheral in a queue by using: //wireles_uart.c static void BleApp_ReceivedUartStream(deviceId_t peerDeviceId, uint8_t *pStream, uint16_t streamLength) { static deviceId_t previousDeviceId = gInvalidDeviceId_c; char additionalInfoBuff[10] = { '\r', '\n', '[', '0', '0', '-', 'M', ']', ':', ' '}; uint8_t *pBuffer = NULL; uint32_t messageHeaderSize = 0; if (mAppUartNewLine || (previousDeviceId != peerDeviceId)) { streamLength += (uint32_t)sizeof(additionalInfoBuff); } /* Allocate buffer for asynchronous write */ pBuffer = MEM_BufferAlloc(streamLength); if (pBuffer != NULL) { /* if this is a message from a previous device, print device ID */ if (mAppUartNewLine || (previousDeviceId != peerDeviceId)) { messageHeaderSize = sizeof(additionalInfoBuff); if (mAppUartNewLine) { mAppUartNewLine = FALSE; } additionalInfoBuff[3] = '0' + (peerDeviceId / 10U); additionalInfoBuff[4] = '0' + (peerDeviceId % 10U); if (gGapCentral_c != maPeerInformation[peerDeviceId].gapRole) { additionalInfoBuff[6] = 'S'; } FLib_MemCpy(pBuffer, additionalInfoBuff, sizeof(additionalInfoBuff)); } FLib_MemCpy(pBuffer + messageHeaderSize, pStream, (uint32_t)streamLength - messageHeaderSize); /**** Adding a message into a Queue ****/ OSA_MsgQPut(pwmTask_queue, (void*)&pBuffer); /**************************************/ (void)Serial_AsyncWrite(gAppSerMgrIf, pBuffer, streamLength, Uart_TxCallBack, pBuffer); } /* update the previous device ID */ previousDeviceId = peerDeviceId; }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ This function points to the external queue variable created before the main() function of the project. Also points to the buffer pointer of the message received in BleApp_ReceivedUartStream(), These parameters can be accessed by using OSA_MsgQGet() function. osaStatus_t OSA_MsgQGet(osaMsgQId_t msgQId, void *pMessage, uint32_t millisec)‍‍ This function gets the message from the head of the message queue, the parameters of this function are the following: msgQId : Is the identifier of the queue function. pMessage : Is a pointer to the same message sent fromOSA_MsgQPut(); millisec : Is the number of milliseconds to wait for a message.   Inside the task created: vfnTaskPWM() there is an infinite while loop checking if a message is in the queue, this is accomplished by using the os_abstraction function: The rest of the task implementation is in a different C file. The external queue variable is defined in this file in addition to the task function prototype: /*pwmApplication.c*/ /*Global Variables*/ static uint8_t gAppSerMgrIf; extern osaMsgQId_t pwmTask_queue; /*Function Prototypes*/ void signalConfigValues(int red, int green, int blue); void getValuesRGB(uint8_t* msgString); int getInt(char *stringInteger, int size); /****Task Definition****/ void vfnTaskPWM(void* param); /* * Task to configure the PWM pins and start the timer * */ void vfnTaskPWM(void* param) { uint8_t* msgString; char msgString1[20] = { '\0', '\0', '\0', '\0','\0', '\0', '\0', '\0','\0', '\0', '\0', '\0','\0', '\0', '\0', '\0','\0', '\0', '\0', '\0'}; while(1) { /* * If there is a new message on queue the value will return a 0 according to the OSA_MsgQGet function * to compare the incoming message * */ while((OSA_MsgQGet(pwmTask_queue,(void*)&msgString,10)) == 0){ //shift-up the pointer value to get the payload message if(*msgString == '\r'){ while(*msgString != 32){ msgString++; } msgString++; } FLib_MemCpy(msgString1,msgString,20); if(FLib_MemCmp(msgString1, "OFF", 4)){ (void)Serial_Print(gAppSerMgrIf,"\n\r OFF: ", gAllowToBlock_d); //configure the PWM new function signalConfigValues(0,0,0) and StartTimers(CTMRA,CTMRB) signalConfigValues(0,0,0); } else{ //a function to convert values from a string to integers getValuesRGB(msgString); } } } } ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍
