恩智浦设计知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

NXP Designs Knowledge Base

讨论

排序依据:
This doc explain how to modify the bootloader to boot linux&mcal, to solve the conflict between bootloader, mcal and linux   本文说明在S32G2 RDB2板上如何定制开发Bootloader,本文示例主要实现功能是: Bootloader启动一个M核,MCAL驱动测试程序,本文分别测试了MCU,DIO,UART的MCAL驱动示例代码。 Bootloader同时启动A53 Linux 目录 1    需要的软件,工具,文档与说明... 3 1.1  软件与工具... 3 1.2  参考文档... 3 1.3  开发说明... 3 2    测试软件安装编译说明... 4 2.1  安装RTD_MCAL驱动... 4 2.2  编译MCAL驱动测试程序(以MCU为例) 5 2.3  优化重排M7 demo镜像及与MPU设置的配合... 5 2.4  去掉CLOCK INIT. 7 2.5  去掉MCU相关INIT. 8 2.6  DIO MCAL程序去掉PORT INIT. 9 2.7  UART MCAL程序去掉PORT INIT. 10 2.8  UART MCAL程序修改CLOCK TREE.. 10 2.9  解决中断冲突... 11 2.10 准备A53 Linux镜像... 12 3    Bootloader工程说明... 13 3.1  关掉XRDC支持... 13 3.2  关掉eMMC/SD支持(可选) 14 3.3  关掉secure boot(可选) 14 3.4  增加MCAL驱动所需要的PORT的初始化... 15 3.5  解决Bootloader,MCAL与Linux的clock冲突... 17 3.6  配置A53 Boot sources: 34 3.7  配置M7 Boot sources: 35 3.8  关闭调试软断点:... 36 3.9  编译Bootloader工程... 37 3.10 制造Bootloader的带IVT的镜像... 38 3.11 烧写镜像... 41 4    测试... 42 4.1  硬件连接... 42 4.2  MCU MCAL+Linux测试过程... 42 4.3  DIO MCAL+Linux测试过程... 43 4.4  UART MCAL+Linux测试过程... 43 5    Bootloader源代码说明... 43 6    Bootloader定制说明... 45 6.1  QSPI NOR驱动说明... 45 6.2  eMMC/SDcard启动支持... 46 6.3  DDR初始化... 46 6.4  Secure Boot支持... 46 7    调试说明... 46 7.1  Bootloader的调试... 46 7.2  MCAL驱动的调试... 46   add one more doc to explain how to modify atf to boot on G3.
查看全文
This application note explain how to run M kernel PFE master and A kernel PFE slave demo without bootloader support. chinese version: 在真实的产品中,一般会使用一个基于M7_0核的bootloader来启动M和A核,这个bootloader负责所有M核和A核资源的初始化,解决M核和A核的资源冲突,并且启动M和A核。所以理论上运行M PFE Master Mcal驱动加A PFE Slave Linux驱动也是需要一个bootloader的。参考文档《S32G_Bootloader_V*》,Johnli,可以在公开community上搜索获得。 本文讨论一种简易的办法,就是: S32G3 RDB3板子配置为SDcard启动,插入SDcard,里面放有PFE SLAVE驱动的Linux镜像。 上电启动后运行PFE Master工程的lauterbach调试脚本:run_main_G3_REV1_1.cmm,这个脚本会重启整个S32G3。 然后在脚本中用wait 10S的操作,这个时候Linux已经启动,并且使用Uboot的代码调用ATF来完成PFE相关pre-init, partition reset和时钟与管脚初始化(如上分析, EMAC0~2的RGMII IOMUX已经配置好),然后Slave驱动会等待一段时间,等MCAL Master驱动加载,继续运行PFE Master MCAL代码后,Linux端Slave驱动也加载正确。然后就可以测试整个M Master/A Slave Demo。 总结:以上办法实际上是把bootloader应该做的PFE相关硬件初始化工作由Linux来完成,以便快速搭建Demo,这样客户在做真实的产品开发时,可以做为一个NXP release的标准参考。
查看全文
This doc explain our Linux BSP driver and how to custom them. Contests as follows: include bsp30/32 目录 1 S32G Linux文档说明 ................................................. 2 2 创建S32G RDB2 Linux板级开发包编译环境 .............. 2 2.1 创建yocto编译环境: ................................................ 2 2.2 独立编译 ................................................................. 8 3 Device Tree ............................................................. 11 3.1 恩智浦的device Tree结构 ..................................... 11 3.2 device Tree的由来(no updates) ............................ 13 3.3 device Tree的基础与语法(no updates) ................. 15 3.4 device Tree的代码分析(no updates) .................... 37 4 恩智浦S32G BSP 包文件目录结构 .......................... 70 5 恩智浦Linux BSP的编译(no updates) ...................... 72 5.1 需要编译哪些文件 ................................................ 72 5.2 如何编译这些文件 ................................................ 73 5.3 如何链接为目标文件及链接顺序 ........................... 74 5.4 kernel Kconfig ...................................................... 76 6 恩智浦BSP的内核初始化过程(no updates) .............. 76 6.1 初始化的汇编代码 ................................................ 78 6.2 初始化的C代码 ..................................................... 82 6.3 init_machine ......................................................... 94 7 恩智浦BSP的内核定制 ............................................. 97 7.1 DDR修改 .............................................................. 98 7.2 IO管脚配置与Pinctrl驱动 .................................... 100 7.3 新板bringup ........................................................ 121 7.4 更改调试串口 ...................................................... 125 7.5 uSDHC设备定制(eMMC flash,SDcard, SDIOcard) 129 7.6 GPIO驱动 ........................................................... 137 7.7 GPIO_Key 驱动定制 .......................................... 145 7.8 GPIO_LED 驱动定制 ......................................... 150 7.9 芯片内thermal驱动 ............................................. 155 7.10 CAN接口驱动 ..................................................... 157 7.11 I2C及外设驱动 .................................................... 162 7.12 SPI与SPI Slave驱动 ........................................... 183 7.13 Watchdog test. ................................................... 190 7.14 汽车级以太网驱动定制 (未验证) (未完成) ........... 191
查看全文
