i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-345148 
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-342174 
View full article
i.MX6UL/ULL extend uart port and integrate SIP I2C device. Contents 1 硬件设计说明 ............................................................. 2 硬件框图 ........................................................................ 2 硬件模块设计 ................................................................. 4 IOMUX 表 ....................................................................... 8 2 编译环境搭建 ............................................................. 8 编译环境文档及镜像下载。 ............................................ 8 编译环境搭建 ............................................................... 11 3 移植BSP 到扩展串口板 ........................................... 15 Uboot 中支持新的DTB ................................................ 15 Uboot 中调试串口改成UART6 ..................................... 16 去除掉无用的驱动及其IOMUX .................................... 18 增加i.MX6UL/ULL 本身串口支持 ................................. 18 增加GPIO 输出支持(GPIO_LED) ............................ 26 增加GPIO 输入支持(GPIO_KEY) ........................... 30 增加PWM支持 ............................................................ 34 增加i.MX6UL 本身ADC 支持 ....................................... 38 修改网口驱动仅支持一个网口 ...................................... 41 增加NXP PCF8591 I2C 转ADC 芯片支持 ................... 44 增加NXP PCA9555A I2C 转GPIO 芯片支持(rework 支持) 47 增加NXP PCT2075 I2C 温度传感器芯片支持(rework 支持) 55 增加NXP PCF8563 I2C RTC 支持(rework 支持) ......... 58 增加NXP PCA9632 I2C LED控制器芯片支持(rework 支持) 65 增加CH438 EIM 转串口芯片支持(delay) ..................... 70
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-343007 
View full article
Pre-Sales: i.MX8/8X applications in automotive(Chinese Version) https://community.nxp.com/docs/DOC-345825 i.MX8X website design resource guide: (Chinese Version) https://community.nxp.com/docs/DOC-345676 After-Sales: i.MX8X memory configuration&test application notes: (Chinese Version) https://community.nxp.com/docs/DOC-345803 i.MX8X hardware design guide: (Chinese Version) https://community.nxp.com/docs/DOC-346582 i.MX8X_4.19.35_bootloader customization application notes: (Chinese Version) https://community.nxp.com/docs/DOC-345713 i.MX8X_4.19.35_kernal customization application notes: (Chinese Version) https://community.nxp.com/docs/DOC-345714 i.MX8X_4.14.98_bootloader customization application notes: (Chinese Version) https://community.nxp.com/docs/DOC-342448 i.MX8X_4.14.98_kernal customization application notes: (Chinese Version) https://community.nxp.com/docs/DOC-344217 i.MX8X_5.4.24_bootloader customization application notes: (Chinese Version) https://community.nxp.com/docs/DOC-347131
View full article
Hardware : i.MX8MNLPDDR4EVK Build Yocto Image [Linux 4.14.98_2.3.1] Yocto Project Setup          $: mkdir imx-yocto-bsp          $: cd imx-yocto-bsp                $: repo init -u https://source.codeaurora.org/external/imx/imx-manifest -b imx-linux-sumo -m imx-4.14.98-2.3.1.xml          $: repo sync  copy marvell bb.file into yocto source         $: cp  0001-Porting-mrvl-8987-wifi.patch   imx-yocto-bsp/sources/meta-fsl-bsp-release/imx/meta-bsp         $: git apply 0001-Porting-mrvl-8987-wifi.patch Image Build         $: DISTRO=fsl-imx-xwayland MACHINE=imx8mnlpddr4evk source fsl-setup-release.sh -b build-xwayland         $:bitbake fsl-image-qt5-validation-imx Enable wifi and BT (These operations is on EVK) WiFi $:insmod /lib/modules/4.14.98-2.3.1+g860ec89/extra/sd8xxx.ko fw_name=/mrvl/sduart8987_combo.bin cal_data_cfg=none cfg80211_wext=0xf BT $:hciattach /dev/ttymxc0 any -s 115200 115200 flow dtron $:hciconfig hci0 reset $:hcitool -ihci0 cmd 0x3f 0x0009 0xc0 0xc6 0x2d 0x00 & $:killall hcitool $:killall hciattach $:hciattach /dev/ttymxc0 any -s 3000000 3000000 flow dtron Build  Android Image[Android P9_2.3.4] These patches in  Android-2.3.4-patch. Getting i.MX Android release source code        $: cd ~ (or any other directory you like)        $: tar xzvf imx-p9.0.0_2.3.4.tar.gz        $: mkdir ~/bin        $: curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo        $: chmod a+x ~/bin/repo        $: export PATH=${PATH}:~/bin        $: source ~/imx-p9.0.0_2.3.0/imx_android_setup.sh        # By default, the imx_android_setup.sh script will create the source code build environemnt        in the folder ~/android_build        # ${MY_ANDROID} will be refered as the i.MX Android source code root directory in all i.MX        Andorid release documentation.        $ : export MY_ANDROID=~/android_build Copy 88W8987 firmware and driver into  Android release code        $:copy -r Android-2.3.4-patch/mrvl    android_build/vendor/nxp/fsl-proprietary  Apply these patches.The name of these patches is the patche installation path.            example:  0001-android_build-hardware-marvell-wlan.patch         $: cp 0001-android_build-hardware-marvell-wlan.patch   android_build/hardware/marvell/wlan            (if not exist android_build/hardware/marvell/wlan, mkdir -p android_build/hardware/marvell/wlan)         $: git apply 0001-android_build-hardware-marvell-wlan.patch  Building Android images          $: cd  android_build          $: source build/envsetup.sh          $: lunch evk_8mn-userdebug          $: make 
View full article
