FRDM Training Hub

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

FRDM Training Hub

FRDM Training and resources
Refer to here to explore available training materials and resources for FRDM development boards for microcontrollers and i.MX Application Processors to help you identify available content for you.

ディスカッション

ソート順:
  The FRDM i.MX 8M Plus development board is a low-cost and compact development board with NXP i.MX 8M Plus applications processor. On-board NXP IW612 Tri-Radio module supports Wi-Fi 6 + Bluetooth Low Energy 5.4 + 802.15.4. NXP releases Debian every six months and releases Yocto every year for this board. The FRDM i.MX 8M Plus development board is ideal for developing modern Industrial and IoT applications.   Get to know FRDM-IMX8MPLUS Development Boaard     Specifications 4× Arm® Cortex®A53 + 1× Arm Cortex-M7 LPDDR4 32-bit 4GB eMMC 5.1, 32GB QSPI NOR flash, 32 MB Power Management IC (PMIC) MicroSD 3.0 card slot One USB 3.0 Type-C connector One USB 2.0 Type-C for debug One USB 3.0 Type-A connector One USB Type-C PD only Onboard Wi-Fi® 6 + Bluetooth® LE 5.4/802.15.4 module Optional M.2 Key-E for Wi-Fi/ BT/802.15.4 M.2 Key-M for SSD Multiple display interface:     MIPI-DSI connector 2x4 data lane LVDS w/ Backlight HDMI connector Two MIPI-CSI connectors One 2x5 Pin NXP custom interface with: One CAN port I2C expansion Two 1 Gbps Ethernet Port0 supports POE Port1 supports TSN External RTC with coin cell connector 40 pin (2 x 20) expansion I/O     Feature FRDM-IMX8MPLUS eMMC 32GB DRAM Micron 4GB PMIC PCA9450C WiFi Module u-blox MAYA-W276 on-board USB Type-C+Type-A ENET 2xGbE M.2 (Key E) SDIO WiFi / BT Y (rework needed) M.2 (Key M) PCIE Y HDMI Y MIPI DSI Panel 22 Pins FPC HDR LVDS Panel 40 Pins 2mm HDR MIPI CSI camera 22 Pins FPC HDR 2x20 Expansion Interface Y CAN BUS Y MicroSD Y UART Y Audio WM8962B Remote Debug N NXP Connector (CAN, I2C) Y Power Connector Type-C PCB layers 6 Board DIM 12x13cm       NXP Devices On-Board PMIC PCA9450C USB PD TCPC PHY IC PTN5110 High-Voltage USB PD Power Switch NX20P5090UK I2C  Extends  GPIO PCAL6416A USB3.0 Switch CBTL02043A I2C Repeater PCA9509PDP Bi-directional Level Shifter NTS0104 CAN Transceiver TJA1051T/3 USB Sink & Source combo power switch NX20P3483UK USB Type-C CC and SBU Protection IC NX20P0407 Real-time clock/calendar PCF2131 Wi-Fi, BT, 802.15.4 Tri-Radio IW612 (in u-blox Module)     Expansion Boards RPI-CAM-MIPI: IAS camera to 22 Pins FPC camera adapter Waveshare 7'' DSI LCD: 7inch Capacitive Touch, 1024×600 DY1212W-4856 TFT LCD panel with LVDS interface: 12.1" (WXGA) TFT LCD panel with LVDS interface ​8MIC-RPI-MX8: 8-microphone array proto board for voice enablement   Trainings   Generic FRDM-IMX8MPLUS Software Release Deploy Android14 on FRDM-iMX8MP Lf6.6.36   Useful Links −i.MX Yocto Project User’s Guide​ −i.MX Linux User’s Guide ​−i.MX Linux Reference Manual​ −i.MX Porting Guide -i.MX Debian Linux SDK User Guide
記事全体を表示
Bring up Wi-Fi and Bluetooth interface. Configure and bring up Bluetooth A2DP sink profile. Configure and bring up Wi-Fi STA mode and perform throughput test. Bluetooth A2DP Sink profile configurations STA mode creation Connection of STA device to Ext AP Execution of udhcp client to receive the dynamic IP address from Ext AP iPerf server execution on Ubuntu/Windows machine iPerf client execution on FRDM i.MX 93 board 802.15.4 configuration on FRDM i.MX 93 board Wi-Fi Bluetooth LE and OT COEX Hands-on Demo Guide  Community Support If you have questions regarding this training, please leave your comments in our Wireless MCU Community! here 
記事全体を表示
In this lab, you will learn how to: Load wireless module into board Bring-up Bluetooth + 802.15.4 firmware Initialize the 802.15.4 interface on the FRDM-i.MX93 board. Configure and bring up the 802.15.4 interface. Create a thread network. Add nodes to the thread network. Verify thread network connectivity. Exchange data between thread nodes.   OpenTread Hands-on Demo Guide  Community Support If you have questions regarding this training, please leave your comments in our Wireless MCU Community! here 
