NXP Designs Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

NXP Designs Knowledge Base

Discussions

Sort by:
This doc explain  where is the design resource and what they are of S32G in Chinese,  Contents as follows: 目录 1 www.nxp.com 官网资源 ............................................. 2 1.1 www.nxp.com Documentation ................................ 4 1.2 www.nxp.com Tools&Software ............................. 10 2 Flexera资源 ............................................................. 18 2.1 Automotive HW-S32G Evaluation Board .............. 21 2.2 Automotive HW-S32G GoldBox ........................... 22 2.3 Automotive HW-S32G RDB2(RDB不再说明) ....... 22 2.4 Automotive SW-S32G2 Standard Software.......... 23 2.5 Automotive SW-S32G2 reference Software ......... 28 2.6 Automotive SW-S32G2 Tools .............................. 30 3 Docstore资源 ........................................................... 31
View full article
         LittleVgl作为一款开源免费的嵌入式GUI得到越来越多工程师的厚爱,我们可以看到很多小型HMI项目或者一些开源社区都在使用它作为GUI的框架,同时也受益于用户群的不断扩大以及一些半导体原厂的青睐(通俗点就是说有赞助有钱儿了),LittleVgl本身也在快速的不断更新迭代,易用的组件和相关的辅助开发工具在不断的增加,而RT1050/1060/1170系列作为一款带有LCD控制器的平台,自然成为了LittleVgl最佳的载体之一了。         LittleVgl本身的组件已经很丰富了,但是遗憾的是一直没有加入对中文输入法Keyboard的支持(看了下它在Github上的Contributor List没有华人),这让它在我们国内的应用有了一些限制(注意在某组件上显示中文和真正的中文输入法是不同的概念),所以本项目旨在解决该问题,即把一个简单轻量的中文输入法框架嵌入到LittleVgl并跑在RT1050平台上,并把它开源开放出来,所以不要小看了我的“公益心”,哈哈。下图是该示例设计的UI界面        下面进入正题,首先把测试环境给出来,方便有兴趣有能力的朋友可以自行搭建(当然应一部分偷懒的强烈需求,我随本文档也附赠了完整的移植好的工程),然后我再一步一步地给出如何移植这套框架到用户自己的工程里,当然我已经把代码本身做了很多优化,尽量减小环境依赖,力求最少步骤的移植过程,理论上来讲不太会出现移植后编译出一堆Error的问题,咳咳。。。下面我们赶紧开整吧: 测试环境: SDK版本:SDK_v2.9.1 SDK参考例程:boards\evkbimxrt1050\littlevgl_examples\littlevgl_demo_widgets LittleVgl版本:v7.4.0 IDE工具:Keil_v5.31 开发板:MIMXRT1050-EVK + 480*272 RGB LCD屏 软件说明: 我们先看下这套中文输入法所需的几个文件,如下图所示,.c和.h文件加起来一共7个,其中nxp_logo.c只是我额外加的一个NXP的官方logo图标转成的C数组文件供littleVgl调用显示,属于锦上添花的东西,可有可无,真正跟输入法相关的是剩下的6个文件,下面我们逐一介绍下这几个文件的作用: 1. qwerty_py.c/.h:        实际上这两个文件才是这套全键盘拼音中文输入法的核心框架,实现了对输入的拼音字母进行索引匹配对应的汉字候选列表,这部分我是移植了如下链接中网友分享的代码,所以这两个文件我的角色只是一个大自然搬运工,不过说实话我是很感激该网友的无私分享的(这也是我一直推崇开源分享精神的源动力),之前对平时使用的各种输入法里面的算法原理一直充满好奇,直到看了这篇文章后才豁然开朗,“So that is what it is!”,让我获益匪浅(可能人的学习曲线和知识体系就是这样一点一滴的积累吧),而且更关键的是,如果让我继续往下开发诸如拼音联想和多汉字输入等功能的话,我更多关心的可能只是逻辑搭建的工作量问题,而不是纠结于Yes or No的问题了,因为咱已经了解了其最底层的工作原理了,所以很多复杂的事情,我们如果能抽丝剥茧的找到其最底层的本质(虽然这真的很难),那很多让人抓耳挠腮的问题很快就可以理清思路。说到这里我思维又发散了,呵呵,我想起让Linus Torvalds等一波老大神们一直头疼的Linux内核维护后继无人的问题,其实我的个人理解有很大一部分原因是如今的Linux太庞大了以至于几乎没有后辈的人对Linux的理解能赶上这些老辈大神,而这些老辈大神的最大优势是他们创建了Linux最早期的底层框架而且难能可贵的是一直在follow Linux每个版本的历史。总之,推荐大家看看如下这篇文章吧(实际上主要内容也都是代码),希望能各有所获; https://www.amobbs.com/thread-5668320-1-1.html?_dsign=0939dcbd 2. lv_chs_keyboard.c/.c文件:        这部分就是我的工作了(咱也不能啥都搬运…,这是体现咱的value的东西不是),我把它当作littleVgl的一个补充组件来写的,里面的大多数API参考官方littlevgl的lv_keyboard.c,所谓的文章开头的嵌入中文输入法到LittleVgl GUI环境中实际上就是这两个文件干的活,即将上面提到qwerty.c/.h实现的拼音输入法与LittleVgl框架结合到一块,起到一个桥梁的作用,所以如果你想把这套中文输入法嵌入到其他GUI环境中的话(比如emWin,GUIX,TouchGFX等),那主要的工作就是参考这两个文件的内容了; 3. lv_font_NotoSansCJKsc_Regular.c字体文件:        虽然littleVgl官方源码包里自带了一个中文字体文件(\lvgl\src\lv_font\lv_font_simsun_16_cjk.c),但是它只包含了1000个左右最常用的字,我实际体验了下很多我们想用的字都找不到,所以这个时候就需要自己去做一个更全一点的字体库了。这里面涉及到两个问题需要考虑,第一是很多我们常见的中文字体是收费的(咱PC机的Microsoft Office套件里的中文字体都是微软付费买的,所以咱也理解下早年正版Windows为啥辣么贵了,那你问为啥现在便宜了?因为人家现在不靠这个赚钱了呗),第二个是字体转换工具的问题,我们网上找到的字体都是TTF或者OTF格式的,但littleVgl是不认的,需要转换成它支持的字体格式。        对于第一个问题,我网上搜了好久最终选择了目前用的比较多的Google开源免费的字体,Google真乃金主也,它维护的网站里面字体各种各样啥都有且是开源免费的,如下链接,我选择的是NotoSansCJKsc字体(最后面的sc表示simplified Chinese,简体中文),然后它里面又包含了各种字形(regular, bold, light等),可以根据需要自行选择,整个包很大(100多MB),拆分成不同字形的就小了(每个14~16MB左右); https://www.google.com/get/noto/        对于第二个字体转换工具的问题,LittleVgl官方自带了一个字体转换工具(online font converter),我个人觉着不太好用(对OTF字体支持的不行),这里推荐阿里大神自己做的一个LittleVgl字体转换工具(LvglFontTool),非常方便好用,且支持加入Awesome图标; http://www.lfly.xyz/forum.php?mod=viewthread&tid=24&extra=page%3D1        关于字体这部分我需要再补充个问题,就是它占用的memory大小,毕竟我们是在嵌入式MCU平台Flash和RAM的资源是受限的,如下图所示,该字体文件占用大概1Mbytes的rodata空间(即可寻址的Flash空间,当然该大小可以通过在上图转换工具中增减一些文字来调 整),所以在移植本套输入法之前需要预留足够的Flash空间,当然对RT平台来说这部分还好,毕竟其本身就外扩至少几MB空间的QSPI Flash作为存储空间的。 