FRDM Training Hub

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

FRDM Training Hub

Discussions

Sort by:
Prerequisites  Hardware  FRDM-RW612 evaluation board  USB-C cable Software Visual Studio Code VS Code FRDM-RW612 SDK Serial Terminal Software: Tera Term You can use any serial terminal you have, but we are using Tera Term for the training slides Step by Step instructions document is here Step by Step video:
View full article
Prerequisites  Hardware  FRDM-RW612 evaluation board  USB-C Cable Software Visual Studio Code VS Code Serial Terminal Software: Tera Term You can use any serial terminal you have, but we are using Tera Term for the training slides Step by Step instructions document is here Step by Step video:    
View full article
Prerequisites  Hardware  FRDM-RW612 evaluation board  USB-C Cable Software Visual Studio Code VS Code Serial Terminal Software: Tera Term You can use any serial terminal you have, but we are using Tera Term for the training slides LCD-PAR-S035 display  Step by Step instructions document is here  Step by Step video:
View full article
Prerequisites  Hardware  FRDM-RW612 evaluation board  USB-C Cable Mobile phone (Android or IOS) Software Visual Studio Code VS Code Serial Terminal Software: Tera Term You can use any serial terminal you have, but we are using Tera Term for the training slides IoT Toolboox App Available for Android and iPhone app stores. Step by Step instructions document is here Step by Step video:
View full article
  The RW61x is a highly integrated, low-power tri-radio wireless MCU with an integrated MCU and Wi-Fi ®  6 + Bluetooth ®  Low Energy (LE) 5.4 / 802.15.4 radios designed for a broad array of applications, including connected smart home devices, enterprise and industrial automation, smart accessories and smart energy. The RW612 MCU subsystem includes a 260 MHz Arm ®  Cortex ® -M33 core with Trustzone ™ -M, 1.2 MB on-chip SRAM and a high-bandwidth Quad SPI interface with an on-the-fly decryption engine for securely accessing off-chip XIP flash. The RW612 includes a full-featured 1x1 dual-band (2.4 GHz/5 GHz) 20 MHz Wi-Fi 6 (802.11ax) subsystem bringing higher throughput, better network efficiency, lower latency and improved range over previous generation Wi-Fi standards. The Bluetooth LE radio supports 2 Mbit/s high-speed data rate, long range and extended advertising. The on-chip 802.15.4 radio can support the latest Thread mesh networking protocol. In addition, the RW612 can support Matter over Wi-Fi or Matter over Thread offering a common, interoperable application layer across ecosystems and products. Hands-On Trainings Introduction to RW61x and FRDM-RW612 Quick introduction to RW61x family, module offering and FRDM-RW612 evaluation board FRDM-RW612 Out of the Box Experience Wi-Fi CLI (Command Line Interface) demo provides the user with a menu with different commands to explore the Wi-Fi capabilities of the FRDM RW612 board. When the board is powered on for the first time, the green RGB LED should be blinking indicating that the demo is loaded into the board. FRDM-RW612 Getting Started. Wi-Fi CLI on VS Code This lab guides you step by step on how to get started with FRD-RW612 board using Visual Studio Code  FRDM-RW612 BLE Sensors over Zephyr This demo shows the temperature from the i2c temperature sensor integrated in the board. This demo is based on Zephyr RTOS. The information can be monitored in the UART terminal or in the IoT Toolbox app. FRDM-RW612 Kitchen Timer using Low-cost LCD This lab shows how to modify a Kitchen Timer graphical application using LCD-PAR-S035 display Changing the date and button colors. The timer can also be viewed on a serial terminal.
View full article
    Step by Step video:
View full article
MCXW71 is a three-core platform that integrates a Cortex-M33 application core (CM33), a dedicated Cortex-M3 radio core, and an isolated EdgeLock Secure Enclave. The radio core, also called as Narrow Band Unit (NBU) features a Bluetooth Low Energy (LE) unit with a dedicated flash. The memories integrated in the NBU consist of Bluetooth LE controller stack and radio drivers. On MCXW71, only boot ROM has access to the NBU flash. The ROM bootloader provides an in-system programming (ISP) utility that operates over a serial connection on the microcontroller units (MCUs) This hands-on describes how to update the code in NBU and the User firmware using the ISP. Lab guide: FRDM-MCXW71_NBU_and_User_Firmware_Update_Using_ISP
View full article
MCX W series are secure, wireless MCUs designed to enable more compact, scalable and innovative designs for the next generation of smart and secure connected devices. The MCX W series, based on the Arm® Cortex®-M33, offers a unified range of pin-compatible multiprotocol wireless MCUs for Matter™, Thread®, Bluetooth® Low Energy and Zigbee®. MCX W enables interoperable and innovative smart home devices, building automation sensors and controls and smart energy products.   MCX W71 Hands on Training   FRDM-MCXW71: NBU and User Firmware Update Using ISP       This hands-on describes how to update the code in NBU and the User firmware using the ISP. FRDM-MXCW71: Recognize NBU Incompatible Versions            The objective in this hands-on, is to learn how to recognize when the NBU firmware does not match with the SDK version. FRDM-MCXW71: Run Hello World SDK Demo           In this lab we will first import the MCUXpresso SDK for the MCX W71 Freedom board into MCUXpresso IDE and then we will build, flash and debug the hello world project to make sure the environment is set for the following Labs. FRDM-MCXW71: Run Blinky LED SDK Demo          In this lab we make some experience with the FRDM-MCXW71 board using the SDK project to implement a simple LED blinking. Once we will get familiar with the example project, we will integrate simple modifications FRDM-MCXW71: Wireless UART IoT Toolbox Demo          Goal of this lab is to show the SDK example implementing the wireless UART profile and we will move forward in making some meaningful modifications to the example itself with the goal to show where in the code the end user should enter the relevant application software for the application. FRDM-MCXW71: Low Power Reference Desing SDK Demo          This hands-on describes how to run the Low Power Reference Design demo on FRDM-MCXW71. Two low-power reference design applications are provided in the SDK reference_design folder, these applications aim at providing: • A reference design application for low power/timing optimization on a Bluetooth Low Energy application. These can be used in first intent for porting a new application on low power. • A way for measuring the power consumption, wake-up time, and active time in various power modes.   MCX W72 Hands on Training  Coming Soon!     Wireless Connectivity Trainings Bluetooth Low Energy  Introduction to Thread Network
View full article