This doc show: on i.MX8QXP MEK board, configure ov5640 sensor(parallel interface) output 5MP(2592x1944) RAW(Bayer) data at 15fps, and Parallel Capture Subsystem and Image Sensor Interface capture RAW RGB data, and i.MX8QXP GPU debayer RAW data then display image. HW: i.MX8QXP MEK board, MEK base board (to place the parallel camera), ov5640 sensor. SW: Linux 4.14.98_2.0.0 BSP, and patches in this doc.   Configure at camera sensor side A Bayer filter is a color filter array (CFA) for arranging RGB color filters on a square grid of photosensors. The filter pattern is 50% green, 25% red and 25% blue, hence is also called BGGR, RGBG ,GRGB, or RGGB. The ov5640 has an image array capable of operating at up to 15 fps in 5 megapixel (2592x1944) resolution. OV5640 support output formats: RAW(Bayer), RGB565/555/444,CCIR656, YUV422/420, YCbCr422, and compression. To make ov5640 output 5MP RAW data at 15fps, check my kernel patch imx8-ov5640-raw-capture-driver-4.14.98_2.0.0.diff which apply on i.MX Linux 4.14.98_2.0.0 BSP kernel code. Parallel interface ov5640, use ov5640_raw_setting[] array of drivers/media/platform/imx8/ov5640_v3.c. This register setting is come from ov5640 software application note and data sheet. Configure at i.MX8QXP side The Parallel Capture Subsystem consists of the Parallel Capture Interface (BT 656) and associated peripherals. It interfaces to the Parallel CSI sensor. This allows for up to 24 RGB data bits in parallel or for RGB components on consecutive clocks (up to 10-bit color depth). The formats supported are RGB, RAW and YUV 422. Below is Parallel Capture Subsystem diagram: For RAW format data, CSI_CTRL_REG of Parallel Capture Subsystem need configured as my patch, otherwise found cannot get correct data.   The multiple input sources (MIPI CSI, Parallel Capture) captures the pixel data and feeds it to the ISI. The ISI is responsible for capturing and pre-processing the pixel data from multiple input sources and storing them into the memory. Below is ISI diagram: For RAW format data, it should be bypass any processing pipeline of ISI, just use ISI to save it to memory.   Capture test code To capture the RAW data and save it to file, check my patch imx8_ov5640_raw_captupre_test_4.14.98_2.0.0_ga.diff which apply on i.MX Linux 4.14.98_2.0.0 BSP unit test code. Note the usage is: ./imx8_cap.out -of -cam 1 -fr 15 -fmt BA81 -ow 2592 -oh 1944 -num 100   Display RAW data The RAW data cannot be displayed directly, debayer process is needed to get complete red, green, blue color for each pixel. The debayer process if run on CPU, will cost much CPU time. To save CPU time, debayer could done by GPU. The method is, captured RAW data upload to GPU as texture , then GPU will do the debayer, then full color of each pixel will be got, then display it. To upload RAW camera data to GPU with zero memory copy, i will use i.MX8QXP GPU extension GL_VIV_direct_texture. It create a texture with direct access support. API glTexDirectVIVMap,  which support mapping a user space memory or a physical address into the texture surface. The API glTexDirectVIVMap need logic and physical address of data buffer, so i will allocate data buffer from g2d lib, it is dma-buffer also get logic/physical address of buffer, then queue it as DMABUF to v4l2 capture driver, after dequeue got RAW camera data, pass it to GPU for debayer. GPU side, I will use OpenGL shader code from "Efficient, High-Quality Bayer Demosaic Filtering on GPUs". Check my patch imx8_debayer-gpusdk-5.3.0.diff which apply on i.MX GPU SDK 5.3.0 code. Note, here i only do is debayer, no extra process.   Known issue One thing is ov5640 output 5MP at 15fps, compare with output 5MP at 5fps, there are more noise of camera data at 15fps case. My debug found is, this noise seems come from ov5640 itself.   Reference: a>https://www.nxp.com/webapp/Download?colCode=IMX8DQXPRM b>https://www.nxp.com/webapp/Download?colCode=L4.14.98_2.0.0_MX8QXP&appType=license c>https://github.com/NXPmicro/gtec-demo-framework d>ov5640 data sheet e>ov5640 software application note f>Efficient, High-Quality Bayer Demosaic Filtering on GPUs https://www.semanticscholar.org/paper/Efficient%2C-High-Quality-Bayer-Demosaic-Filtering-on-McGuire/088a2f47b7ab99c78d41623bdfaf4acdb02358fb
View full article
This doc show: on i.MX6Q SabreSD board, configure ov5640 sensor(parallel or MIPI) output 5MP(2592x1944) RAW(Bayer) data at 15fps,and i.MX6Q IPU capture RAW RGB data, and i.MX6Q GPU debayer RAW data then display image. HW: i.MX6Q-SabreSD board, ov5640 sensor. SW: Linux 4.14.98_2.0.0 BSP, and patches in this doc. Configure at camera sensor side A Bayer filter is a color filter array (CFA) for arranging RGB color filters on a square grid of photosensors. The filter pattern is 50% green, 25% red and 25% blue, hence is also called BGGR, RGBG ,GRGB, or RGGB. The ov5640 has an image array capable of operating at up to 15 fps in 5 megapixel (2592x1944) resolution. OV5640 support output formats: RAW(Bayer), RGB565/555/444,CCIR656, YUV422/420, YCbCr422, and compression. To make ov5640 output 5MP RAW data at 15fps, check my patch imx6_ov5640_dvp_mipi_raw_capture_driver-4.14.98_2.0.0.diff which apply on i.MX Linux 4.14.98_2.0.0 BSP kernel code: Parallel interface ov5640, use ov5640_raw_setting[] array of drivers/media/platform/mxc/capture/ov5640.c. This register setting is come from ov5640 software application note and data sheet. MIPI interface ov5640, use ov5640_mipi_raw_setting[] array of drivers/media/platform/mxc/capture/ov5640_mipi.c. This register setting is combine setting of original code (remove ISP register setting), plus PLL register setting for MIPI interface, plus some data format register setting. Configure at i.MX6Q side The i.MX6Q IPU camera port(CSI-2 module) support data format include Raw(Bayer), RGB, YUV 4:4:4, YUV 4:2:2 and grayscale, up to 16 bits per value. Below is camera data routing for i.MX6Q:    Below is i.MX6Q IPU block daigram: The CSI-2 of IPU which is responsible for synchronizing and packing the video (or generic data) and sending it to other blocks. The video data received by CSI-2, could be sent to three other blocks: SMFC, VDI, IC. For RAW (Bayer) data capture, should go through path like this: CSI-2-->SMFC-->IDMAC-->DDR memory It means RAW data is received as generic data, see IPU_PIX_FMT_GENERIC in my patch, and IPU cannot process this kind data, it is just received to DDR memory. For MIPI interface camera, need note is i.MX6 side MIPI D-PHY clock must be calibrated to the actual clock range of the camera sensor’s D-PHY clock and the calibrated value must be equal to or greater than the camera sensor clock, detail see  AN5305. Take MIPI ov5640 as example: Pixel clock = 2592x1944x15fpsx(1/2 cycle/pixel)x1.35 blank interval = 51MHZ MIPI data rate = 51MHZ x 16 bit = 816Mb/s so 816/2/2*2 is 408MHZ is i.MX6 side D-PHY clock. Here due to one bayer pixel is 8bit, and i.MX6 MIPI data bus is 16 bit, so above use 1/2 cycle/pixel. And check ov5640_mipi_raw_setting[], you will got the sensor side D-PHY clock is about 672/2 = 336MHZ. And check AN5305, register MIPI_CSI2_PHY_TST_CTRL1 of i.MX6 need set as 0xC, but here i still keep it as default BSP value 0x14.   