4. lv_demo_chineseinput.c/.h文件:        这两个文件属于应用层实现了,主要关注该文件中下图的ta_event_cb函数(即textarea事件的callback,点击文本框的输入时回调),在里面我们需要按照1,2,3去调用即可(这三步的API均在lv_chs_keyboard.c/h文件里实现);        至此,这套全键盘拼音中文输入法框架所需的几个文件就介绍完了,用户只需要把这几个文件放到自己的工程设置好文件搜索路径,并参考随本文档附带的代码工程示例,再结合自己产品的GUI样式,把这套中文输入法嵌入到自己应用当中。
View full article
Introduction Background There is not an official data for PCIe latency and performance, while some customers pay attention to and request these data. This paper utilizes Lmbench lat_mem_rd tool and DPDK qdma_demo to test the PCIe latency and performance separately. Requirement 1) Plug Advantech iNIC (LX2160A) into LX2160ARDB. 2) Configure EP ATU outbound window at console. 3) Apply the patch to lmbench-3.0-a9, and recompile lmbench tool. 4) There is qdma_demo in iNIC kernel rootfs by default. Test Environment     PCIe Latency Overview   Direction Description Latency(ns) PCIe(Gen3 x8) – DDR read from EP to RC 900 PCIe – PCIe – DDR Read from EP to EP (through CCN-508) 1550 PCIe – PCIe – DDR Read from EP to EP (through HSIO NOC) 1500 Setup 1) LX2160ARDB 2) iNIC – PCIe EP Gen3 x8 with LX2160A 3) Test App running at iNIC: Lmbench lat_mem_rd   # ./lat_mem_rd_pcie -P 1 -t 1m   PCIe Performance Overview    Direction Throughput (Gbps) PCIe EP to EP 50   Setup 1) LX2160ARDB 2) iNIC – PCIe EP Gen3 x8 with LX2160A 3) Test App : qdma_demo running at iNIC   $./qdma_demo -c 0x8001 -- --pci_addr=0x924fa00000 --packet_size=1024 --test_case=mem_to_pci Peer to Peer On LX2 Rev. 2      Products   Product Category NXP Part Number URL MPU LX2160A https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/layerscape-processors/layerscape-lx2160a-lx2120a-lx2080a-processors:LX2160A LSDK software Layerscape Software Development Kit https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK   Tools    NXP Development Board URL LX2160ARDB https://www.nxp.com/design/qoriq-developer-resources/layerscape-lx2160a-reference-design-board:LX2160A-RDB Advantech ESP2120 Card      
View full article
        S32G just support serial download a M7 image to run by internal rom codes, our S32G DS IDE have a flash tools to use this feature to burn the image to external device. So current image burn method will divide into 2 step: 1: burn a uboot into the external device by S32G DS flash tools. 2: reboot the codes with uboot and run with network to burn the linux image into external device.      which need two working place on manufacture line, and customer wish to have a one time on-line tools, which means we need use serial port to boot uboot directly but S32G rom codes do not support it.       We have a reference tools of S32V but which IP difference is big between on S32V and S32G, So we can not reuse it and have to develop a new one.       The development working include: 序号 开发工作 说明 开发者 1 开发 根据S32G的serial boot协议要求,开发PC端的串口工具来下载M7镜像 John.Li 2 开发 根据自定义协议要求,开发PC端的串口工具来下载A核Bootloader到SRAM中 John.Li 3 开发 根据自定义协议要求,开发M7镜像的串口接收与Checksum逻辑 John.Li 4 开发 修改M7镜像支持串口0 John.Li 5 开发 开发实现M7镜像的串口单字节同步收发函数 John.Li 6 开发 开发实现A53启动功能 John.Li 7 调试与Debug 调试解决串口接收乱码问题(Serial boot rom codes仍然在回送消息串口) John.Li 8 调试与Debug 提供 解决A核启动串口halt思路(Serial boot rom codes仍然占用串口) John.Li 9 调试与Debug 优化M7镜像,缩小大小 Tony.Zhang 10 调试与Debug 根据M7镜像和A核 Uboot在SRAM中的内存分配要求,重排M7镜像位置,避免冲突 Tony.Zhang 11 调试与Debug 在M7中初始化SRAM空间 Tony.Zhang 12 调试与Debug 在M7中设置SRAM可执行空间 Tony.Zhang 13 调试与Debug 调试解决由于cache没有及时回写导致的下载镜像错误的问题 Tony.Zhang 14 调试与Debug 集成,调优与文档 John.Li   Pls check the attachment for the doc/codes/binary release which include:    Release      |->M7: Linflexd_Uart_Ip_Example_S32G274A_M7: S32DS M7工程。      |->PC: s32gSerialBoot_Csharp: PC端的Visual Studio的C#的串口工具工程。      |->Test:      |    |-> 115200_bootloader.bin: S32DS M7工程编译出来的bin文件,波特率为115200      |    |-> 921600_bootloader.bin: S32DS M7工程编译出来的bin文件,波特率为921600      |    |->load_uboot.bat: 运行工具的批处理文件,运行成功后打开串口可以看到Uboot执行,默认使用的波特率是115299         |    |->readme.txt:其它测试命令 |    |->s32gSerialBoot.exe:编译出来的PC端串口工具 |    |->u-boot.bin: BSP29默认编译出来的u-boot.bin.      Product Category NXP Part Number URL Auto MPU     S32G274     https://www.nxp.com/s32g    
View full article
Overview The S12ZVH-REF-V1 is a reference design engineered for being a design base for starting an instrument cluster project, also it helps to reducing Automotive Cluster development time and maximizing engineering resources. Based on the 16-bit S12 MagniV® S12ZVH mixed-signal microcontrollers, the S12ZVH-REF-V1 provides a production-looking design with impressive integration. The S12ZVH-REF-V1 reference design is not only provided as a hardware reference but also as a software and mechanical design. Block Diagram   Products Product Features S12ZVH MagniV Mixed-signal MCU  16-bit S12 MagniV® S12ZVH mixed-signal microcontrollers for instrument cluster.   Features Interfaces   LIN physical transceiver and connector CAN connector interfaced with MCUs CAN physical transceiver Components 1 x custom 160 segment LCD 1 x low-power piezoelectric speaker 4 x stepper motors 49 x LEDs used as telltales and backlights 6 x user buttons 2 x potentiometers S12ZVH The S12ZVH-REF-V1 does not include on-board programming/debugging circuitry; it requires an external programmer compatible with the BDM protocol. Files S12ZVH-REF-V1 Mechanical and Assembly files  S12ZVH-REF-V1 Reference Design Software (CW10.5) 
View full article
Overview   The PN7462 family consists of 32-bit Arm® Cortex®-M0-based NFC microcontrollers offering high performance and low power consumption. Because of the integrated NFC, many of the applications in which this product is used require interaction between some controllers, either to send data or instructions. In this case the board serves as a device for reading or writing NFC devices.   Required Material OM27462CDKP: NFC Controller development kit  MCUXpresso Software and Tools    Step-by-Step Download MCUXpresso Download and unzip attachment Open the Project in MCUXpresso Build it Connect LPC Link to PN7462 card Connect the two cards to the pc Debug the Project Use GPIO 4 and 5 for select interface Use GPIO 6, 7 and 8 for select operation mode
View full article
  i.MXRT系列具有内部ROM,并且ROM中暴露出了一些功能接口可供用户直接使用。 本文介绍了Flexspi Nor ROM APIs, 并且列举了API相关的参数及示例程序。 通过这些API可以很方便的操作外部Flexspi Nor Flash。用户无需关系细节。   Products Product Category NXP Part Number URL MCU MIMXRT1060 https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-... MCU MIMXRT600 https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-...   Tools NXP Development Board URL i.MX RT1060 Evaluation Kit https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/mimxrt1060-evk-... i.MX RT600 Evaluation Kit https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-eval...   SDK SDK Version URL MCUXpresso SDK Builder https://mcuxpresso.nxp.com/en/welcome
View full article