View full article
This document describes step-by-step how to run NFC on Raspberry Pi platform. Hardware setup: You need:    - Raspberry Pi (any model) : https://www.raspberrypi.org/products/:        - OM5578(PN7150 demokit) in RPi configuration (or OM5577(PN7120 demokit)😞         Then simply assemble boards together, stacking OM5578RPI (or OM5577RPI) to Raspberry Pi expansion connector:       Software setup:   Use Raspbian  (https://www.raspberrypi.org/software/operating-systems/) or any other Linux distribution (guidelines to set up Linux environment on raspberry pi: https://www.raspberrypi.org/documentation/installation/installing-images/). Step by step procedure: Enable i2c support:        On Raspbian: Run "sudo raspi-config" Use the down arrow to select "5 Interfacing Options" Arrow down to "P5 I2C" Select "yes" when it asks you to enable I2C Also select "yes" if it asks about automatically loading the kernel module Use the right arrow to select the <Finish> button Select "yes" when it asks to reboot       The system will reboot. when it comes back up, log in and enter the following command "ls /dev/*i2c*".       The Pi should respond with "/dev/i2c-1" which represents the user-mode I2C interface.   Install necessary tools:         On Raspbian execute the command:    sudo apt-get install autoconf automake libtool git Clone Linux libnfc-nci library repository:         Execute the command:    git clone https://github.com/NXPNFCLinux/linux_libnfc-nci.git Configure the library:         Execute the commands:    cd linux_libnfc-nci    ./bootstrap    ./configure --enable-alt Build and install the library:         Execute the commands:    make       sudo make install    export LD_LIBRARY_PATH=/usr/local/lib Run demo application (built and installed together with the library during previous step):         To simply display all data collected from remote NFC device (Peer, reader/writer or card), run the demo application in poll mode executing the command:    nfcDemoApp poll         For more details about the demo application modes execute command:    nfcDemoApp --help   One step further: Set environment variable to reference library installation:         Execute command: export LD_LIBRARY_PATH=/usr/local/lib         You may wan't to make this setting permanent by adding it to your .bashrc file for instance : echo "export LD_LIBRARY_PATH=/usr/local/lib" >> .bashrc Write your own application:         Several simple examples demonstrating use of the linux_libnfc-nci library for different use cases (Reader, Peer to peer, Host Card Emulation) are given as reference: https://github.com/NXPNFCLinux/linux_libnfc-nci_examples        - Simply clone the repository    git clone https://github.com/NXPNFCLinux/linux_libnfc-nci_examples.git        - Browse to the targeted example:    cd linux_libnfc-nci_examples/xxx_example        - Build the example:    make        - Run the example    ./xxx_example   Additional information: Another Platform ?        Using UDOO NEO (with OM5577 or OM5578 in Arduino configuration) ?           -> Follow step-by-step procedure, just updating src/halimpl/pn54x/tml/i2c/phTmlNfc_alt.h file to set CONFIGURATION flag to value 2, before building the library        Using BeagleBone Black (with OM5577 or OM5578 in BBB configuration) ?           -> Follow step-by-step procedure, just updating src/halimpl/pn54x/tml/i2c/phTmlNfc_alt.h file to set CONFIGURATION flag to value 2, before building the library        Using other Linux platform or others OM5578/OM5577 demokits configuration ?           -> Follow step-by-step procedure, just updating src/halimpl/pn54x/tml/i2c/phTmlNfc_alt.h file to set CONFIGURATION flag to value 0 and defining I2C_BUS, PIN_INT and PIN_ENABLE flags according to the HW connection, before building the library Running Android ? -> Follow guidelines provided in the related documentation: https://www.nxp.com/docs/en/application-note/AN11690.pdf