3.Capture test code I changed unit test mxc_v4l2_capture.c to capture the RAW data and save it to file. Check my patch imx6_ov5640_raw_captupre_test_4.14.98_2.0.0_ga.diff which apply on i.MX  Linux 4.14.98_2.0.0 BSP unit test code. Note the usage is: ./cap.out -c 1 -i 1 -fr 15 -m 6 -iw 2592 -ih 1944 -ow 2592 -oh 1944 -f BA81 -d /dev/video1 savefile.dmp parameter -i 1 means use CSI to MEM mode /dev/video1 is MIPI ov5640, /dev/video0 is parallel ov5640   4.Display RAW data The RAW data cannot be displayed directly, debayer process is needed to get complete red, green, blue color for each pixel. The debayer process if run on CPU, will cost much CPU time. To save CPU time, debayer could done by GPU. The method is, captured RAW data upload to GPU as texture , then GPU will do the debayer, then full color of each pixel will be got, then display it. To upload RAW camera data to GPU with zero memory copy, i will use i.MX6Q GPU extension GL_VIV_direct_texture. It create a texture with direct access support. API glTexDirectVIVMap,  which support mapping a user space memory or a physical address into the texture surface. The API glTexDirectVIVMap need logic and physical address of data buffer, so i will allocate data buffer from /dev/mxc_ipu, it is dma-buffer also get logic/physical address of buffer, then queue it as USERPTR to ipu v4l2 capture driver, after dequeue got RAW camera data, pass it to GPU for debayer. GPU side, I will use OpenGL shader code from "Efficient, High-Quality Bayer Demosaic Filtering on GPUs". Check my patch imx6-5640-debayer-testcode-gpusdk-5.2.0.diff which apply on i.MX GPU SDK 5.2.0 code. Note, here i only do is debayer, no extra process.   Known issue One thing is ov5640 output 5MP at 15fps, compare with output 5MP at 5fps, there are more noise of camera data at 15fps case. My debug found is , this noise seems come from ov5640 itself.   Reference: a>https://www.nxp.com/webapp/Download?colCode=IMX6DQRM b>https://www.nxp.com/webapp/Download?colCode=L4.14.98_2.0.0_MX6QDLSOLOX&appType=license c>https://github.com/NXPmicro/gtec-demo-framework d>https://www.nxp.com/docs/en/application-note/AN5305.pdf e>ov5640 data sheet f>ov5640 software application note g>Efficient, High-Quality Bayer Demosaic Filtering on GPUs https://www.semanticscholar.org/paper/Efficient%2C-High-Quality-Bayer-Demosaic-Filtering-on-McGuire/088a2f47b7ab99c78d41623bdfaf4acdb02358fb
View full article
Most i.MX8QXP/QM customers already work on L4.14.98 GA for their Auto product, like C-V2X TBOX, Car infortainment system. Some customers also want to adopt OP-TEE in their security design, but OP-TEE on i.MX8QXP/QM platform don't support HW cryptography accelerating which base on CAAM module. So I worked on the issue last week and fixed it. The package meta-optee-add-on_4.14.98_2.0.0_ga.tgz is Yocto layer which includes all patches for fixing the issue. Software environments as the belows: Linux kernel: imx_4.14.98_2.0.0_ga HW platform:  i.MX8QM/QXP MEK. How to build: 1, decompress meta-optee-add-on_4.14.98_2.0.0_ga.tgz and copy meta-optee-add-on to folder (Yocto 4.14.98_2.0.0_ga dir)/sources/ 2, Run DISTRO=fsl-imx-wayland MACHINE=imx8qxpmek source fsl-setup-release.sh -b build-optee and add BBLAYERS += " ${BSPDIR}/sources/meta-optee-add-on " into (Yocto 4.14.98_2.0.0_ga dir)/build-optee/conf/bblayers.conf  3, Run bitbake fsl-image-validation-imx. 4, You can run xtest or xtest -l 1 4007 on your MEK board to test optee crypto feature after completing build image. You can find it only take about one second comparing no CAAM accelerating when test "regression_4007.11 Generate RSA-2048 key".
View full article
The following document contains a list of document, questions and discussions that are relevant in the community based on amount of views. If you are having a problem, doubt or getting started in i.MX processors, you should check the following links to see if your doubt is in there. Yocto Project Freescale Yocto Project main page‌ Yocto Training - HOME‌ i.MX Yocto Project: Frequently Asked Questions‌ Useful bitbake commands‌ Yocto Project Package Management - smart  How to add a new layer and a new recipe in Yocto  Setting up the Eclipse IDE for Yocto Application Development Guide to the .sdcard format  Yocto NFS & TFTP boot  YOCTO project clean  Yocto with a package manager (ex: apt-get)  Yocto Setting the Default Ethernet address and disable DHCP on boot.  i.MX x Building QT for i.MX6  i.MX6/7 DDR Stress Test Tool V3.00  i.MX6DQSDL DDR3 Script Aid  Installing Ubuntu Rootfs on NXP i.MX6 boards  iMX6DQ MAX9286 MIPI CSI2 720P camera surround view solution for Linux BSP i.MX Design&Tool Lists  Simple GPIO Example - quandry  i.MX6 GStreamer-imx Plugins - Tutorial & Example Pipelines  Streaming USB Webcam over Network  Step-by-step: How to setup TI Wilink (WL18xx) with iMX6 Linux 3.10.53  Linux / Kernel Copying Files Between Windows and Linux using PuTTY  Building Linux Kernel  Patch to support uboot logo keep from uboot to kernel for NXP Linux and Android BSP (HDMI, LCD and LVDS)  load kernel from SD card in U-boot  Changing the Kernel configuration for i.MX6 SABRE  Android  The Android Booting process  What is inside the init.rc and what is it used for.  Others How to use qtmultimedia(QML) with Gstreamer 1.0