Overview   Digital dashboard market is growing, especially e-Scooter, E-bike demand are also growing. This solution will cover a wide range of uses for identification and vehicular applications. This solution is based on i.MX RT technology and our NFC portfolio products. Near Field Communication (NFC) is a fast, intuitive technology that lets you interact securely with the world around you with a simple touch. NFC wireless proximity technology is available in billions of smartphones, tablets, consumer and industrial electronics—with new devices arriving almost daily. Block Diagram Products Category MCU Product URL 1 i.MX RT1060 Crossover MCU with Arm® Cortex®-M7 core  Product Description 1 The i.MX RT1060 is the latest addition to the industry's first crossover MCU series and expands the i.MX RT series to three scalable families. Product URL 2 LPC551x/S1x: Baseline Arm® Cortex®-M33-based Microcontroller Family  Product Description 2 The LPC551x/S1x MCU family expands the world’s first general purpose Cortex-M33-based MCU series, offering significant advantages for developers, including pin-, software- and peripheral-compatibility.   Category Charger Product URL 1 MWCT1x23: 65W+ Wireless Power Transmitter Controller  Product Description 1 The NXP® MWCT1x23 65W+ Wireless Power Transmitter Controller IC provides high speed control loops, robust foreign object detection, over voltage and over current protection to enable safe and secure power delivery through non-magnetic materials such as air, glass, wood, and plastic. Product URL 2 MWPR1x24: 65W+ Wireless Power Receiver with Integrated Radio  Product Description 2 The NXP® MWPR1x24 65W+ Wireless Power Receiver Controller with Integrated Radio IC provides all receiver parameters monitoring, communication with transmitter, over voltage and over current protection to enable safe and secure power delivery through non-magnetic materials such as air, glass, wood, and plastic.   Category Wireless Product URL 1 88W8987: 2.4/5 GHz Dual-Band 1x1 Wi-Fi® 5 (802.11ac) + Bluetooth® 5 Solution  Product Description 1 The 88W8987 is a highly integrated Wi-Fi (2.4/5 GHz) and Bluetooth single-chip solution specifically designed to support the speed, reliability and quality requirements of Very High Throughput (VHT) products.   Category Secure Element Product URL EdgeLock™ SE050: Plug & Trust Secure Element Family – Enhanced IoT security with maximum flexibility  Product Description The EdgeLock SE050 product family of Plug & Trust devices offers enhanced Common Criteria EAL 6+ based security, for unprecedented protection against the latest attack scenarios.   Category NFC Product URL 1 PN5180: Full NFC Forum-compliant frontend IC  Product Description 1 The PN5180 is a high-performance full NFC Forum-compliant frontend IC for various contactless communication methods and protocols. Product URL 2 PN7462: NFC Cortex®-M0 all-in-one microcontroller with optional contact interface for access control  Product Description 2 The PN7462 family consists of 32-bit Arm® Cortex®-M0-based NFC microcontrollers offering high performance and low power consumption. Product URL 3 MIFARE® DESFire® EV3: High-Security IC for Contactless Smart City Services  Product Description 3 The features of the MIFARE DESFire EV3 IC reflect NXP’s continued commitment to secure, connected and convenient contactless Smart City services.   Category Peripherals Product URL 1 PCA9955BTW: 16-channel Fm+ I²C-bus 57 mA/20 V constant current LED driver  Product Description 1 The PCA9955B is an I2C-bus controlled 16-channel constant current LED driver optimized for dimming and blinking 57 mA Red/Green/Blue/Amber (RGBA) LEDs in amusement products. Product URL 2 TJA1041A: High-speed CAN transceiver with standby and sleep mode  Product Description 2 The TJA1041A provides an advanced interface between the protocol controller and the physical bus in a Controller Area Network (CAN) node. Product URL 3 PCA85073A: Automotive tiny Real-Time Clock/Calendar with alarm function and I2C-bus  Product Description 3 The PCA85073A is a CMOS1 Real-Time Clock (RTC) and calendar optimized for low power consumption.