This article explains the details and customization of the S32G M7 core Standby demo. And how to porting to Autosar Mcal demo. Contents 1    Description of reference materials. 2 2    Demo creation and running process. 2 2.1  Demo checkpoints. 2 2.2  The difference between Standby and StandbyRAMboot 4 3    S32G Standby principle and Code Description. 5 3.1  Peripheral initialization function. 5 3.2  standbyramc_cpy(optional) 5 3.3  WKPU_set 8 3.4  standby_modechange. 13 4    VR5510 PMIC Standby principle and code description. 15 4.1  PMIC_initConfig. 15 4.2  PMIC_standbyEntry. 17 5    Customization modification. 18 5.1  Do not enable RTC wakeup feaure. 18 5.2  Eable CAN1_RX wakeup feature. 19 5.3  Only support full boot 21 5.4  Open the DDR related power 21 5.5  Modify debug serial port to UART1. 24 5.6  Modify the device drive clock. 26 5.7  close other non-main core. 30 6    Build a new MCAL demo. 34 6.1  Modify the UART driver 35 6.2  Implement the clock shutdown code. 36 6.3  Configure the power mode switching driver 37 6.4  Confgure the wakeup source. 42 6.5  Add PMIC driver 51 6.6  Main function call routine. 59 6.7  Test 61 6.8  Future development plan. 62 本文说明S32G M7核Standby demo 详细情况及定制,以及如何新建一个mcal demo 录 1    参考资料说明... 2 2    Demo创建运行过程... 2 2.1  创建运行... 2 2.2  Standby和StandbyRAMboot的区别... 4 3    S32G Standby原理与代码说明... 5 3.1  外设初始化函数... 5 3.2  standbyramc_cpy(可选) 5 3.3  WKPU_set 8 3.4  standby_modechange. 13 4    VR5510 PMIC Standby原理与代码说明... 14 4.1  PMIC_initConfig. 14 4.2  PMIC_standbyEntry. 16 5    定制修改... 17 5.1  关闭RTC唤醒功能... 17 5.2  打开CAN1_RX唤醒功能... 19 5.3  只支持full boot 20 5.4  打开DDR相关电源... 21 5.5  修改调试串口为UART1. 23 5.6  修改设备驱动时钟... 25 5.7  事先关掉所有其它的非主核... 29 6    修改为MCAL Demo. 33 6.1  修改UART驱动... 34 6.2  实现时钟关闭代码... 35 6.3  配置电源模式切换驱动... 36 6.4  配置唤醒源... 41 6.5  加入PMIC驱动... 50 6.6  主函数逻辑实现... 58 6.7  运行测试... 60 6.8  未来开发计划... 61   attachment include chinese/english doc, s32ds codes with 2 zip package(remove the .7z), mcal codes.  
查看全文
Demo Owner Mike Stanley   Tire Pressure Monitoring Systems (TPMS) help drivers with precise direct tire pressure measurement by providing individual tire readings – including the spare. NXP's world’s smallest, lowest-power, with highest memory for customer use TPMS is highly integrated with a pressure sensor, temperature sensor, accelerometer, MCU and a transmitter. Watch Mike Stanley explain the pressure sensor readings, temperature sensor display and the accelerometer/motion readings. These readings are time based periodic measurements where the data is given as an output to the driver.   Features Simulation that portraits the TPMS as if it were inside the vehicles tires and sending reports to the vehicle's display unit about tire pressure Module has the following: Pressure sensor, accelerometer, temperature sensor, low-frequency radio, Microcontroller   Featured NXP Products FXTH87 product page FXTH87 Fact Sheet Links Tire Pressure Monitoring Sensors Pressure Sensors Block Diagram  
查看全文
This doc expain how to use eMMC from user space, contents as follows: 目录 1 eMMC的分区情况 ...................................................... 2 2 S32G+BSP29上默认的eMMC启动 ............................ 3 2.1 eMMC硬件设计 .................................................. 3 2.2 eMMC的镜像烧写办法与启动 ............................. 6 2.3 增加MMC内核测试工具 .................................... 10 3 eMMC GP功能的测试 .............................................. 10 3.1 eMMC GP功能的说明 ....................................... 10 3.2 eMMC GP功能的测试 ....................................... 11 4 eMMC RPMB功能的测试 ......................................... 13 4.1 eMMC RPMB功能的说明 ................................. 13 4.2 eMMC RPMB功能的测试 ................................. 15
查看全文
This doc explain how to configure a new LPDDR4 and test it on S32G, contents as follows: 目录 1    硬件资源,文档及工具下载... 2 1.1    硬件资源... 2 1.2    内存配置测试相关的文档... 2 1.3    内存配置与压力测试工具. 3 2    内存设计要求... 3 3    LPDDR4基础... 3 3.1    基本知识... 3 3.2    Inline ECC.. 4 4    硬件连接... 6 5    S32G+LPDDR4内存配置与测试步骤... 8 5.1    配置LPDDR4初始化寄存器设置... 9 5.2    使用内存测试工具初始化PHY及生成DDRC配置Uboot源代码    11 5.3    生成DDRC配置ATF源代码(从BSP32开始) 14 5.4    测试内存... 18 5.5    其它尺寸的LPDDR4配置... 19 6    测试失败的DEBUG.. 24 7    内存参数应用到Uboot中... 25 8    内存参数应用到ATF中... 25 9    附录... 25 9.1    一个重要的DDR TOOL bug Fix. 25 9.2    Uboot DDR测试工具... 26 9.3    Kernel DDR测试工具... 27 9.4    附DDR tool测试项截图... 28   Contents 1    Hardware Materials, Docs and Tools Needed. 2 1.1    Hardware resource. 2 1.2    Related docs of memory configuration and test 2 1.3    Memory configuration and test tools. 3 2    Memory Hardware Design Requirement 3 3    LPDDR4 Basics. 3 3.1    Basic Knowledge. 3 3.2    Inline ECC.. 5 4    Hardware Design. 7 5    S32G+LPDDR4 Memory Configuration and Test Steps. 8 5.1    Configure LPDDR4 DDRC Register Settings. 9 5.2    Use the Memory Test Tool to Initialize the PHY and Generate the DDRC Configuration Uboot Source Code  12 5.3    Generate ddrc configuration ATF source code (starting from bsp32) 15 5.4    Memory Test 19 5.5    Other size LPDDR4 configurations. 20 6    Debug of the Fails of Test 25 7    Modify the DDRC register settings in Uboot 26 8    Modify the DDRC register settings in ATF. 26 9    Appendix. 26 9.1    A importance DDR TOOL bug Fix. 26 9.2    Uboot DDR Test Tools. 27 9.3    Kernel DDR Test Tool 28 9.4    Attached Screenshot of DDR Tool Test Items. 29