記事全体を表示
Load drivers of wireless module into board Bring-up Bluetooth Scan/pair/connect Bluetooth with smartphone Hands-on Bluetooth A2DP sink/source profile demo play audio on remote Bluetooth headset or speaker using Bluetooth A2DP source profile play audio on FRDM i.MX 93 board from smart phone using Bluetooth A2DP sink profile Bluetooth A2DP Source and Sink Profile Demo    Community Support If you have questions regarding this training, please leave your comments in our Wireless MCU Community! here 
記事全体を表示
This document assumes FRDM-iMX91 board is flashed with a Linux image. For flashing instructions, refer to FRDM-MX93_Board_Flashing guide. Then, follow this document to download software applications to test Wi-Fi, Bluetooth, and 802.15.4 performance. Hardware Prerequisites Windows or Linux PC with 64-bit OS 2 spare USB ports on PC FRDM-iMX91 Development Board Bluetooth LE device: Mobile phone which can configured as central or peripheral Wi-Fi Access Point: Standalone or mobile hotspot Wi-Fi Station: Mobile phone used as a station OPENTHREAD: 1 Another OT enabled board   Required PC Software Serial Terminal program Setting for terminal: Baud rate:115200, Parity: none, Data bits: 8, Stop bits: 1 Windows:   PUTTY or teraterm  and USB Device driver  Linux:           Minicom (Command to download the tool : sudo apt-get install minicom)   Iperf Windows:    Download Iperf version 3.0.11 from here. Linux:            Download Debian package of IPerf 3.0.11 for Ubuntu 16.04 from here. $ wget https://iperf.fr/download/ubuntu/iperf3_3.0.11-1_amd64.deb   Install the package using the command below. $ sudo dpkg -i /path/to/package/iperf3_3.0.11-1_amd64.deb   Required Mobile Software Iperf Application (iperf 3) Android:                  HE.NET Network Tools on Google Play iOS:                HE.NET Network Tools on AppStore   nRF Connect Application Android:                   nRF Connect on Google Play iOS:               nRF Connect on App Store   Required EVK Software Linux BSP Image  Version: L6.6.52_2.2.0 Link: https://www.nxp.com/webapp/sps/download/license.jsp?colCode=L6.6.52_2.2.0_MX91&appType=file1&DOWNLOA...   To download the pre-built image, please refer to https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/embedded-linux-for...   hands-on Labs Lab1 - WIFI Basic Hands-on Lab2 - Bluetooth A2DP Source and Sink Profile Demo Lab3 - OpenThread  Hands-on Lab4- WiFi Bluetooth and OT COEX Demo   Community Support If you have questions regarding this training, please leave your comments in our Wireless MCU Community! here 
記事全体を表示
The FRDM-i.MX93 development board is designed to support advanced applications such as Industrial and Consumer HMI, Edge AI, Interconnected Devices, and High-Performance IoT Solutions. Built with NXP's i.MX 93 applications processor, it offers robust features like efficient machine learning acceleration, enhanced multimedia capabilities, and advanced connectivity options. This document provides a detailed guide on setting up the FRDM-i.MX93 development board. It includes hardware connections, flashing the Linux image, and accessing the debug console for seamless development and prototyping. FRDM-IMX93 Board Flashing Guide  Community Support If you have questions regarding this training, please leave your comments in our Wireless MCU Community! here 
記事全体を表示
In this lab, you will learn how to: Bring up Wi-Fi interfaces. Run basic Wi-Fi scan Configure and bring up Wi-Fi STA mode using WPA_SUPPLICANT. Configure and bring up UDHCP server for dynamic IP assignment for associated client devices. Run UDHCP client to get dynamic IP address. Configure and bring up Wi-Fi AP mode using hostapd. Connect STA to external AP Connect AP to external STA Start ping  Wi-Fi Basic Hands on Demo Guide Video   Community Support If you have questions regarding this training, please leave your comments in our Wireless MCU Community! here 