View full article
  Overview NXP’s Motion Control and Robotics solution provides the computing performance, embedded connectivity, low latency and a real-time open source operating system to address the requirements for multi-axis motion control and robotics applications.  This solution is based on an i.MX RT1050, which controls four steppers motors that activates the different kind of movement of the robotic arm for the 3D printer to function. This solution also counts with the FreeMASTER GUI for easy debugging and a better presentation and control of the system. Use Cases Our robust product portfolio makes motor and robotics control more precise, secure and effective for the creation of end-products with applications like: 3D printers Industrial applications: Welding machines Material handling Painting and drilling Assembly machines Surgical assistants Block Diagram Products Category MCU Product URL i.MX RT1050 Crossover MCU with Arm® Cortex®-M7 core  Product Description The i.MX RT1050 is the industry's first crossover MCU and combines the high-performance and high level of integration on an applications processors with the ease of use and real-time functionality of a microcontroller.   Category Motor Driver Product URL GD3000: 3-Phase Brushless Motor Pre-Driver  Product Description The GD3000 is a gate driver IC for three-phase motor drive applications providing three half-bridge drivers, each capable of driving two N-channel MOSFETs.   Category Power Management Product URL PCA9412: 3.0 MHz, 300 mA, DC-to-DC boost converter  Product Description The PCA9412 and PCA9412A are highly efficient 3.0 MHz, 300 mA, step-up DC-to-DC converters.
View full article
This is a quick video for demonstration purposes of the i.MX RT1060 Evaluation Kit capability for running an Embedded Wizzard GUI application and a Neural Network Model as an inference engine.
View full article
This post entry provides a detailed information about the EMVCo L1 certification process for contactless payment devices. The structure is the following: EMV Introduction Objective When a company is developing a POS device, there are some challenges to consider for a successful deployment in the market: The device needs to have a good performance to provide the client with a good user experience. Moreover, the device should be able to operate seamlessly with other devices and cards in the market in a secure and reliable way.   These key characteristics are tackled by the EMV specifications. Summarizing, EMV is a group of specifications for smart payment cards and terminals that were created by EMVCo to guarantee interoperability and acceptance of secure payment transactions. EMV stands for Europay, Mastercard, and Visa, the three companies that originally created the standard. These specifications are now managed by EMVCo, an organization of six members – including Mastercard, UnionPay, Visa, AmEx, Discover, and JCB.   EMVCo organization We can see in the figure below the structure of the organization. EMVCo is managed by the Board of Managers that consists of two representatives of every member of the organization. On top of the Board of Managers, the Executive Committee provides guidance on the group’s long-term strategy.     From a more technical point-of-view, it is organized in several Working Groups, each of them dedicated to specific topics. EMVCo also has the Associates Program, so key industry stakeholders can provide input and feedback to the Board of Managers, Executive Committee, and Working Groups.   EMV Technologies EMV specifications encompass a wide range of technologies, including: Contact chip technology, where smartcards and readers provide with cryptographical security advantages in comparison with the traditional magnetic stripe. EMV specifications also regulate contactless payment devices based on NFC technology.  Mobile Transactions where the mobile phone would play the role of a contactless device. The QR code technology, where the transaction can be made using a QR reader. Payment tokenization, that enables to perform transactions without compromising sensible card information. And other technologies like Secure Remote Commerce, 2nd Gen or 3-D Secure.   EMV Contactless specifications EMV Contactless specifications is now on version 2.6 but planning to move to version 3.0 by the end of the year.   The EMV Contactless specifications are structured in three books and the Contactless Interface Specifications that substitutes the Book D from previous versions of the specs. The Book A describes the overall architecture of the system, and the instructions involved in the communication between the entry point and the kernel. The Book B addresses the specifications regarding the Entry Point, which is the piece of sw in charge of the transaction pre-processing, or protocol activation among other tasks. Book C consists of 6 different levels for each of the kernels that are defined in the specifications. The EMV Contactless Interface Specifications describe the minimum set of functionalities that are required for the correct operation between the PICCs and the PCD.   In addition we will mention other relevant documents like: The PCD Test Bench and Test Case Requirements, that describes the test cases that are carried out by the testing laboratory in order to evaluate the devices. Note that there are 2 different documents, one for the Analog L1 tests and another one for the Digital tests. Another document describes the Device Test Environment, which is the software needed to control the device during the testing phase Another document describes the requirements regarding the Contactless symbol that should appear in all EMVCo Contactless POS in the market.   