View full article
Host Environment: ubuntu 16.04 LTS Linux BSP For i.MX : version 4.9.88 The document has 5 main contents: 1. Compiling core-image-base in Yocto BSP --Copy u-boot source code to a new directory --Copy linux kernel source code to a new directory 2. Exporting 4.9.88 toolchain from Freescale Yocto BSP (1) Using MACHINE=imx7dsabresd to export the toolchain (2) Using MACHINE=imx6qsabresd to export the toolchain. Actually above 2 are the same toolchain after exporting. Here , only show any one of boards(not ARM64) can be used for MACHINE. So users only need to export it for one time, select (1) or (2) to export toolchain. (3) Using MACHINE=imx8mqevk to export ARM64 toolchain 3. Compling u-boot & linux kernel under Stanalone iMX7DSabreSD --Compiling  u-boot for imx7dsabresd --Compiling kernel and dtb for imx7dsabresd iMX8MQEVK --Compiling u-boot for imx8mqevk --Compiling kernel and dtb for imx8mqevk 4. Compiling OS Firmware for i.MX7DSabreSD board --u-boot for mfg tools --kernel and dtb for mfg tools 5. Copy OS Firmware to the related path of MFG tools --------------------------------------------------------------------------------------------------------------------------- [Content of Document] 1. Compiling core-image-base in Yocto BSP          After repo syn is done according to “i.MX_Yocto_Project_User's_Guide.pdf”, Use the command to compile linux BSP, u-boot & kernel source code will be released. # DISTRO=fsl-imx-fb MACHINE=imx7dsabresd source fsl-setup-release.sh -b build-fb # bitbake core-image-base          After compiling is done, u-boot & linux kernel source code is in the path below: u-boot: ~/imx-yocto-bsp/build-fb/tmp/work/imx7dsabresd-poky-linux-gnueabi/u-boot-imx/2017.03-r0/git linux: ~/imx-yocto-bsp/build-fb/tmp/work/imx7dsabresd-poky-linux-gnueabi/linux-imx/4.9.88-r0/git          We can create a new directory for uboot and linux kernel source code. Here I created a directory named disk2. # cd ~/ # mkdir disk2 # cd disk2 # mkdir u-boot-2017-03 # mkdir linux-imx-4.9.88 --Copy u-boot source code to a new directory # cd ~/imx-yocto-bsp/build-fb/tmp/work/imx7dsabresd-poky-linux-gnueabi/u-boot-imx/2017.03-r0/git # cp –r ./* ~/disk2/u-boot-2017-03 --Copy linux kernel source code to a new directory # cd ~/imx-yocto-bsp/build-fb/tmp/work/imx7dsabresd-poky-linux-gnueabi/linux-imx/4.9.88-r0/git # cp –r ./* ~/disk2/ linux-imx-4.9.88 2. Exporting 4.9.88 toolchain from Freescale Yocto BSP (1) Using MACHINE=imx7dsabresd to export the toolchain Step1: # cd ~/imx-yocto-bsp/ # DISTRO=fsl-imx-fb MACHINE=imx7dsabresd source fsl-setup-release.sh -b build-minimal … … Do you accept the EULA you just read? (y/n)  y EULA has been accepted. Welcome to Freescale Community BSP The Yocto Project has extensive documentation about OE including a reference manual which can be found at:     http://yoctoproject.org/documentation For more information about OpenEmbedded see their website:     http://www.openembedded.org/ You can now run 'bitbake <target>' Common targets are:     core-image-minimal     meta-toolchain     meta-toolchain-sdk     adt-installer     meta-ide-support Your build environment has been configured with:     MACHINE=imx7dsabresd     SDKMACHINE=i686     DISTRO=fsl-imx-fb     EULA= BSPDIR= BUILD_DIR=. meta-freescale directory found Here “build-minimal” is a directory for compiling source code, users can also set it other name. In ~/imx-yocto-bsp/build-minimal, Begin to export toolchain with the command. Step2: # DISTRO=fsl-imx-fb MACHINE=imx7dsabresd bitbake core-image-minimal -c populate_sdk [Comment-1] About DISTRO and MACHINE on above 2 commands MACHINE can be set the values below. imx6qpsabreauto imx6qpsabresd imx6ulevk imx6ull14x14evk imx6ull9x9evk imx6dlsabreauto imx6dlsabresd imx6qsabreauto imx6qsabresd imx6slevk imx6solosabreauto imx6solosabresd imx6sxsabresd imx6sxsabreauto imx6sllevk imx7dsabresd imx7ulpevk imx8mqevk   So MACHINE’s value is the name each Evaluation Borad. DISTRO can be set the values below: fsl-imx-x11 - X11 graphics are not supported on i.MX 8. fsl-imx-wayland - Wayland weston graphics. fsl-imx-xwayland - Wayland graphics and X11. X11 applications using EGL are not supported. fsl-imx-fb - Frame Buffer graphics - no X11 or Wayland. Frame Buffer is not supported on i.MX 8 bitbake rootfs type       core-image-minimal       core-image-base       core-image-sato       fsl-image-machine-test       fsl-image-validation-imx       fsl-image-qt5-validation-imx Below is the detailed description for above rootfs type: [Comment-2] Descriptions on difference of toolchain between i.MX6/7 and i.MX8MQ          i.MX6 and i.MX7 are both 32bit ARM processor, they use the same toolchain.          i.MX8MQ is 64bit ARM processor, so it’s toolchain is different from that of i.MX6/7. Setp 3:          After above compiling is done, enter into ~/imx-yocto-bsp/build-minimal/tmp/deploy/sdk # cd ~/imx-yocto-bsp/build-minimal/tmp/deploy/sdk # ls Run .sh file: Then continue operations according to guidance: Done: OK, Let us check /opt/fsl-imx-fb/ directory: # ls /opt/fsl-imx-fb/4.9.88-2.0.0/          Because we used MACHINE=imx7dsabresd, environment was named “cortex-A7”, compiler’s version is still 4.9.88. (2) Using MACHINE=imx6qsabresd to export the toolchain.          We can change “MACHINE=imx6qsabresd” and repeat above 3 steps, environment will be named “cortex-A9”.          Close the current terminal, and open a new one. # cd ~/ imx-yocto-bsp # DISTRO=fsl-imx-fb MACHINE=imx6qsabresd source fsl-setup-release.sh -b build-A9-min            Then automatically enter “~/imx-yocto-bsp/build-A9-min”, run command below. # DISTRO=fsl-imx-fb MACHINE=imx6qsabresd bitbake core-image-minimal -c populate_sdk # ~/imx-yocto-bsp/build-A9-min/tmp/deploy/sdk # ls # ./ fsl-imx-fb-glibc-x86_64-core-image-minimal-cortexa9hf-neon-toolchain-4.9.88-2.0.0.sh   Set it up in another directory: /opt/fsl-imx-fb/4.9.88 (3) Using MACHINE=imx8mqevk to export ARM64 toolchain          Export Toolchain for i.MX8MQ, create a new terminal, then run these 2 commands below. # ~/imx-yocto-bsp # DISTRO=fsl-imx-xwayland MACHINE=imx8mqevk source fsl-setup-release.sh -b build-xwayland # DISTRO=fsl-imx-fb MACHINE=imx8mqevk bitbake core-image-minimal -c populate_sdk Done.          