View full article
本文探讨了如何解决i.MX8MP EMC测试遇到的问题,主要针对辐射超标问题。除了硬件方案,着重探讨了LVDS展频等软件方案。
View full article
This application note explain how to run M kernel PFE master and A kernel PFE slave demo without bootloader support. chinese version: 在真实的产品中,一般会使用一个基于M7_0核的bootloader来启动M和A核,这个bootloader负责所有M核和A核资源的初始化,解决M核和A核的资源冲突,并且启动M和A核。所以理论上运行M PFE Master Mcal驱动加A PFE Slave Linux驱动也是需要一个bootloader的。参考文档《S32G_Bootloader_V*》,Johnli,可以在公开community上搜索获得。 本文讨论一种简易的办法,就是: S32G3 RDB3板子配置为SDcard启动,插入SDcard,里面放有PFE SLAVE驱动的Linux镜像。 上电启动后运行PFE Master工程的lauterbach调试脚本:run_main_G3_REV1_1.cmm,这个脚本会重启整个S32G3。 然后在脚本中用wait 10S的操作,这个时候Linux已经启动,并且使用Uboot的代码调用ATF来完成PFE相关pre-init, partition reset和时钟与管脚初始化(如上分析, EMAC0~2的RGMII IOMUX已经配置好),然后Slave驱动会等待一段时间,等MCAL Master驱动加载,继续运行PFE Master MCAL代码后,Linux端Slave驱动也加载正确。然后就可以测试整个M Master/A Slave Demo。 总结:以上办法实际上是把bootloader应该做的PFE相关硬件初始化工作由Linux来完成,以便快速搭建Demo,这样客户在做真实的产品开发时,可以做为一个NXP release的标准参考。
View full article
This doc explain how to build a PFE master project on M7 and how to integration. chinese version. 目录 1 需要的软件与工具 ...................................................... 2 2 Master Demo编译说明 ............................................... 2 2.1 安装RTD_MCAL驱动 ............................................. 2 2.2 安装PFE_MCAL驱动 .............................................. 3 2.3 编译PFE master工程 .............................................. 3 3 修改为支持RDB板的RGMII接口 ................................ 4 3.1 硬件连接 ................................................................. 4 3.2 软件修改 ................................................................. 5 4 Master Demo测试 ...................................................... 7 4.1 硬件连接 ................................................................. 7 4.2 PFE_EMAC1(RGMII)测试过程 ............................... 7 5 Master Demo代码说明 ............................................... 8 6 集成中注意点 ........................................................... 11 6.1 PFE_PreInit .......................................................... 11 6.2 S32G3中的GENCTRL1的配置 ............................. 12 6.3 RX CLOCK重新锁定 ............................................ 13 7 Demo Debug建议 .................................................... 14 7.1 PFE相关寄存器说明 ............................................. 14   Contents 1 Required software and tools ...................................... 2 2 Master Demo compiling ............................................. 2 2.1 Install RTD_MCAL driver........................................ 2 2.2 Install PFE_MCAL driver ........................................ 3 2.3 Compile PFE master project .................................. 3 3 Change the demo to support RDB3 board RGMII port4 3.1 Hardware design .................................................... 4 3.2 Software modification ............................................. 5 4 Master DemoTest ...................................................... 7 4.1 Hardware design .................................................... 7 4.2 PFE_EMAC1(RGMII) test steps ............................. 7 5 Master Demo code flow ............................................. 8 6 Notes in integration .................................................. 11 6.1 PFE_PreInit .......................................................... 11 6.2 The GENCTRL1 configruation of S32G3 ............. 12 6.3 RX CLOCK relock ................................................ 13 7 Demo Debug suggestion ......................................... 14 7.1 PFE related registers ........................................... 14