查看全文
Overview In the industrial world, it is critical to incorporate fail-safe technology where possible in applications such as crane steering machines, robotic lift, and assembly line robots to name a few. By doing so, you ensure you meet Safety Integrity Level (SIL) standards as found in the IEC 61508 standard. Also, you significantly increase human safety and protect products and property. This fail Safe Motor Control solution incorporates the MPC574xP family of MCUs that delivers the highest functional safety standards for industrial applications. The MPC574xP family incorporates a lockstep function that serves as a watchdog function to flag any problems with the MCU including a programmable Fault Collection and Control Unit (FCCU) that monitors the integrity status of the MCU and provides flexible safe state control. Also, this device is a part of the SafeAssure® program, helping manufacturers achieve functional safety standard compliance. Block Diagram Recommended Products Category Products Features Power Switch 12XS2 | 12 V Low RDSON eXtreme Switch | NXP  Watchdog and configurable Fail-safe mode by hardware Authentication time (on-chip calculations) < 50 ms Programmable overcurrent trip level and overtemperature protection, undervoltage shutdown, and fault reporting Output current monitoring Pressure Sensor MPXHZ6130A|Pressure Sensor | NXP  The MPXHZ6130A series sensor integrates on-chip, bipolar op amp circuitry and thin-film resistor networks to provide a high output signal and temperature compensation for automotive, aviation, and industrial applications. Temperature Sensor https://www.nxp.com/products/sensors/silicon-temperature-sensors/silicon-temperature-sensors:KTY8X High accuracy and reliability Long-term stability Positive temperature coefficient; fail-safe behavior MOSFET Pre-driver GD3000 |3-phase Brushless Motor Pre-Driver | NXP  Fully specified from 8.0 to 40 V covers 12 and 24 V automotive systems Extended operating range from 6.0 to 60V covers 12 and 42 V systems Greater than 1.0 A gate drive capability with protection Power Management and Safety Monitoring MC33908 | Safe SBC | NXP  Enhanced safety block associated with fail-safe outputs Designed for ASIL D applications (FMEDA, Safety manual) Secured SPI interface   Evaluation and Development Boards   Link Description MPC5744P Development Kit for 3-phase PMSM | NXP  The NXP MTRCKTSPS5744P motor control development kit is ideal for applications requiring one PMSM motor, such as power steering or electric powertrain. Evaluation daughter board - NXP MPC5744P, 32-bit Microcontroller | NXP  The KITMPC5744DBEVM evaluation board features the MPC5744P, which is the second generation of safety-oriented microcontrollers, for automotive and industrial safety applications
查看全文
本文说明在S32G3 RDB3板上,Uboot中使能PFE驱动时,需要加载PFE FW,默认Uboot中,PFE FW是放在SD/eMMC的FAT分区,通过文件系统访问来读取。本文说明如何修改为从QSPI NOR中读取。主要的应用场景是:  在烧写镜像时,需要Uboot通过网口来烧写内核镜像及rootfs。而此时SD/eMMC还没有分区,所以无法将PFE网口需要的FW放在FAT分区中。 目录 1    背景与相关资料... 2 1.1  问题背景... 2 1.2  需要的软件,工具与文档... 3 2    将Uboot PFE FW放在QSPI Nor上... 4 2.1  Uboot代码说明与修改... 4 2.2  测试... 6
查看全文
  本文说明S32G  RDB2板Linux板级开发包BSP32 的ATF细节,以帮助客户了解S32G的ATF是如何运行的,以及如何修改到客户的新板上。   从BSP32开始,默认启动需要ATF支持,所以部分定制需要移动到ATF中,Uboot会简单很多。 请注意本文为培训和辅助文档,本文不是官方文档的替代,请一切以官方文档为准。   目录如下: 目录 1    S32G Linux文档说明... 2 2    创建S32G RDB2 Linux板级开发包编译环境... 3 2.1  创建yocto编译环境: 3 2.2  独立编译... 8 3    NXP ATF 原理... 13 3.1  AArch64 Exception Leve: 13 3.2  ATF原理... 14 3.3  ATF目录 结构... 16 3.4  ATF初始化流程... 25 3.5  NXP ATF的SCMI支持... 28 3.6  NXP ATF的PSCI支持... 32 3.7  NXP ATF OPTEE接口(未来增加)... 36 4    ATF 定制... 36 4.1  修改 DDR配置... 36 4.2  修改调试串口与IOMUX定制说明... 39 4.3  启动eMMC定制说明... 48 4.4  I2C与PMIC定制说明... 58
查看全文