Copy the toolchain to /opt/fsl-imx-fb directory # cd ~/imx-yocto-bsp/build-xwayland/tmp/deploy/sdk # ls #./fsl-imx-fb-glibc-x86_64-core-image-minimal-aarch64-toolchain-4.9.88-2.0.0.sh          I installed it to a new directory: /opt/fsl-imx-fb/4.9.88-arm64 #ls ls /opt/fsl-imx-fb/4.9.88-arm64/  OK, 64bit toolchain for i.MX8MQ has been exported to the directory. 3. Compling u-boot & linux kernel under Stanalone iMX7DSabreSD --Compiling  u-boot for imx7dsabresd # cd ~/disk2/u-boot-2017-03 # source /opt/fsl-imx-fb/4.9.88-2.0.0/environment-setup-cortexa7hf-neon-poky-linux-gnueabi # export ARCH=arm # make clean # make mx7dsabresd_defconfig # make u-boot.imx Done. --Compiling kernel and dtb for imx7dsabresd # cd ~/disk2/linux-imx-4.9.88/ [comment] If environment has been configured, that is, these 2 commands have been run on the current terminal, don’t need to run them again. “source /opt/fsl-imx-fb/4.9.88-2.0.0/environment-setup-cortexa7hf-neon-poky-linux-gnueabi” and “export ARCH=arm” # make clean # make imx_v7_defconfig # make            zImage is in “~/disk2/linux-imx-4.9.88/arch/arm/boot”          dtb is in “~/disk2/linux-imx-4.9.88/arch/arm/boot/dts”            Probably users want to run “make menuconfig”, and meet the errors like below. # sudo apt-get install libncurses*  (To solve the problem below) # make menuconfig [Comment-3]  Users can also use "environment-setup-cortexa9hf-neon-poky-linux-gnueabi" to compile u-boot and kernel. iMX8MQEVK --Compiling u-boot for imx8mqevk # cd ~/disk2/u-boot-2017-03 # source /opt/fsl-imx-fb/4.9.88-arm64/environment-setup-aarch64-poky-linux # export ARCH=arm64 # make clean # make imx8mq_evk_defconfig # make u-boot.imx Done. --Compiling kernel and dtb for imx8mqevk # cd ~/disk2/linux-imx-4.9.88/ [comment] If environment has been configured, that is, these 2 commands have been run on the current terminal, don’t need to run them again. “source /opt/fsl-imx-fb/4.9.88-arm64/environment-setup-aarch64-poky-linux” and “export ARCH=arm64” # make clean # make defconfig # make          Run the command to unset LDFLAGS: # unset LDFLAGS # make Done. 4. Compiling OS Firmware for i.MX7DSabreSD board --u-boot for mfg tools # make mx7dsabresd_config # make u-boot.imx          Then rename u-boot.imx to be “u-boot-mx7dsabresd-mfg.imx”. --kernel and dtb for mfg tools          Copy imx_v7_mfg_defconfig file to “arch/arm/configs”, then run commands below. # make imx_v7_mfg_defconfig # make          zImage will be generated at path arch/arm/boot.          dtb file will be generated at path arch/arm/boot/dts            Then rename zImage to be zImage-mx7dsabre-mfg,          Rename imx7d-sdb.dtb to be zImage-imx7d-sdb-mfg.dtb 5. Copy OS Firmware to the related path of MFG tools          Up to now, 3 files for OS Firmware has been generated, then copy these 3 files to mfgtools\Profiles\Linux\OS Firmware\firmware            When MFG Tools begins to run, these 3 files and ramdisk will be downloaded to SDRAM on board, then run them, and download images(u-boot\kernel\rootfs\)  which have been ready in  “mfgtools\Profiles\Linux\OS Firmware\files”.            Above steps and commands will be performed according to list in ucl2.xml. So customer will add a new list for her downloading or change an existing list according to image’s name. NXP TIC team Weidong Sun 04-25-2019
View full article
This documents describes how to add the NFC support to i.MX8M mini evk running Yocto. Hardware setup: The i.MX8M mini evk (see i.MX 8M Mini Evaluation Kit | NXP) featuring Raspberry Pi compliant connector, the OM5578/RPI PN7150 demo kit can be used to perform this porting (see NFC Development Kits for Arduino and more|NXP). However a small modification must be done because some of the signals required by PN7150 are not mapped to i.MX8M mini expansion connector pins. OM5578 IRQ signal must be mapped to Raspberry Pi connector pin #19 and OM5578 IRQ signal must be mapped to Raspberry Pi connector pin #21. See below a picture of the modification: Then, the two boards can fit together as shown in the picture below: Quick start using demo image: The demo image including support for PN7150, is based on i.MX Linux 4.14.78_1.0.0 BSP software release (see i.MX Software | NXP). Related documentation can be downloaded from here: https://www.nxp.com/webapp/Download?colCode=L4.14.78_1.0.0_LINUX_DOCS. Just flash the demo image (downloaded from here: https://www.nxp.com/lgfiles/updates/NFC/LINUX_L4-14-78_IMAGE_MX8MMEVK.zip) following guidelines from i.MX_Linux_User's_Guide document (part of L4.14.78_1.0.0_LINUX Documentation package mentioned above). Then in a terminal you can run the demo application included in the image executing the command:    # nfcDemoApp poll Approaching the NFC tag, provided as reference in the OM5578 demo kit, to the NFC Antenna will trigger such display: Adding PN7150 support to imx-linux-sumo release: Pre-condition is to have L4.14.78_1.0.0 release installed and already built as described in i.MX Yocto Project User's Guide (part of L4.14.78_1.0.0_LINUX Documentation package mentioned above) :     $ repo init -u https://source.codeaurora.org/external/imx/imx-manifest  -b imx-linux-sumo -m imx-4.14.78-1.0.0_ga.xml     $ repo sync     $ MACHINE=imx8mmevk DISTRO=fsl-imx-xwayland source fsl-setup-release.sh -b build_dir     $ bitbake fsl-image-validation-imx Then to add PN7150 support to your imx-linux-sumo environment, follow below step by step guidelines: In the sources directory, download the meta-nxp-nfc layer from https://github.com/NXPNFCLinux/meta-nxp-nfc     $ git clone