記事全体を表示
The FRDM-i.MX 91 development board enables Advance HMI Solutions supporting Industrial and consumer HMI, Enriched user experience, Immersive Audio Processing, Voice Solutions, and Interconnected Devices (smarter edge devices) among other applications. This document explains how to set up FRDM-i.MX 91 development board. This includes the hardware connections, flashing the Linux image, and accessing the debug console.   FRDM-IMX91 Board Flashing Guide Video   Community Support If you have questions regarding this training, please leave your comments in our Wireless MCU Community! here 
記事全体を表示
In this lab, you will learn how to: Bring up Wi-Fi and Bluetooth interface. Configure and bring up Bluetooth A2DP sink profile. Configure and bring up Wi-Fi STA mode and perform throughput test. Bluetooth LE GATT profile configurations STA mode creation Connection of STA device to Ext AP Execution of udhcp client to receive the dynamic IP address from Ext AP iPerf server execution on Ubuntu/Windows machine iPerf client execution on FRDM i.MX 91 board OT child configuration on FRDM i.MX 91 board Wi-Fi Bluetooth LE and OT COEX Hands-on Demo Guide Video   Community Support If you have questions regarding this training, please leave your comments in our Wireless MCU Community! here 
記事全体を表示
In this lab, you will learn how to: Load wireless module into board Bring-up Bluetooth The bring-up of 802.15.4 Initialize the 802.15.4 interface on the FRDM-i.MX91 board. Configure and bring up the 802.15.4 interface. Create a thread network. Add nodes to the thread network. Verify thread network connectivity. Exchange data between thread nodes.   OpenTread Hands-on Demo Guide Video   Community Support If you have questions regarding this training, please leave your comments in our Wireless MCU Community! here 
記事全体を表示
In this lab, you will learn how to:   Bring-up Bluetooth interface. The LE GATT profile defines the way that two Bluetooth LE devices transfer the data using concept of Services and Characteristics. Configure and bring up Bluetooth LE GATT server profile using NXP-based IW610 module. Configure and bring up Bluetooth LE GATT client profile using NXP-based IW610 module. nRF connect smartphone application is used to run the LE GATT server with the help of predefined Heart Rate Service.   Bluetooth LE GATT Profile Demo Guide Lab Video   Community Support If you have questions regarding this training, please leave your comments in our Wireless MCU Community! here 
記事全体を表示
This document assumes FRDM-iMX91 board is flashed with a Linux image. For flashing instructions, refer to FRDM-iMX91_Board_Flashing guide. Then, follow this document to download software applications to test Wi-Fi, Bluetooth, and 802.15.4 performance. Hardware Prerequisites Windows or Linux PC with 64-bit OS 2 spare USB ports on PC FRDM-iMX91 Development Board Bluetooth LE device: Mobile phone which can configured as central or peripheral Wi-Fi Access Point: Standalone or mobile hotspot Wi-Fi Station: Mobile phone used as a station OPENTHREAD: 1 Another OT enabled board   Required PC Software   Serial Terminal program Setting for terminal: Baud rate:115200, Parity: none, Data bits: 8, Stop bits: 1 Windows:   PUTTY or teraterm  and USB Device driver  Linux:           Minicom (Command to download the tool : sudo apt-get install minicom)   Iperf Windows:    Download Iperf version 3.0.11 from here. Linux:            Download Debian package of IPerf 3.0.11 for Ubuntu 16.04 from here. $ wget https://iperf.fr/download/ubuntu/iperf3_3.0.11-1_amd64.deb   Install the package using the command below. $ sudo dpkg -i /path/to/package/iperf3_3.0.11-1_amd64.deb   Required Mobile Software   Iperf Application (iperf 3) Android:  HE.NET Network Tools on Google Play iOS:   HE.NET Network Tools on AppStore   nRF Connect Application Android:   nRF Connect on Google Play iOS:    nRF Connect on App Store   Required EVK Software Linux BSP Image  Version: L6.6.52_2.2.0 Link: https://www.nxp.com/webapp/sps/download/license.jsp?colCode=L6.6.52_2.2.0_MX91&appType=file1&DOWNLOAD_ID=null   To download the pre-built image, please refer to https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX   hands-on Labs   Lab1 - WIFI Hands-on Lab2 - Bluetooth LE GATT Profile  Lab3 - OpenThread  Lab4-WIFI_Bluetooth-LE_OpenThread   Community Support If you have questions regarding this training, please leave your comments in our Wireless MCU Community! here   