目录 1 S32G Linux文档说明 .................................................. 3 2 创建S32G RDB2 Linux板级开发包编译环境 .............. 4 2.1 创建yocto编译环境: ................................................. 4 2.2 独立编译 ................................................................. 9 3 FSL Uboot 定制 ........................................................ 14 3.1 FDT支持 ............................................................... 14 3.2 DM(driver model)支持 ........................................... 20 3.3 Uboot目录结构 ...................................................... 31 3.4 Uboot编译 ............................................................. 34 3.5 Uboot初始化流程 .................................................. 35 3.6 使能了ATF后对Uboot初始化流程的影响 ............... 40 4 Uboot 定制 ............................................................... 41 4.1 修改 DDR大小 ....................................................... 41 4.2 修改调试串口与IOMUX说明 .................................. 44 4.3 DM I2C与PMIC初始化 .......................................... 53 4.4 通用GPIO ............................................................. 59 4.5 启动eMMC定制 ..................................................... 69 4.6 Ethernet定制 ......................................................... 78 5 Uboot debug信息 ..................................................... 89 5.1 Print env ............................................................... 89 5.2 dm - Driver model low level access ...................... 92 5.3 fdt .......................................................................... 95 5.4 I2C测试 ................................................................. 95 5.5 芯片寄存器访问 ..................................................... 98 updated to V5
查看全文
This doc explain how to build a PFE master project on M7 and how to integration. chinese version. 目录 1 需要的软件与工具 ...................................................... 2 2 Master Demo编译说明 ............................................... 2 2.1 安装RTD_MCAL驱动 ............................................. 2 2.2 安装PFE_MCAL驱动 .............................................. 3 2.3 编译PFE master工程 .............................................. 3 3 修改为支持RDB板的RGMII接口 ................................ 4 3.1 硬件连接 ................................................................. 4 3.2 软件修改 ................................................................. 5 4 Master Demo测试 ...................................................... 7 4.1 硬件连接 ................................................................. 7 4.2 PFE_EMAC1(RGMII)测试过程 ............................... 7 5 Master Demo代码说明 ............................................... 8 6 集成中注意点 ........................................................... 11 6.1 PFE_PreInit .......................................................... 11 6.2 S32G3中的GENCTRL1的配置 ............................. 12 6.3 RX CLOCK重新锁定 ............................................ 13 7 Demo Debug建议 .................................................... 14 7.1 PFE相关寄存器说明 ............................................. 14   Contents 1 Required software and tools ...................................... 2 2 Master Demo compiling ............................................. 2 2.1 Install RTD_MCAL driver........................................ 2 2.2 Install PFE_MCAL driver ........................................ 3 2.3 Compile PFE master project .................................. 3 3 Change the demo to support RDB3 board RGMII port4 3.1 Hardware design .................................................... 4 3.2 Software modification ............................................. 5 4 Master DemoTest ...................................................... 7 4.1 Hardware design .................................................... 7 4.2 PFE_EMAC1(RGMII) test steps ............................. 7 5 Master Demo code flow ............................................. 8 6 Notes in integration .................................................. 11 6.1 PFE_PreInit .......................................................... 11 6.2 The GENCTRL1 configruation of S32G3 ............. 12 6.3 RX CLOCK relock ................................................ 13 7 Demo Debug suggestion ......................................... 14 7.1 PFE related registers ........................................... 14
查看全文
doc&project&patch&script explain to support GD qspi nor in lauterbach, flash tool,ivt,fls mcal, fls bootloader and linux/ chinese/english 目录 1    背景和参考资料... 2 1.1  背景说明... 2 1.2  参考资料... 3 1.3  硬件连接... 5 2    Lauterbach脚本驱动开发(可选) 5 2.1  准备参考脚本... 5 2.2  QuadSPI_ReadID.. 6 2.3  配置QSPI NOR为DOPI模式... 7 2.4  使用DOPI模式 READ_8DTRD.. 10 2.5  测试结果... 13 3    Flash tool算法镜像开发... 14 3.1  Flash SDK实现的算法... 15 3.2  开发新的flash源代码... 17 3.3  测试结果... 20 4    开发IVT参数头... 22 4.1  S32G QSPI控制器配置区别... 24 4.2  QSPI的配置区别... 28 4.3  测试结果... 29 5    开发MCAL Fls驱动... 30 5.1  MCAL Fls驱动工程说明... 30 5.2  FlsMem配置页... 34 5.3  MemCfg配置页... 35 5.4  测试结果... 49 6    开发Bootloader工程中Fls驱动... 51 6.1  Bootloader工程说明... 51 6.2  Bootloader与MCAL Fls驱动的不同点... 53 6.3  镜像打包... 54 6.4  测试结果... 56 7    开发Linux驱动(可选) 57 7.1  Linux GD驱动支持情况... 57 7.2  时钟相关的修改... 58 7.3  在DTS中增加GD flash的支持... 60 7.4  修改源代码增加flash信息结构体... 61 7.5  修改源代码中flash的fixup支持DTR模式... 62 7.6  Turning dummy值解决读错位的问题... 64 7.7  测试结果... 65   Content 1    Background and References. 2 1.1  Background. 2 1.2  References. 