PCD L1 Type Approval The following diagram summarizes the process for the PCD L1 Type Approval:     In the first step the Product Provider shall submit a Request for Registration form to EMVCo. Once EMVCo reviews and accepts the form, the product provider will receive a contract that has to be signed. Upon reception of this contract, EMVCo will assign a product provider registration number. In the second step the Product Provider will choose a Test Laboratory and complete a document called Implementation Conformance Statement in which it provides detailed information about the device and its features. The third step is the Product Validation phase. In this phase the laboratory performs the product testing, where the device goes through a set of tests to evaluate the digital and analog performance. In a final phase and considering the test reports from the Laboratory, the Product Provider might decide to send the product to EMVCo for approval. In that case, EMVCo would analyze the tests reports and grant with a Letter of Approval in case the reports demonstrate sufficient product conformance.   In our case we are going to focus on the Analog L1 PCD tests.    EMV Analog L1 PCD Tests Environment Before going directly to the actual set of tests, it worth it to explain some components about the testing environment to better understand the testing procedure. We have the following elements: Device Test Environment Contactless symbol Positioning conventions EMVCo Reference PICC   Device Test Environment (DTE) The Device Test Environment is a software application that is used to control the device under evaluation during the whole testing process. This application has to be developed by the product provider and shall be implemented in compliance with a set of requirements defined in the specifications. The software is submitted to the test laboratory along with the samples of the device under certification. The DTE shall implement different applications or modes of operation that would be used depending on the testing scenario. These application are:   PCD Controls: It allows the test operator to execute single basic commands from the ISO14443 standard (Carrier ON/OFF, WUPA, WUPB,..) Pre-validation application: This application is used to test the communication of the device with a set of actual EMV compliant cards. Loopback application: It is used to test the device for the majority of the Analog and Digital L1 PCD Tests. In this case the reader is communicating with a Card simulator connected to a reference antenna. Transaction send application: This application can be used by the laboratory to evaluate the compliancy of the device with the waveform requirements defined for the Analog L1 PCD Tests. The main characteristic of this mode of operation is that the device sends a sequence of commands without waiting the responses from the PICC.   Contactless symbol The contactless symbol is the logo that you can see in the lower image. It helps the user identify the area in the Point Of Sale where he has to tap the card in order to trigger the transaction. This symbol has to be visible in the device surface or screen before and during the transaction. The Contactless symbol is extremely important for the testing procedure as it marks the reference point for all the positions that the device should be tested.   Using this reference point EMVCo defines an operating volume.   Positioning convention All test position are included in this operating volume. Depending on the test case, it will be run in one or more positions. Every position is expressed with a set of 3 coordinates or parameters, representing the height, the radius, and the angle respectively.     In the figure above you can see the operating volume along with the different values that each parameter can have.   EMVCo Reference PICC The EMVCo Reference PICC is the reference antenna used to communicate with the PCD under test. It has 4 ports and 2 jumpers that are used to configure the PICC for different purposes. For example, jumper 8 is used to select between linear and non-linear load depending on the type of tests that are performed. In the same line, the MOD IN port where a Signal Generator will inject a certain modulation to emulate a PICC response. The DC OUT port is used to measure the voltage level in the power tests and the LETI COIL OUT is used to measure the waveform tests among others. In the figure below you can also see the reference point of the antenna where the two white lines crossed:   Power tests The power tests are evaluated in all positions with the purpose of guaranteeing that the device is emitting enough field in all the positions. Depending on the height the limiting values will differ. In the figure below you can see the different planes with the respective limiting values.     The critical positions for the power tests are usually the outer positions for plane z=4 and z=3 where the voltage measured may not be strong enough to pass the tests. On top of that and depending on the transmission configuration used, it can also happen that the voltage measured at positions (1, 0, 0) and (0, 0, 0) can exceed the maximum level.   Waveform tests The purpose of the waveform tests is to evaluate the wave shape of the modulation used in the commands from the PCD. That way, if the wave shape fits with the requirements an EMVCo compliant PICC would not have any problem understanding the commands sent by the PCD.   The waveform evaluation for Type A modulation include the following test cases: t1 (TB121) Monotonic Decrease (TB122) Ringing (TB123) t2 (TB124) t3 and t4 (TB125) Monotonic Increase (TB126) Overshoot (TB127)     In the same way, the Type B test cases are the following: Modulation Index (TB121)# Fall time (TB122) Rise time (TB123) Monotonic Increase (TB124) Monotonic Decrease (TB125) Overshoots (TB126) Undershoots (TB127)     Reception tests The objective of the communication or responsiveness tests is to guarantee that the PCD is able to properly finish a transaction when the response of the PICC is in the limits of the specifications in terms of amplitude and polarity.   