https://github.com/NXPNFCLinux/meta-nxp-nfc.git  Define hardware connection between CPU and PN7150 in device-tree adding the following lines to file build_dir/tmp/work-shared/imx8mmevk/kernel-source/arch/arm64/boot/dts/freescale/fsl-imx8mm-evk.dts: @@ -227,6 +227,8 @@                         fsl,pins = <                                 MX8MM_IOMUXC_I2C3_SCL_I2C3_SCL                  0x400001c3                                 MX8MM_IOMUXC_I2C3_SDA_I2C3_SDA                  0x400001c3 +                               MX8MM_IOMUXC_ECSPI2_MOSI_GPIO5_IO11             0x41 +                               MX8MM_IOMUXC_ECSPI2_MISO_GPIO5_IO12             0x41                         >;                 };   @@ -747,6 +749,13 @@         pinctrl-0 = <&pinctrl_i2c3>;         status = "okay";   +       pn54x: pn54x@28 { +               compatible ="nxp,pn547"; +               reg = <0x28>; +               interrupt-gpios = <&gpio5 11 0>; +               enable-gpios = <&gpio5 12 0>; +       }; +         pca6416: gpio@20 {                 compatible = "ti,tca6416";                 reg = <0x20>; Add the meta-nxp-nfc layer to the build definition updating file build_dir/conf/bblayers.conf with: BBLAYERS += " ${BSPDIR}/sources/meta-nxp-nfc" Add the meta-nxp-nfc layer components to the image definition updating file build_dir/conf/local.conf with: IMAGE_INSTALL_append = " kernel-module-nxp-pn5xx nxp-nfc-bin " Re-build the linux kernel:     $ bitbake -f -c compile linux-imx && bitbake -f -c deploy linux-imx Build meta-nxp-nfc layer:     $ bitbake nxp-nfc Re-build the complete image to include the modifications:     $ bitbake fsl-image-validation-imx Then you can flash the updated image to your i.MX8M mini evk and run the demo application as described in above "Quick start using demo image" chapter. Reference: This porting have been done (demo image and instructions) following guidelines provided in AN11679_PN71xx_Linux_Software_Stack_Integration_Guidelines document.
View full article
UPDATE: Note that this document describes eIQ Machine Learning Software for the NXP L4.14 BSP release. Beginning with the L4.19 BSP, eIQ Software is pre-integrated in the BSP release and this document is no longer necessary or being maintained. For more information on eIQ Software in these releases (L4.19, L5.4, etc), please refer to the "NXP eIQ Machine Learning" chapter in the Linux User Guide for that specific release.  Original Post: eIQ Machine Learning Software for iMX Linux 4.14.y kernel series is available now. The NXP eIQ™ Machine Learning Software Development Environment enables the use of ML algorithms on NXP MCUs, i.MX RT crossover processors, and i.MX family SoCs. eIQ software includes inference engines, neural network compilers, and optimized libraries and leverages open source technologies. eIQ is fully integrated into our MCUXpresso SDK and Yocto development environments, allowing you to develop complete system-level applications with ease. Source download, build and installation Please refer to document NXP eIQ(TM) Machine Learning Enablement (UM11226.pdf) for detailed instructions on how to download, build and install eIQ software on your platform. Sample applications To help get you started right away we've posted numerous howtos and sample applications right here in the community. Please refer to eIQ Sample Apps - Overview. Supported platforms eIQ Machine learning software for i.MX Linux 4.14.y supports the L4.14.78-1.0.0 and L4.14.98-2.0.0 GA releases running on i.MX 8 Series Applications Processors. For more information on artificial intelligence, machine learning and eIQ Software please visit AI & Machine Learning | NXP.
View full article
目录 1 i.MX8Mmini 板级开发包镜像结构 ............................... 2 2 创建 i.MX8Mmini Linux 4.14.78_ga 板级开发包编译环境 3 2.1 下载板级开发包 ...................................................... 3 2.2 创建yocto编译环境: ................................................ 4 2.3 编译sdk及安装 ........................................................ 7 2.4 独立编译 ................................................................. 8 3 DDR配置,测试与输出 ............................................ 13 4 i.MX8Mmini ATF ...................................................... 15 5 FSL Uboot SPL 定制 ............................................... 17 5.1 SPL的编译............................................................ 17 5.2 SPL的启动流程 .................................................... 26 5.3 SPL的定制............................................................ 33 6 FSL Uboot 定制 ....................................................... 39 6.1 FDT支持 ............................................................... 40 6.2 DM(driver model)支持 .......................................... 45 6.3 Uboot目录 结构 .................................................... 59 6.4 Uboot编译 ............................................................ 61 6.5 Uboot初始化流程 .................................................. 62 6.6 uboot 定制 ............................................................ 72 6.7 uboot debug信息 .................................................. 78
View full article
Basic Linear Algebra Subprograms (BLAS) is a specification that prescribes a set of low-level routines for performing common linear algebra operations such as vector addition, scalar multiplication, dot products, linear combinations, and matrix multiplication. OpenBLAS is an optimized BLAS library which is uesd for deep learning accelerator in Caffe/Caffe2. I enable it in Yocto (Rocko) by adding bb file. And I build on i.MX6QP, i.MX7ULP and i.MX8MQ and also run its test example successfully. You can find test example(openblas_utest) under folder image/opt/openblas/bin of OpenBLAS work directory. Currently, version 0.3.0 is supported in the bb file. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ update to v 0.3.6 and enable mutli-thread by set USE_OPENMP=1 and USE_THREAD=4 when compiling this library.