3 1.3  Hardware Link. 5 2    Lauterbach Script development(Optional) 6 2.1  Preparing the refer script 6 2.2  QuadSPI_ReadID.. 6 2.3  Configure QSPI NOR to DOPI mode. 8 2.4  Use DOPI mode  READ_8DTRD.. 11 2.5  Test report 13 3    Flash tool algorithm image development 15 3.1  Algorithms implemented by Flash SDK. 15 3.2  Develop new flash source code. 17 3.3  Test Report 21 4    Develop IVT Parameter Header 23 4.1  S32G QSPI Controllder configuration difference. 25 4.2  QSPI Configuration Difference. 30 4.3  Test Report 30 5    Develop MCAL Fls driver 31 5.1  MCAL Fls Driver Project Details. 31 5.2  FlsMem Configuration page. 35 5.3  MemCfg Configuration page. 36 5.4  Test Report 51 6    Develop Bootloader Project Fls Drivedr 52 6.1  Bootloader Project Details. 52 6.2  Difference of Bootloader and MCAL Fls Driver 54 6.3  Image Package. 56 6.4  Test Report 58 7    Develop Linux Driver(Optional) 59 7.1  Linux GD Driver Details. 59 7.2  Modification of Clock. 60 7.3  In DTS add GD flash Support 62 7.4  Modify source code and add flash information structure  63 7.5  Modify the fixup of flash in source code to support DTR mode  64 7.6  Turning Dummy Value to Solve the Misplacement Problem   66 7.7  Test Report 67
查看全文
本文说明S32G HSE On-demand SMR验证的应用方法,本文演示的示例应用为: Secure Bootloader对Linux Bootloader fip.bin的验证 目录 1    背景说明与参考资料... 2 1.1  背景说明... 2 1.2  参考资料... 3 2    S32G On-demand SMR Verification说明... 4 2.1  SMR Verify的说明... 4 2.2  On-demand SMR Verify. 4 3    环境搭建... 5 3.1  EB配置说明... 5 3.2  ATF编译说明... 8 3.3  镜像烧写... 9 4    Bootloader代码开发... 9 4.1  OnDemand SMR install 9 4.2  OnDemand SMR verify. 13 5    测试... 16 5.1  Lauterbach跟踪... 17 5.2  Fip.bin破坏实验... 19 5.3  硬件确认... 19   This application doc explains the application method of S32G HSE On_demand SMR verification. The example application demonstrated in this doc is: Secure Bootloader verification of Linux Bootloader fip.bin This application doc explains the application method of S32G HSE On_demand SMR verification. The example application demonstrated in this doc is: Secure Bootloader verification of Linux Bootloader fip.bin Contents 1    Background Description and Reference Materials. 2 1.1  Background Description. 2 1.2  Reference Materials. 3 2    S32G On-demand SMR Verification. 4 2.1  SMR Verify. 4 2.2  On-demand SMR Verify. 4 3    Build the Development Environment 5 3.1  EB Configuration. 5 3.2  ATF Compiling. 8 3.3  Burn Image. 9 4    Bootloader Codes Development 9 4.1  OnDemand SMR install 9 4.2  OnDemand SMR verify. 13 5    Testing. 16 5.1  Lauterbach Tracking. 16 5.2  Fip.bin Broken Test 19 5.3  Probe the Hardware. 19
查看全文
this doc and project explain how to integrate S32G M stby demo and Linux STR demo to one demo to achieve the fast boot, chinese version: 本文说明如何在S32G2 RDB2板上搭建 一个M7 MCAL Standby Fullboot GPIO resume Demo加A53 Suspend to RAM的Demo,主要的 应用场景是电动汽车的快速启动。 G3与更新版本BSP的支持情况与此类 似,不再另外说明,客户可以自行参考开发。 请注意本文为培训和辅助文档,本文不是 官方文档的替代,请一切以官方文档为准。     目录 1 参考资料说明与声明 .................................................. 2 2 STBY+STR的硬件注意点 .......................................... 3 3 修改M7 MCAL Standby Demo代码 ............................ 5 3.1 Clock相关修改 ........................................................ 5 3.2 MCU相关修改 ......................................................... 5 3.3 UART Clock相关修改 ............................................. 7 3.4 Port相关修改 .......................................................... 7 3.5 I2C相关修改 ........................................................... 7 3.6 实现M核进入STDY状态等待功能 ........................... 8 3.7 Main函数的修改 ..................................................... 8 4 修改Bootloader工程来支持同时Boot M/A核Demo ... 10 4.1 I2C Clock相关修改 ............................................... 10 4.2 Port相关修改 ........................................................ 11 4.3 其它修改 ............................................................... 12 5 修改A53 Linux代码 .................................................. 13 6 Demo 运行测试 ........................................................ 13 6.1 硬件连接 ............................................................... 13 6.2 镜像烧写 ............................................................... 13 6.3 Demo运行 ............................................................ 14 7 工程发布包............................................................... 15 8 未来开发建议 ........................................................... 17 8.1 M/A核同步机制 ..................................................... 17 8.2 功能安全与信息安全 ............................................. 17 9 遗留问题 .................................................................. 17 9.1 IPCF STR支持 ...................................................... 18 9.2 PFE Slave STR支持 ............................................. 