View full article
结合MPC5748G的Lifecycle机制,阐述如何使用Lifecycle机制来满足在开发阶段及最终消费阶段对各利益相关方的数据进行保护的需求,比如Tier1的IP(知识产权)、OEM的一些标定参数、车主的个人隐私等。并介绍Lifecycle在每个阶段所支持的主要安全特性及如何配置使用。
View full article
This article explains the details and customization of the S32G M7 core Standby demo. And how to porting to Autosar Mcal demo. Contents 1    Description of reference materials. 2 2    Demo creation and running process. 2 2.1  Demo checkpoints. 2 2.2  The difference between Standby and StandbyRAMboot 4 3    S32G Standby principle and Code Description. 5 3.1  Peripheral initialization function. 5 3.2  standbyramc_cpy(optional) 5 3.3  WKPU_set 8 3.4  standby_modechange. 13 4    VR5510 PMIC Standby principle and code description. 15 4.1  PMIC_initConfig. 15 4.2  PMIC_standbyEntry. 17 5    Customization modification. 18 5.1  Do not enable RTC wakeup feaure. 18 5.2  Eable CAN1_RX wakeup feature. 19 5.3  Only support full boot 21 5.4  Open the DDR related power 21 5.5  Modify debug serial port to UART1. 24 5.6  Modify the device drive clock. 26 5.7  close other non-main core. 30 6    Build a new MCAL demo. 34 6.1  Modify the UART driver 35 6.2  Implement the clock shutdown code. 36 6.3  Configure the power mode switching driver 37 6.4  Confgure the wakeup source. 42 6.5  Add PMIC driver 51 6.6  Main function call routine. 59 6.7  Test 61 6.8  Future development plan. 62 本文说明S32G M7核Standby demo 详细情况及定制,以及如何新建一个mcal demo 录 1    参考资料说明... 2 2    Demo创建运行过程... 2 2.1  创建运行... 2 2.2  Standby和StandbyRAMboot的区别... 4 3    S32G Standby原理与代码说明... 5 3.1  外设初始化函数... 5 3.2  standbyramc_cpy(可选) 5 3.3  WKPU_set 8 3.4  standby_modechange. 13 4    VR5510 PMIC Standby原理与代码说明... 14 4.1  PMIC_initConfig. 14 4.2  PMIC_standbyEntry. 16 5    定制修改... 17 5.1  关闭RTC唤醒功能... 17 5.2  打开CAN1_RX唤醒功能... 19 5.3  只支持full boot 20 5.4  打开DDR相关电源... 21 5.5  修改调试串口为UART1. 23 5.6  修改设备驱动时钟... 25 5.7  事先关掉所有其它的非主核... 29 6    修改为MCAL Demo. 33 6.1  修改UART驱动... 34 6.2  实现时钟关闭代码... 35 6.3  配置电源模式切换驱动... 36 6.4  配置唤醒源... 41 6.5  加入PMIC驱动... 50 6.6  主函数逻辑实现... 58 6.7  运行测试... 60 6.8  未来开发计划... 61   attachment include chinese/english doc, s32ds codes with 2 zip package(remove the .7z), mcal codes.  
View full article
This doc explain how to modify the bootloader to boot linux&mcal, to solve the conflict between bootloader, mcal and linux   本文说明在S32G2 RDB2板上如何定制开发Bootloader,本文示例主要实现功能是: Bootloader启动一个M核,MCAL驱动测试程序,本文分别测试了MCU,DIO,UART的MCAL驱动示例代码。 Bootloader同时启动A53 Linux 目录 1    需要的软件,工具,文档与说明... 3 1.1  软件与工具... 3 1.2  参考文档... 3 1.3  开发说明... 3 2    测试软件安装编译说明... 4 2.1  安装RTD_MCAL驱动... 4 2.2  编译MCAL驱动测试程序(以MCU为例) 5 2.3  优化重排M7 demo镜像及与MPU设置的配合... 5 2.4  去掉CLOCK INIT. 7 2.5  去掉MCU相关INIT. 8 2.6  DIO MCAL程序去掉PORT INIT. 9 2.7  UART MCAL程序去掉PORT INIT. 10 2.8  UART MCAL程序修改CLOCK TREE.. 10 2.9  解决中断冲突... 11 2.10 准备A53 Linux镜像... 12 3    Bootloader工程说明... 13 3.1  关掉XRDC支持... 13 3.2  关掉eMMC/SD支持(可选) 14 3.3  关掉secure boot(可选) 14 3.4  增加MCAL驱动所需要的PORT的初始化... 15 3.5  解决Bootloader,MCAL与Linux的clock冲突... 17 3.6  配置A53 Boot sources: 34 3.7  配置M7 Boot sources: 35 3.8  关闭调试软断点:... 36 3.9  编译Bootloader工程... 37 3.10 制造Bootloader的带IVT的镜像... 38 3.11 烧写镜像... 41 4    测试... 42 4.1  硬件连接... 42 4.2  MCU MCAL+Linux测试过程... 42 4.3  DIO MCAL+Linux测试过程... 43 4.4  UART MCAL+Linux测试过程... 43 5    Bootloader源代码说明... 43 6    Bootloader定制说明... 45 6.1  QSPI NOR驱动说明... 45 6.2  eMMC/SDcard启动支持... 46 6.3  DDR初始化... 46 6.4  Secure Boot支持... 46 7    调试说明... 46 7.1  Bootloader的调试... 46 7.2  MCAL驱动的调试... 46   add one more doc to explain how to modify atf to boot on G3.