View full article
The Linux L4.9.88_2.0.0 Rocko, i.MX7ULP Linux/SDK2.4 RFP(GA) release files are now available. Linux on IMX_SW web page, Overview -> BSP Updates and Releases ->Linux L4.9.88_2.0.0 SDK on https://mcuxpresso.nxp.com/ web page.   Files available: Linux:  # Name Description 1 imx-yocto-L4.9.88_2.0.0.tar.gz L4.9.88_2.0.0 for Linux BSP Documentation. Includes Release Notes, User Guide. 2 L4.9.88_2.0.0_images_MX6QPDLSOLOX.tar.gz i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo, i.MX 6Solox Linux Binary Demo Files 3 L4.9.88_2.0.0_images_MX6SLEVK.tar.gz i.MX 6Sololite EVK Linux Binary Demo Files 4 L4.9.88_2.0.0_images_MX6UL7D.tar.gz i.MX 6UltraLite EVK, 7Dual SABRESD, 6ULL EVK Linux Binary Demo Files 5 L4.9.88_2.0.0_images_MX6SLLEVK.tar.gz i.MX 6SLL EVK Linux Binary Demo Files 6 L4.9.88_2.0.0_images_MX8MQ.tar.gz i.MX 8MQuad EVK Linux Binary Demo files 7 L4.9.88_images_MX7ULPEVK.tar.gz i.MX 7ULP EVK Linux Binary Demo Files  8 L4.9.88_2.0.0-ga_mfg-tools.tar.gz Manufacturing Toolkit for Linux L4.9.88_2.0.0 iMX6,7 BSP 9 L4.9.88_2.0.0_mfg-tool_MX8MQ.tar.gz Manufacturing Toolkit for Linux L4.9.88_2.0.0 i.MX8MQ BSP 10 imx-aacpcodec-4.3.5.tar.gz Linux AAC Plus Codec for L4.9.88_2.0.0   SDK:   On https://mcuxpresso.nxp.com/, click the Select Development Board to customize the SDK based on your configuration then download the SDK package.    Target board: i.MX 6QuadPlus SABRE-SD Board and Platform i.MX 6QuadPlus SABRE-AI Board i.MX 6Quad SABRE-SD Board and Platform i.MX 6DualLite SABRE-SD Board i.MX 6Quad SABRE-AI Board i.MX 6DualLite SABRE-AI Board i.MX 6SoloLite EVK Board i.MX 6SoloX SABRE-SD Board i.MX 6SoloX SABRE-AI Board i.MX 7Dual SABRE-SD Board i.MX 6UltraLite EVK Board i.MX 6ULL EVK Board i.MX 6SLL EVK Board i.MX 7ULP EVK Board i.MX 8MQ EVK Board   What’s New/Features: Please consult the Release Notes.   Known issues For known issues and more details please consult the Release Notes.   More information on changes of Yocto, see: README: https://source.codeaurora.org/external/imx/imx-manifest/tree/README?h=imx-linux-rocko ChangeLog: https://source.codeaurora.org/external/imx/imx-manifest/tree/ChangeLog?h=imx-linux-rocko
View full article
meta-avs-demos Yocto layer meta-avs-demos is a Yocto meta layer (complementary to the NXP BSP release for i.MX) published on CodeAurora that includes the additional required packages to support  Amazon's Alexa Voice Services SDK (AVS_SDK) applications. The build procedure is the described on the README.md of the corresponding branch. We have 2 fuctional branches now: imx-alexa-sdk: Support for Morty based i.mx releases imx7d-pico-avs-sdk_4.1.15-1.0.0: legacy support for Jethro releases The master branch is only used to collect manifest files, that used with repo init/sync commands will fetch the whole environment for the 2 special supported boards: i.MX7D Pico Pi and i.MX8M EVK. However the meta-avs-demos can be used with any i.MX board either. Recipes to include Amazon's Alexa Voice Services in your applications. The meta-avs-demos provides the required recipes to build an i.MX image with the support for running Alexa SDK. The imx-alexa-sdk branch is based on Morty and kernel 4.9.X and it supports the next builds: i.MX7D Pico Pi i.MX8M EVK Generic i.MX board For the i.MX7D Pico Pi and i.MX8M EVK there is an extended support for additional (external) Sound Cards like: TechNexion VoiceHat: 2Mic Array board with DSPConcepts SW support Synaptics Card: 2 Mic with Sensory WakeWord support The Generic i.MX is for any other regular i.MX board supported on the official NXP BSP releases. Only the default soundcard (embedded) on the board is supported. Sensory wakeword is currently only enabled for those with ARMV7 architecture. To support any external board like the VoiceHat or Synaptics is up to the user to include the additional patches/changes required. Build Instructions Follow the corresponding README file to follow the steps to build an image with Alexa SDK support README-IMX7D-PICOPI.md README-IMX8M-EVK.md README-IMX-GENERIC.md
View full article
Host TFTP and NFS Configuration Now configure the Trivial File Transfer Protocol (TFTP) server and Networked File System (NFS) server. U-Boot will download the Linux kernel and dtb file using tftp and then the kernel will mount (via NFS) its root file system on the computer hard drive. 1. TFTP Setup   1.1.1 Prepare the TFTP Service   Get the required software if not already set up. On host for TFTP: Install TFTP on Host $ sudo apt-get install tftpd-hpa   (Note: There are a number of examples in various forums, etc, of how to automatically start the TFTP service - but not all are successful on all Linux distro's it seems! The following may work for you.)   Start the tftpd-hpa service automatically by adding a command to /etc/rc.local. $ vi /etc/rc.local   Now, just before the exit 0 line edit below command then Save and Exit. $ service tftpd-hpa start  Now, To control the TFTP service from the command line use: $ service tftpd-hpa restart    To check the status of the TFTP service from the command line use: $ service tftpd-hpa status   1.1.1 Setup the TFTP Directories Now, we have to create the directory which will contain the kernel image and the device tree blob file. $ mkdir -p /imx-boot/imx6q-sabre/tftp Then, copy the kernel image and the device tree blob file in this directory. $ cp {YOCTO_BUILD_DIR}/tmp/deploy/images/{TARGET}/zImage /imx-boot/imx6q-sabre/tftp $ cp {YOCTO_BUILD_DIR}/tmp/deploy/images/{TARGET}/<dtb file> /imx-boot/imx6q-sabre/tftp   OR we can use the default directory created by yocto {YOCTO_BUILD_DIR}/tmp/deploy/images/{TARGET}/ The tftpd-hpa service looks for requested files under /imx-boot/imx6q-sabre/tftp The default tftpd-hpa directory may vary with distribution/release, but it is specified in the configuration file: /etc/default/tfptd-hpa. We have to change this default directory with our directory   Edit default tftp directory $ vi /etc/default/tftpd-hpa   Now, change the directory defined as TFTP_DIRECTORY with your host system directory which contains kernel and device tree blob file. Using created directory TFTP_DIRECTORY=”/imx-boot/imx6q-sabre/tftp” OR Using Yocto directory path TFTP_DIRECTORY=”{YOCTO_BUILD_DIR}/tmp/deploy/images/{TARGET}” Restart the TFTP service if required $ service tftpd-hpa restart   1.2 NFS Setup 1.2.1 Prepare