18 注意以下说明与声明: 说明: 汽车网关有快速启动要求,而电动车因为驻车时有更大的电池提供待机电源,所以希望是使 用Linux 的suspend to ram 的功能来实现Linux 的快速启动,而在S32G 上则需要考虑将M 核的 Standby 功能 与A 核的STR 功能 结合起来,目前可用的资源包括:  从BSP32 起支持ATF,可以支持Linux 端的STR 功能,文档《S32G_Linux_STR_V1-*.pdf》 (John.Li)说明linux STR 的原理和与M7 Standby Demo 结合时所需要的修改。  NXP 的M7 内部standby demo,可以支持M 核端的standby 功能,支持full boot 和standby ram boot。文档《S32G_Standby_Demo_V4-*.pdf》(John.Li)有详细说明,本文使用MCAL full boot+GPIO resume Demo。  本Demo 与本文主要说明如何将这两个Demo 结合起来,形成一个整体的Demo。  由于需要Boot M 核加A 核,所以也需要Bootloader 工程的支持,文档 《S32G_Bootloader_V1-*.pdf》(John.Li)说明了如何创建一个MCAL sample 加Linux 的 Bootloader 工程。 声明: 请注意:  M7 standby demo 本来为NXP 内部Demo,不保证运行质量。而Linux 本身也是reference software。  Linux STR 本身会引入比较复杂的电源管理切换,也会引起系统级的不稳定性。  本文所说的方法也是实验性质,不保证运行质量。 所以客户应该谨慎决定其产品功能并自行保证其产品质量,本文及本Demo 仅为Demo 性质。   This article explains how to build a demo of M7 MCAL Standby Fullboot GPIO resume Demo plus A53 Suspend to RAM on the S32G2 RDB2 board. The main application scenario is the quick start of electric vehicles. The support situation of G3 and the newer version of BSP is similar to this, no further explanation is given, customers can refer to it for development by themselves.  Please note that this article is a training and auxiliary document. This article is not a substitute for the official document. Please refer to the official document. Contents 1    Reference materials and statement 2 2    STBY+STR hardware checkpoints. 3 3    Modified M7 MCAL Standby Demo codes. 5 3.1  Clock modification. 5 3.2  MCU related modification. 6 3.3  UART Clock related modificaiton. 7 3.4  Port related modification. 8 3.5  I2C related modification. 8 3.6  Enable the waiting function of M core entering STDY. 9 3.7  Main function modification. 9 4    Modify the Bootloader project to support simultaneous M/A core demo  11 4.1  I2C Clock related modification. 11 4.2  Port related modifcaiton. 11 4.3  Others modificaiton. 13 5    Modify A53 Linux codes. 14 6    Demo running and testing. 14 6.1  Hardware link. 14 6.2  Image burning. 14 6.3  Demo running. 15 7    Project release package. 16 8    Suggestion for the future development 17 8.1  M/A core sync mechanism.. 17 8.2  Function safety and Information security. 17 9    Remaining issues. 18 9.1  IPCF STR support 18 9.2  PFE Slave STR support 18   as need refer:   S32G_Linux STR This doc explain S32G Linux STR details and modify to integrate with M stdy demo https://community.nxp.com/t5/NXP-Designs-Knowledge-Base/S32G-Linux-STR/ta-p/1652680 S32G Standby Demo the project build a new Mcal standby demo and explain its details https://community.nxp.com/t5/NXP-Designs-Knowledge-Base/S32G-M-kernel-Standby-demo-and-how-to-porting-to-Mcal/ta-p/1556313 S32G Boot customization doc how to run bootloader to run mcal&linux https://community.nxp.com/t5/NXP-Designs-Knowledge-Base/S32G-Bootloader-Customzition/ta-p/1519838
查看全文
        S32G just support serial download a M7 image to run by internal rom codes, our S32G DS IDE have a flash tools to use this feature to burn the image to external device. So current image burn method will divide into 2 step: 1: burn a uboot into the external device by S32G DS flash tools. 2: reboot the codes with uboot and run with network to burn the linux image into external device.      which need two working place on manufacture line, and customer wish to have a one time on-line tools, which means we need use serial port to boot uboot directly but S32G rom codes do not support it.       We have a reference tools of S32V but which IP difference is big between on S32V and S32G, So we can not reuse it and have to develop a new one.       The development working include: 序号 开发工作 说明 开发者 1 开发 根据S32G的serial boot协议要求,开发PC端的串口工具来下载M7镜像 John.Li 2 开发 根据自定义协议要求,开发PC端的串口工具来下载A核Bootloader到SRAM中 John.Li 3 开发 根据自定义协议要求,开发M7镜像的串口接收与Checksum逻辑 John.Li 4 开发 修改M7镜像支持串口0 John.Li 5 开发 开发实现M7镜像的串口单字节同步收发函数 John.Li 6 开发 开发实现A53启动功能 John.Li 7 调试与Debug 调试解决串口接收乱码问题(Serial boot rom codes仍然在回送消息串口) John.Li 8 调试与Debug 提供 解决A核启动串口halt思路(Serial boot rom codes仍然占用串口) John.Li 9 调试与Debug 优化M7镜像,缩小大小 Tony.Zhang 10 调试与Debug 根据M7镜像和A核 Uboot在SRAM中的内存分配要求,重排M7镜像位置,避免冲突 Tony.Zhang 11 调试与Debug 在M7中初始化SRAM空间 Tony.Zhang 12 调试与Debug 在M7中设置SRAM可执行空间 Tony.Zhang 13 调试与Debug 调试解决由于cache没有及时回写导致的下载镜像错误的问题 Tony.Zhang 14 调试与Debug 集成,调优与文档 John.Li   Pls check the attachment for the doc/codes/binary release which include:    Release      |->M7: Linflexd_Uart_Ip_Example_S32G274A_M7: S32DS M7工程。      |->PC: s32gSerialBoot_Csharp: PC端的Visual Studio的C#的串口工具工程。      |->Test:      |    |-> 115200_bootloader.bin: S32DS M7工程编译出来的bin文件,波特率为115200      |    |-> 921600_bootloader.bin: S32DS M7工程编译出来的bin文件,波特率为921600      |    |->load_uboot.bat: 运行工具的批处理文件,运行成功后打开串口可以看到Uboot执行,默认使用的波特率是115299         |    |->readme.txt:其它测试命令 |    |->s32gSerialBoot.exe:编译出来的PC端串口工具 |    |->u-boot.bin: BSP29默认编译出来的u-boot.bin.      Product Category NXP Part Number URL Auto MPU     S32G274     https://www.nxp.com/s32g    