記事全体を表示
Prerequisites  Hardware  FRDM-RW612 evaluation board  USB-C Cable Software Visual Studio Code VS Code Serial Terminal Software: Tera Term You can use any serial terminal you have, but we are using Tera Term for the training slides LCD-PAR-S035 display  Step by Step instructions document is here  Step by Step video:
記事全体を表示
Prerequisites  Hardware  FRDM-RW612 evaluation board  USB-C Cable Mobile phone (Android or IOS) Software Visual Studio Code VS Code Serial Terminal Software: Tera Term You can use any serial terminal you have, but we are using Tera Term for the training slides IoT Toolboox App Available for Android and iPhone app stores. Step by Step instructions document is here Step by Step video:
記事全体を表示
Prerequisites  Hardware  FRDM-RW612 evaluation board  USB-C cable Software Visual Studio Code VS Code FRDM-RW612 SDK Serial Terminal Software: Tera Term You can use any serial terminal you have, but we are using Tera Term for the training slides Step by Step instructions document is here Step by Step video:
記事全体を表示
Prerequisites  Hardware  FRDM-RW612 evaluation board  USB-C Cable Software Visual Studio Code VS Code Serial Terminal Software: Tera Term You can use any serial terminal you have, but we are using Tera Term for the training slides Step by Step instructions document is here Step by Step video:    
記事全体を表示
    Step by Step video:
記事全体を表示
  The RW61x is a highly integrated, low-power tri-radio wireless MCU with an integrated MCU and Wi-Fi ®  6 + Bluetooth ®  Low Energy (LE) 5.4 / 802.15.4 radios designed for a broad array of applications, including connected smart home devices, enterprise and industrial automation, smart accessories and smart energy. The RW612 MCU subsystem includes a 260 MHz Arm ®  Cortex ® -M33 core with Trustzone ™ -M, 1.2 MB on-chip SRAM and a high-bandwidth Quad SPI interface with an on-the-fly decryption engine for securely accessing off-chip XIP flash. The RW612 includes a full-featured 1x1 dual-band (2.4 GHz/5 GHz) 20 MHz Wi-Fi 6 (802.11ax) subsystem bringing higher throughput, better network efficiency, lower latency and improved range over previous generation Wi-Fi standards. The Bluetooth LE radio supports 2 Mbit/s high-speed data rate, long range and extended advertising. The on-chip 802.15.4 radio can support the latest Thread mesh networking protocol. In addition, the RW612 can support Matter over Wi-Fi or Matter over Thread offering a common, interoperable application layer across ecosystems and products. Hands-On Trainings Introduction to RW61x and FRDM-RW612 Quick introduction to RW61x family, module offering and FRDM-RW612 evaluation board FRDM-RW612 Out of the Box Experience Wi-Fi CLI (Command Line Interface) demo provides the user with a menu with different commands to explore the Wi-Fi capabilities of the FRDM RW612 board. When the board is powered on for the first time, the green RGB LED should be blinking indicating that the demo is loaded into the board. FRDM-RW612 Getting Started. Wi-Fi CLI on VS Code This lab guides you step by step on how to get started with FRD-RW612 board using Visual Studio Code  FRDM-RW612 BLE Sensors over Zephyr This demo shows the temperature from the i2c temperature sensor integrated in the board. This demo is based on Zephyr RTOS. The information can be monitored in the UART terminal or in the IoT Toolbox app. FRDM-RW612 Kitchen Timer using Low-cost LCD This lab shows how to modify a Kitchen Timer graphical application using LCD-PAR-S035 display Changing the date and button colors. The timer can also be viewed on a serial terminal.   Community Support If you have questions regarding this training or RW61x series, please leave your comments in our Wireless MCU Community! here 