View full article
This doc explain how to support a new QSPI nor for boot, SDK and Linux, Contents as follows: 目录 1 硬件设计 .................................................................... 2 2 所需工具和相关资料 .................................................. 5 3 ROM Code的启动流程 ............................................... 5 4 S32G QSPI NOR flash配置表头定制 ......................... 7 4.1 S32G QSPI NOR启动配置表信息 .......................... 7 4.2 目前支持的配置表头分析说明 ............................... 10 4.3 LUT构成与Flash write Data说明 ........................... 16 4.4 具体分析已有的配置表头的LUT与Flash write Data的 配置方法 ...................................................................... 22 4.5 支持一款新的QSPI NOR Flash示例1:Micron........ 28 4.6 支持一款新的QSPI NOR Flash示例2:Winbond .... 31 5 使用IVT打包配置头 .................................................. 33 6 使用IVT工具中的flash image工具烧写镜像到QSPI NOR 中 34 7 软件定制M7 ............................................................. 35 8 软件定制uboot ......................................................... 37 9 软件定制Linux Kernel .............................................. 40 9.1 支持美光8bit DDR 模式(未验证) .......................... 44 9.2 支持1bit SDR fast read 模式 ............................... 46 10 Debug过程中需要注意的几点 .................................. 49 10.1 启动时ROM Code读取QSPI NOR时钟仅有12Mhz左 右 49 10.2 比较大的镜像如果不加参数头,无法从QSPI-NOR上启 动 55   add a new doc for lauterbach driver: S32G How to Develop the QSPI-Nor Lauterbach Script 目录 1    背景和参考资料... 2 1.1  背景说明... 2 1.2  参考资料... 2 2    高速读开发流程... 3 2.1  时钟相关修改... 5 2.2  Lut配置说明... 6 2.3  QSPI NOR控制器配置... 12 2.4  QuadSPI_Write32BytesDOPI读函数分析... 15 2.5  增加AHB read寄存器配置... 17 2.6  测试结果... 18 3    高速写开发流程... 19 3.1  Erase lut分析及调用... 19 3.2  Write lut分析及调用... 21 3.3  测试结果... 22 3.4  Lauterbach烧写镜像脚本说明... 22
View full article
目录 1 S32G Linux文档说明 .................................................. 3 2 创建S32G RDB2 Linux板级开发包编译环境 .............. 4 2.1 创建yocto编译环境: ................................................. 4 2.2 独立编译 ................................................................. 9 3 FSL Uboot 定制 ........................................................ 14 3.1 FDT支持 ............................................................... 14 3.2 DM(driver model)支持 ........................................... 20 3.3 Uboot目录结构 ...................................................... 31 3.4 Uboot编译 ............................................................. 34 3.5 Uboot初始化流程 .................................................. 35 3.6 使能了ATF后对Uboot初始化流程的影响 ............... 40 4 Uboot 定制 ............................................................... 41 4.1 修改 DDR大小 ....................................................... 41 4.2 修改调试串口与IOMUX说明 .................................. 44 4.3 DM I2C与PMIC初始化 .......................................... 53 4.4 通用GPIO ............................................................. 59 4.5 启动eMMC定制 ..................................................... 69 4.6 Ethernet定制 ......................................................... 78 5 Uboot debug信息 ..................................................... 89 5.1 Print env ............................................................... 89 5.2 dm - Driver model low level access ...................... 92 5.3 fdt .......................................................................... 95 5.4 I2C测试 ................................................................. 95 5.5 芯片寄存器访问 ..................................................... 98 updated to V5
View full article