the NFS Service Get the required software if not already set up. On host for NFS: Install NFS on Host $ sudo apt-get install nfs-kernel-server The NFS service starts automatically. To control NFS services : $ service nfs-kernel-server restart To check the status of the NFS service from the command line : $ service nfs-kernel-server status 1.2.2 Setup the NFS Directories Now, we have to create the directory which will contain the root file system. $ mkdir -p /imx-boot/imx6q-sabre/nfs   Then, copy the rootfs in this directory. $ cp -R {YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs/* /imx-boot/imx6q-sabre/nfs   OR we can use the default directory created by yocto. $ {YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs 1.2.3 Update NFS Export File The NFS server requires /etc/exports to be configured correctly to access NFS filesystem directory to specific hosts. $ vi /etc/exports Then, edit below line into the opened file. <”YOUR NFS DIRECTORY”> <YOUR BOARD IP>(rw,sync,no_root_squash,no_subtree_check) Ex. If you created custom directory for NFS then, /imx-boot/imx6q-sabre/nfs <YOUR BOARD IP>(rw,sync,no_root_squash,no_subtree_check) Ex: /imx-boot/imx6q-sabre/nfs 192.168.*.*(rw,sync,no_root_squash,no_subtree_check) OR /{YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs <YOUR BOARD IP>(rw,sync,no_root_squash,no_subtree_check)   Now, we need to restart the NFS service. $ service nfs-kernel-server restart   2 Target Setup   We need to set up the network IP address of our target. Power On the board and hit a key to stop the U-Boot from continuing. Set the below parameters, setenv serverip 192.168.0.206       //This must be your Host IP address The path where the rootfs is placed in our host has to be indicated in the U-Boot, Ex. // if you choose default folder created by YOCTO setenv nfsroot /{YOCTO_BUILD_DIR}/tmp/work/{TARGET}-poky-linux-gnueabi/{IMAGE}/1.0-r0/rootfs   OR // if you create custom directory for NFS setenv nfsroot /imx-boot/imx6q-sabre/nfs Now, we have to set kernel image name and device tree blob file name in the u-boot, setenv image < zImage name > setenv fdt_file <dtb file name on host> Now, set the bootargs for the kernel boot, setenv netargs 'setenv bootargs console=${console},${baudrate} ${smp} root=/dev/nfs ip=dhcp nfsroot=${serverip}:${nfsroot},v3,tcp' Use printenv command and check loadaddr and fdt_addr environment variables variables for I.MX6Q SABRE, loadaddr=0x12000000 fdt_addr=0x18000000   Also, check netboot environment variable. It should be like below, netboot=echo Booting from net ...; run netargs; if test ${ip_dyn} = yes; then setenv get_cmd dhcp; else setenv get_cmd tftp; fi; ${get_cmd} ${image}; if test ${boot_fdt} = yes || test ${boot_fdt} = try; then if ${get_cmd} ${fdt_addr} ${fdt_file}; then bootz ${loadaddr} - ${fdt_addr}; else if test ${boot_fdt} = try; then bootz; else echo WARN: Cannot load the DT; fi; fi; else bootz; fi; Now, set environment variable bootcmd to boot every time from the network, setenv bootcmd run netboot Now finally save those variable in u-boot: saveenv Reset your board; it should now boot from the network: U-Boot 2016.03-imx_v2016.03_4.1.15_2.0.0_ga+ga57b13b (Apr 17 2018 - 17:13:43 +0530)  (..) Net:   FEC [PRIME] Normal Boot Hit any key to stop autoboot:  0   Booting from net ... Using FEC device TFTP from server 192.168.0.206; our IP address is 192.168.3.101 Filename 'zImage'. Load address: 0x12000000 Loading: #################################################################         #################################################################         #################################################################         #################################################################         #################################################################         #################################################################         ###########################################################         2.1 MiB/s done Bytes transferred = 6578216 (646028 hex) Using FEC device TFTP from server 192.168.0.206; our IP address is 192.168.3.101 Filename 'imx6q-sabresd.dtb'. Load address: 0x18000000 Loading: ####         1.8 MiB/s done Bytes transferred = 45893 (b345 hex) Kernel image @ 0x12000000 [ 0x000000 - 0x646028 ] ## Flattened Device Tree blob at 18000000   Booting using the fdt blob at 0x18000000   Using Device Tree in place at 18000000, end 1800e344 switch to ldo_bypass mode!   Starting kernel ...
View full article
The Linux L4.9.51 and SDKv2.3 for i.MX 8MQuad(mScale850D) RFP(GA) release files are now available. Linux on IMX_SW web page, Overview -> BSP Updates and Releases ->Linux L4.9.51 for i.MX 8MQuad GA. SDK on https://mcuxpresso.nxp.com/ web page.   Files available: Linux: # Name Description 1 fsl-yocto-L4.9.51_mx8mq-ga.tar.gz L4.9.51 i.MX 8MQuad GA Linux BSP Documentation. Includes Release Notes, User Guide. 2 L4.9.51-ga_images_mx8mq.tar.gz Linux Binary Demo files for i.MX 8MQuad EVK 3 L4.9.51_8mq-ga_mfg-tools.tar.gz Manufacturing Toolkit for Linux L4.9.51 i.MX8MQuad GA 4 L4.9.51_8mq-ga_gpu-tools.tar.gz VivanteVTK file for L4.9.51 i.MX8MQuad GA 5 imx-aacpcodec-4.3.4.tar.gz AAC Plus Codec for L4.9.51 of iMX 8MQuad GA   SDK:   On https://mcuxpresso.nxp.com/, click the Select Development Board to customize the SDK based on your configuration then download the SDK package. CMSIS pack is also supported.   Target board: i.MX 8MQuad EVK   What’s New/Features: Please consult the Release Notes.   Known issues For known issues and more details please consult the Release Notes.   More information on changes of Yocto, see: README: https://source.codeaurora.org/external/imx/imx-manifest/tree/README?h=imx-linux-morty ChangeLog: https://source.codeaurora.org/external/imx/imx-manifest/tree/ChangeLog?h=imx-linux-morty  
View full article
The PICO-PI-IMX7 is a TechNexion board defined here. It is now supported in mainline U-Boot, mainline Kernel, FSL Community BSP and Buildroot. In mainline U-Boot it is supported since v2017.07. In mainline Linux Kernel it is supported since 4.13. To generate an image for PICO-PI-IMX7 using FSL Community BSP, please see: The imx7d-pico board is now supported in FSL Community BSP - i.MXDev Blog. To generate an image for PICO-PI-IMX7 using Buildroot, please see: The imx7d-pico board is now supported in Buildroot - i.MXDev Blog.
View full article