記事全体を表示
MCX W series are secure, wireless MCUs designed to enable more compact, scalable and innovative designs for the next generation of smart and secure connected devices. The MCX W series, based on the Arm® Cortex®-M33, offers a unified range of pin-compatible multiprotocol wireless MCUs for Matter™, Thread®, Bluetooth® Low Energy and Zigbee®. MCX W enables interoperable and innovative smart home devices, building automation sensors and controls and smart energy products.   MCX W71 Hands on Training   FRDM-MCXW71: NBU and User Firmware Update Using ISP:   This hands-on describes how to update the code in NBU and the User firmware using the ISP. FRDM-MXCW71: Recognize NBU Incompatible Versions            The objective in this hands-on, is to learn how to recognize when the NBU firmware does not match with the SDK version. FRDM-MCXW71: Run Hello World SDK Demo           In this lab we will first import the MCUXpresso SDK for the MCX W71 Freedom board into MCUXpresso IDE and then we will build, flash and debug the hello world project to make sure the environment is set for the following Labs. FRDM-MCXW71: Run Blinky LED SDK Demo          In this lab we make some experience with the FRDM-MCXW71 board using the SDK project to implement a simple LED blinking. Once we will get familiar with the example project, we will integrate simple modifications FRDM-MCXW71: Wireless UART IoT Toolbox Demo          Goal of this lab is to show the SDK example implementing the wireless UART profile and we will move forward in making some meaningful modifications to the example itself with the goal to show where in the code the end user should enter the relevant application software for the application. FRDM-MCXW71: Low Power Reference Desing SDK Demo          This hands-on describes how to run the Low Power Reference Design demo on FRDM-MCXW71. Two low-power reference design applications are provided in the SDK reference_design folder, these applications aim at providing: • A reference design application for low power/timing optimization on a Bluetooth Low Energy application. These can be used in first intent for porting a new application on low power. • A way for measuring the power consumption, wake-up time, and active time in various power modes.   MCX W72 Hands on Training  Coming Soon!   MCX W23 Hands on Training  FRDM-MCXW23: LED Blinky In this lab we make some experience with the FRDM-MCXW23 board using the SDK project to implement a simple LED blinking. Once we will get familiar with the example project, we will integrate simple modifications. FRDM-MCXW23: Wireless UART IoT ToolBox the Goal of this lab is to show the SDK example implementing the wireless UART profile and we will move forward in making some meaningful modifications to the example itself with the goal to show where in the code the end user should enter the relevant application software for the application. FRDM-MCXW23: Hello World In this lab we will first import the MCUXpresso for Visual Studio Code SDK for the MCX W23 Freedom board into the MCUXpresso extension for Visual Studio Code and then we will build, flash and debug the hello world project to make sure the environment is set for the following Labs. FRDM-MCCXW23: Low Power Reference Design This hands-on describes how to run the Low Power Reference Design demo on FRDM-MCXW23. Two low-power reference design applications are provided in the reference design folder for the MCXW23: Low power peripheral application demonstrating the low power feature on an advertiser peripheral Bluetooth LE device. Low power central application demonstrating the low power feature on a scanner central Bluetooth LE device. Wireless Connectivity Trainings Bluetooth Low Energy  Introduction to Thread Network
記事全体を表示