That way we find 4 different tests: Minimum load modulation, positive polarity (Tx131) Maximum load modulation, positive polarity (Tx133) Minimum load modulation, negative polarity (Tx135) Maximum load modulation, negative polarity (Tx137)   In the two figures below we can easily check the difference in the load modulation level between the oscilloscope capture for the Tx131 and the Tx133.     Other tests Besides the power, waveform and communication tests there are other tests included in the EMVCo Analog L1 Test cases. Here is the list of these other tests:   Carrier frequency (TAB112) Field resetting (TAB113) Power off (TAB114) Polling sequence (TAB115) FDTA PICC (TA139) BitRate (TA141 & TB141) BitCodingPCD (TA142 & TB142) BitCodingPICC (TA143 & TB146) BitBoundaries (TB147) TFSOFF (TB145 & TB148)   EMV Contactless Specs v3.0 The most important change is that the tests will no longer be carried out with one specific EMVCo reference PICC but with three. The first two are Class 1 antennas tuned to 16.1MHz and 13.56MHz, and the third reference PICC is a Class 3 antenna tuned to 13.56MHz.     This is important since the device will need to pass the test for 3 different antennas, making the testing process between 2 and 3 times slower and the tuning of the device more difficult than for the 2.6 version of the specs.   Other changes are a second different load for the linear load tests and the modifications of some waveform tests limits.   NXP Product portfolio for POS The product portfolio that NXP offers for contactless POS device includes three main chips: CLRC663 plus: EMVCo 2.6 ready chip compliant both for analog and digital L1 requirements. The CLRC663 plus is able to work with a transmitter current of 350 mA and a limiting value of 500 mA. This feature allows us to increase the field strength radiated and overcome power issues because of the design of the POS or the antenna.  PN5180: The PN5180 chip is also an EMVCo compliant frontend, that supports highly innovative and unique features like the Dynamic Power Control that optimizes the RF performance even under detuned antenna conditions. Other features are the Adaptative Waveform Control or the Adaptative Receiver Control to automatically adjust the transmitter modulation or the receiver parameters. These and many other features turn the PN5180 into the best NFC frontend in the market. PN7462: It supports contact and contactless interface in the same chip. It is an NFC controller, so includes an MCU with a configurable host interface. For the contactless interface, it implements similar functionalities as the PN5180, like the Dynamic Power Control, the Adaptative Receiver Control, and the Adaptative Waveform Control.   Further Information You can find more information about NFC in: Our NFC everywhere portal: https://www.nxp.com/nfc You can ask your question in our technical community: https://community.nxp.com/community/identification-security/nfc You can look for design partners: https://nxp.surl.ms/NFC_AEC And you can check our recorded training: http://www.nxp.com/support/online-academy/nfc-webinars:NFC-WEBINARS   Video recorded session
View full article
Demo      Features Detect fatigue using a camera via an algorithm based on optical absorption rate of facial blood vessels Efficient processing with up to 1.2MHz Quad ARM Cortex-A9 architecture with a NEON multimedia processing acceleration engine Video processing unit in i.MX 6Quad to record front camera video in H.264 format Face tracking algorithm to track the driver's head for a real driving use case   NXP Recommends i.MX6Q|i.MX 6Quad Processors|Quad Core
View full article
Built to automotive grade specifications, this Qi compliant wireless charging reference design charges up devices in the car. The devices can integrate into the dash or center console of car.     https://community.nxp.com/players.brightcove.net/4089003392001/default_default/index.html?videoId=4282648274001" style="color: #05afc3; background-color: #ffffff; font-size: 14.4px;" target="_blank   Features Wireless Charging Reference design for Automotive applications Integration into dash board or center console 5 Watts of power following Qi standard Near field Communication (NFC) Loop included   Featured NXP Products 5 Watt Wireless Automotive 5 Watt Wireless Industrial Links WCT-5WTXAUTO: Multi-Coil Wireless Charging Tr Block Diagram  
View full article
Demo Owner: Nik Jedrzejewski The PICO-IMX7-EMMC from TechNexion is a small footprint SOM equipped with a wide array of high-speed connectivity. ___________________________________________________________________________________________________________________ Featured NXP Products: i.MX 7 Series Applications Processors: Multicore, ARM® Cortex®-A7 Core, ARM Cortex-M4 Core External link Computex 2016
View full article
Demo   SCM-i.MX6D is the smallest single chip system module integrating NXPs high end apps processor along with memory PMIC and Flash. Demo will show this small yet powerful module running graphics, android applications as well as other IoT/ portable applications. The SCM will be integrated with an external WiFi along with a sensor hub and will be demonstrating the SCM capability along with WiFi.     Features Ultra-small SCM i.MX 6D includes i.MX 6Dual, 16 MB SPI NOR flash, PMIC PF0100, 109 discrete devices, and enabled for 1 or 2 GB LPDDR2 Single 17 mm x 14 mm x 1.7 mm footprint Displaying a video game and Miracast using a Wi-Fi connection to a Smart TV   Featured NXP Products Single Chip System Modules (SCM) Single Chip Module i.MX 6Dual
View full article