查看全文
This doc explain bootloader secure boot feature and how to re-develop it to support: .FW update .OTP attribute access .IVT protect: 目录 1 参考资料 .................................................................... 2 2 S32G Secure Boot说明 ............................................. 2 2.1 IVT头格式与Secure Boot相关 ................................ 3 2.2 Secure Boot流程 .................................................... 3 2.3 Secure Boot配置 .................................................... 4 2.4 Secure Boot涉及到的HSE内容 ............................... 6 3 环境搭建 .................................................................... 7 3.1 搭建编译环境 .......................................................... 7 3.2 IVT镜像制造 ........................................................... 7 3.3 镜像烧写 ................................................................. 8 3.4 Bootloader Secure Boot测试 .................................. 8 4 Bootloader Secure Boot代码与功能说明 ................... 9 4.1 EB配置说明: ........................................................ 9 4.2 EB生成代码说明: ............................................... 15 5 定制1:HSE FW update .......................................... 22 5.1 代码开发 ............................................................... 22 5.2 测试 ...................................................................... 25 6 定制2:HSE OTP Attribute设置 ............................... 26 6.1 代码开发 ............................................................... 26 6.2 模拟测试 ............................................................... 33 7 定制3:IVT签名 ....................................................... 35 7.1 代码开发 ............................................................... 35 7.2 模拟测试 ............................................................... 40 Contents 1 Reference Materials .................................................. 2 2 S32G Secure Boot ..................................................... 3 2.1 IVT header format for the Secure Boot part .......... 3 2.2 Secure Boot Flow ................................................... 3 2.3 Secure Boot Configuration ..................................... 4 2.4 HSE background of Secure Boot ........................... 6 3 Build the Project ........................................................ 7 3.1 Build the Compiling Environment ........................... 7 3.2 Create IVT Image ................................................... 7 3.3 Burning Image ........................................................ 8 3.4 Bootloader Secure Boot Testing ............................ 9 4 Bootloader Secure Boot Codes and Function Description 9 4.1 EB Configuration .................................................... 9 4.2 EB output codes ................................................... 15 5 Customization 1:HSE FW update ......................... 22 5.1 Codes development ............................................. 23 5.2 Testing ................................................................. 26 6 Customization 2:HSE OTP Attribute Setting ......... 26 6.1 Code Development .............................................. 27 6.2 Simulation test ...................................................... 34 7 Customization 3:IVT Signature ............................. 36 7.1 Codes Development ............................................. 36 7.2 Simulation Testing ................................................ 40  
查看全文
This doc explain how to optimize the Linux boot time, Contents as follows: 目录 1 默认BSP28 Linux内核的启动时间分析和优化方向 ..... 2 2 UBoot的优化 .............................................................. 3 2.1 缩小Uboot的DTS尺寸 ............................................ 3 2.2 缩小Uboot的尺寸 .................................................... 4 2.3 去掉等待3S输入时间 .............................................. 4 2.4 配合内核修改的Uboot参数 ..................................... 4 2.5 关闭串口调试信息 .................................................. 5 2.6 MMC read的方法来读取内核和DTB ....................... 5 3 Kernal的优化 ............................................................. 5 3.1 DTB中去掉不用的驱动和代码 ................................. 5 3.2 内核中去掉不用的平台与驱动及相关代码 ............... 6 3.3 内核中去掉不用功能,缩小内核大小 ...................... 7 3.4 去掉initramfs支持 ................................................... 7 3.5 关闭调试信息 .......................................................... 7 3.6 提前eMMC驱动加载时间 ........................................ 7 3.7 将Kernel与DTB打包在一起..................................... 8 4 Rootfs+应用程序的优化 ............................................. 8 5 最终全部启动时间比较 ............................................. 12
查看全文