This doc explain our Mcal driver and how to custome them. contents as follows: 目录 1 AutoSAR MCAL基本概念 .......................................... 2 1.1 AutoSAR目标 ......................................................... 2 1.2 AutoSAR概念 ......................................................... 2 1.3 AutoSAR基本方法 .................................................. 2 1.4 BSW(Basic Software) ............................................. 4 1.5 NXP Basic AutoSAR软件 ....................................... 4 1.6 RTE与BSW的配置 ................................................. 5 1.7 BSW的配置流程 ..................................................... 6 1.8 MCAL驱动 .............................................................. 7 2 MCAL工具 ................................................................. 7 3 MCAL说明 ................................................................. 8 3.1 MCAL的下载与说明 ................................................ 8 3.2 EB Tresos的下载,安装 ....................................... 13 3.3 RTD-MCAL安装 ................................................... 16 3.4 Trace32的下载与安装 .......................................... 18 3.5 样例工程的编译,运行 ......................................... 20 4 MCAL驱动配置与定制 ............................................. 40 4.1 MCU ..................................................................... 45 4.2 PORT ................................................................... 59 4.3 DIO ....................................................................... 69 4.4 FlexCAN ............................................................... 71 4.5 FlexLin ................................................................. 87 4.6 GMAC .................................................................. 93 4.7 I2C ..................................................................... 101 4.8 PMIC .................................................................. 108 4.9 PMIC WDOG ...................................................... 127 4.10 WDOG ............................................................... 137 4.11 UART ................................................................. 144 4.12 SPI ..................................................................... 149 4.13 PWM .................................................................. 165 4.14 ADC ................................................................... 171 4.15 Thermal .............................................................. 177
View full article
This doc explain how to configure a new LPDDR4 and test it on S32G, contents as follows: 目录 1    硬件资源,文档及工具下载... 2 1.1    硬件资源... 2 1.2    内存配置测试相关的文档... 2 1.3    内存配置与压力测试工具. 3 2    内存设计要求... 3 3    LPDDR4基础... 3 3.1    基本知识... 3 3.2    Inline ECC.. 4 4    硬件连接... 6 5    S32G+LPDDR4内存配置与测试步骤... 8 5.1    配置LPDDR4初始化寄存器设置... 9 5.2    使用内存测试工具初始化PHY及生成DDRC配置Uboot源代码    11 5.3    生成DDRC配置ATF源代码(从BSP32开始) 14 5.4    测试内存... 18 5.5    其它尺寸的LPDDR4配置... 19 6    测试失败的DEBUG.. 24 7    内存参数应用到Uboot中... 25 8    内存参数应用到ATF中... 25 9    附录... 25 9.1    一个重要的DDR TOOL bug Fix. 25 9.2    Uboot DDR测试工具... 26 9.3    Kernel DDR测试工具... 27 9.4    附DDR tool测试项截图... 28   Contents 1    Hardware Materials, Docs and Tools Needed. 2 1.1    Hardware resource. 2 1.2    Related docs of memory configuration and test 2 1.3    Memory configuration and test tools. 3 2    Memory Hardware Design Requirement 3 3    LPDDR4 Basics. 3 3.1    Basic Knowledge. 3 3.2    Inline ECC.. 5 4    Hardware Design. 7 5    S32G+LPDDR4 Memory Configuration and Test Steps. 8 5.1    Configure LPDDR4 DDRC Register Settings. 9 5.2    Use the Memory Test Tool to Initialize the PHY and Generate the DDRC Configuration Uboot Source Code  12 5.3    Generate ddrc configuration ATF source code (starting from bsp32) 15 5.4    Memory Test 19 5.5    Other size LPDDR4 configurations. 20 6    Debug of the Fails of Test 25 7    Modify the DDRC register settings in Uboot 26 8    Modify the DDRC register settings in ATF. 26 9    Appendix. 26 9.1    A importance DDR TOOL bug Fix. 26 9.2    Uboot DDR Test Tools. 27 9.3    Kernel DDR Test Tool 28 9.4    Attached Screenshot of DDR Tool Test Items. 29
View full article