Overview This NXP® reference design is a speed closed-loop BLDC drive using a sensorless technique that serves as an example of a BLDC motor control design using an NXP K60 MCU. Simple and easy to understand control approach to BLDC, using MQX in a time-critical application. Contains two versions of the application software, one with the MQX RTOS, and the other bare-metal The MQX version contains a web server to demonstrate the benefits of an MQX-based solution Both use the same source code for motor control Features BLDC motor control using the BEMF integration method for position determination Targeted for the TWR-K60N512 controller board Speed closed-loop with speed measurement Adjustable speed ramp Motor mode in both directions of rotation Minimum speed of 400 rpm Maximum speed of 4000 rpm Tested up to 30 rpm with a one-pole pair motor Overvoltage, Undervoltage and overcurrent fault protection FreeMASTER control interface Control via a web server Block Diagram Board Design Resources
View full article
Demo Running NXP’s i.MX6SX application processor, Earthquake warning system proof of concept is able to warn citizen about Earthquake. Data are gathered from local sensor, remote sensors based on K64F NXP’s controllers and seismology servers from Internet. Features: Give citizens warning against Earthquakes Runs on the NXP i.MX6SX application processor with Linux® OS. Presents i.MX6SX asymmetrical architecture features, where data are measured locally by Cortex-M4 with FreeRTOS and displayed and presented by Cortex-A9 core with Linux® OS. Cortex-M4 can measure in real-time and monitor Linux part. Cortex-A9 can sleep to save power and be waked up by the quake detected by Cortex-M4. Communication between cores via RPMsg. Remote sensor’s accelerometer data are measured running K64F microcontrollers Seismology server’s data are displayed and analysed ___________________________________________________________________________________________________________________________ Featured NXP Products: Product Link Freedom Development Platform for Kinetis® K64, K63, and K24 MCUs FRDM-K64F Platform|Freedom Development Board|Kinetis MCUs | NXP  i.MX 6SoloX Processors - Heterogeneous Processing with Arm® Cortex®-A9 and Cortex-M4 cores i.MX 6SoloX Applications Processors | Arm® Cortex®-A9, Cortex-M4 | NXP  __________________________________________________________________________________________________________________________
View full article
Demo Owner: Gregory Camuzat   Get a quick overview of the TWR-KV31F120M Tower System with the Kinetis KV3x microcontroller. This demonstration shows how to get the low-voltage 3-phase motor spinning using a PMSM sensorless FOC control algorithm and how to control its speed using the KV3 Tower System board and your Windows PC.       Features Get a quick overview of the TWR-KV31F120M Tower System with the Kinetis KV3x Microcontroller. This demonstration shows how to get the low-voltage 3-phase motor spinning using a PMSM Sensorless FOC control algorithm and how to control its speed using the KV3 Tower System board and your Windows PC Featured NXP Products Product Link Kinetis® KV3x Family Tower® System Module TWR-KV31F120M|Tower System Board|Kinetis® MCUs | NXP  FreeMASTER Run-Time Debugging Tool https://www.nxp.com/design/software/development-software/freemaster-run-time-debugging-tool:FREEMASTER?&tid=vanFREEMASTER Links PEMicro Windows USB Drivers IAR Embedded Workbench for ARM  
View full article
The demo from Code is an ultra-compact Sub-GHz to Wi-Fi Border Router solution for use in Home Automation Wireless Sensor Nodes, Smart Lighting, Smart City, Smart Meters, Smart Parking and IoT. The demo consists of an NXP SCM-i.MX 6SoloX V-Link device (i.MX6SoloX/PF0100/512MB LPDDR2) + Code V-Link Top board with 802.11a/b/g/n/ac module + Code Carrier board with the Phalanx Border Router. The Phalanx Border Router provides an optimized mesh network for sensing applications SCM V-Link technology is ideal for space-constrained applications allowing customers to integrate vertically. Features: Top board: Broadcom 2.4 GHz & 5 GHz Wi-Fi, 802.11 a/b/g/n/ac , up to 390 Mbps. U.FL standard antenna connector. SCM-i.MX6 SX V-Link Top board form factor, 15.5mm x 15.5mm. Optimized mesh network for sensing applications. Thousands of nodes, minimizing deployment costs. 900 MHz Wireless. A new, clever routing algorithm which reduces routing overhead. IPv6 capable __________________________________________________________________________________________________________________ Featured NXP Products: Single Chip System Modules (SCM)|NXP Partner CODE Ing __________________________________________________________________________________________________________________  
View full article
Cloud-Connected Parking Spot Sensor Demo This demo shows a use case of the LS1021 IoT GW along with a FRDM-KW24 powered Magnetometer sensor to monitor the  car parking spot  locations such as garage parking  in a building, Traffic Management and Traffic Monitoring   The data can be reported and monitored from the Cloud. Features: Small footprint platform with a wide variety of high-speed connectivity and low-speed serial interfaces through the use of the ARM-based QorIQ LS1021A embedded processor. The  FRDM-KW2 sensor data is send via Thread to the LS1021 IoT GW and The Proximetry Agent posts information to cloud server. _______________________________________________________________________________________________________ Featured NXP Products: Product Link Freedom Development Platform for Kinetis® KW2x MCUs FRDM-KW24D512|Freedom Development Platform|Kinetis | NXP  LS1021A-IoT Gateway Reference Design https://www.nxp.com/design/designs/ls1021a-iot-gateway-reference-design:LS1021A-IoT?&lang_cd=en _______________________________________________________________________________________________________ N15
View full article