This doc explain  where is the design resource and what they are of S32G in Chinese,  Contents as follows: 目录 1 www.nxp.com 官网资源 ............................................. 2 1.1 www.nxp.com Documentation ................................ 4 1.2 www.nxp.com Tools&Software ............................. 10 2 Flexera资源 ............................................................. 18 2.1 Automotive HW-S32G Evaluation Board .............. 21 2.2 Automotive HW-S32G GoldBox ........................... 22 2.3 Automotive HW-S32G RDB2(RDB不再说明) ....... 22 2.4 Automotive SW-S32G2 Standard Software.......... 23 2.5 Automotive SW-S32G2 reference Software ......... 28 2.6 Automotive SW-S32G2 Tools .............................. 30 3 Docstore资源 ........................................................... 31
查看全文
  Overview   Vehicle-to-Everything (V2X) technology enables cars to communicate with their surroundings and makes driving safer and more efficient for everyone. By making the invisible visible, V2X warns the driver of road hazards, helping reduce traffic injuries and fatalities. In addition to improving safety, V2X helps to optimize traffic flow, reduce traffic congestion and lessen the environmental impact of transportation. V2X is a key component for full autonomous driving. V2X need message package signing & verification which need high CPU loading if used CPU. Qualcomm recommend their customers to use NXP i.MX8X/XL which have HSM as their modem’s companion chip. Two major components in the system: RSU (Road Side Unit) and OBU (On Board Unit). Both have similar system design, with minor differences. Block Diagram   Product Category MCU/MPU Product URL 1 i.MX 8X Family – Arm® Cortex®-A35, 3D Graphics, 4K Video, DSP, Error Correcting Code on DDR  Product Description 1 Extending the scalable range of the i.MX 8 series, the i.MX 8X family is comprised of common subsystems and architecture from the higher-end i.MX 8 family, establishing a range of cost-performance scaling with pin-compatible options and a high level of software reuse. Product URL 2 https://www.nxp.com/design/development-boards/automotive-development-platforms/s32k-mcu-platforms/s32k144-evaluation-board:S32K144EVB  Product Description 2 The S32K144EVB is a low-cost evaluation and development board for general purpose automotive applications.   Category Transceivers Product URL 1 TJA1051: High-speed CAN transceiver  Product Description 1 The TJA1051 is a high-speed CAN transceiver that provides an interface between a Controller Area Network (CAN) protocol controller and the physical two-wire CAN bus. Product URL 2 TJA1101: 2nd generation Ethernet PHY Transceivers - IEEE 100BASE-T1 compliant  Product Description 2 TJA1101 is a high-performance single port, IEEE 100BASE-T1 compliant Ethernet PHY Transceiver.   Category Power Management Product URL PF8100-PF8200: 12-channel Power Management Integrated Circuit (PMIC) for High-Performance Processing Applications  Product Description The PF8100/PF8200 PMIC family is designed for high-performance processing applications such as infotainment, telematics, clusters, vehicle networking, ADAS, vision and sensor fusion.   Category Secure Element Product URL SXF1800: Secure Element IC for V2X Communication  Product Description SXF1800 is based on highly secure microcontroller used also to protect mobile payments, providing highest proven assets protection.   Category I2C interface Product URL 1 PCA9538: 8-bit I²C-bus and SMBus low power I/O port with interrupt and reset  Product Description 1 The PCA9538 is a 16-pin CMOS device that provides 8 bits of General Purpose parallel Input/Output (GPIO) expansion with interrupt and reset for I2C-bus/SMBus applications and was developed to enhance the NXP Semiconductors family of II2CC-bus I/O expanders. Product URL 2 PCT2075: I2C-Bus Fm+, 1 Degree C Accuracy, Digital Temperature Sensor And Thermal Watchdog  Product Description 2 The PCT2075 is a temperature-to-digital converter featuring ±1 °C accuracy over ‑25 °C to +100 °C range. Product URL 3 PCA85073A: Automotive tiny Real-Time Clock/Calendar with alarm function and I2C-bus  Product Description 3 The PCA85073A is a CMOS1 Real-Time Clock (RTC) and calendar optimized for low power consumption.   Category Wi-Fi Product URL 88W8964: 2.4/5 GHz Dual-Band 4x4 Wi-Fi® 5 (802.11ac) Access Solution  Product Description The 88W8964 features 160MHz bandwidth and Multi-User Multi-Input Multi-Output (MU-MIMO) while achieving 2.6 Gbit/s peak data rate for high speed, secure, and reliable access points and smart gateways.   Category V2X Modem Product URL RoadLINK® SAF5400 Single Chip Modem for V2X  Product Description The RoadLINK SAF5400 is an automotive-qualified single chip DSRC modem for V2X applications. The SAF5400 modem is able to receive and verify up to 2000 messages per second.
查看全文