University Programs Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

University Programs Knowledge Base

Discussions

Sort by:
WARNING If you stumble across the "getting started page" FREEDOM BOARD / CORTEX M0+ GETTING STARTED Please take note: While working with a large number of Freedom boards in a course,  it was observed that the Init Clock Routines would *sometimes* not work.    *Some* of the crystals on the freedom boards do NOT like "HIGH_GAIN" mode.   change the line   pll_init(8000000, HIGH_GAIN, CRYSTAL, 4, 24, MCGOUT); to   pll_init(8000000, LOW_POWER, CRYSTAL, 4, 24, MCGOUT);
View full article
Assembly Of The Freescale Cup Car Chassis Before you start building your program for your car, It would be better if you can assemble your car chassis first. With your car correctly assembled, you can easily test it with your different programs in the later tutorials. The followings are all the tutorials about car chassis assembly. A step-by-step car chassis assembly manual & hints (pub)  (PDF) Servo and steering assembly directions DIY Board mounting template for the TRK-MPC5604B DIY Board mounting template for the Tower System Board mounting suggestions for the FRDM-KL25Z with shield DIY Camera Mounts Wiring connections for the TRK-MPC5604B Hints and notes to chassis assembly Freescale Cup Innovation Challenge EMEA Model B car assembly file in attachment below Exploded Assembly Diagrams Chassis Build Directions [PPT] Original Manufacturer Directions [PDF]
View full article
Here is a simple example developed at Politecnico di Torino, to show how the NXP CUP car can be managed using Simulink-generated code. The Simulink model is intended to move the car forward and backward for 20 seconds, or until an obstacle is found. Any comment is welcome.
View full article
Este proyecto consiste en controlar un foco RGB conectándolo desde la corriente alterna y controlandolo con cualquier celular android con Bluetooth la aplicación se diseño en java. y se uso un shield de bluettoth para freedom.
View full article
"How am I ? " Es un proyecto que esta diseñado para poder ayudar a los niños autistas, ya que ellos tienen problemas a la hora de trabajar la empatía y la socialización con las demás personas, incluyendo su familia. Con la ayuda de este dispositivo interactivo los niños podrán practicar estas habilidades, para así ayudarlos notablemente en su vida cotidiana. El proyecto inicial es a través de sonidos de animales, el niño asocia el sonido a una carta que cuenta con la imagen de los sonidos que se van a reproducir. Esto con la finalidad inicial de enseñarle al niño a usar el dispositivo interactivo para después proceder a presentarle Imágenes o gestos de emociones para que las reconozca y así trabajar en su empatía. Con ayuda de  la Freescale Freedom Development Platform FRDM-KL25Z  y sensores infra-rojos se lee un código de barras colocado en las cartas para poder llevar la información a la computadora y a su vez mueve un servo motor que impulsa a un coche de juguete con un mecanismo de biela manivela para poder contar su avance y habilidad. Esto para hacer esta terapia mas interactiva y a manera de juego.
View full article
Congratulations to the Winning Teams!! First Place Second Place Third Place Team Chrysler Team Ford Team Panasonic 23.91 seconds 26.80 seconds 27.34 seconds Team Members: Tom Pruett Sandhya Etikala Manjiri Joshi Team Members: Saumil Patwari Jim Weinfurther Kevin Hille Team Members: Vince Li Jeffery Kuo Adeel Yusuf The complete times are listed below.
View full article
This is the 8th year for the China national finals of Freescale Cup intelligent car racing.  In parallel to this years China regional we are hosting the champion teams from regions around the world in a winner take all racing showdown. Today kicked off day one of the event which is mostly practice.   But first, a little international team building and a tour to Sun Island in Harbin, China. (Photo courtesy of Peter Fang) (Photo courtesy of DamarisOchoa) Followed by some down to business practice where we had our first glimpse of all the teams.   All the worldwide teams look very strong and should be a very competitive match-up. (Photo courtesy of DamarisOchoa) If you are at the Global Freescale Cup 2013  add your pictures in the comments section below!!
View full article
This tutorial covers the details of Blinking an LED on the Kinetis K40 using the TWR-K40X256-KIT evaluation board. It will introduce the evaluation board, and some basic CodeWarrior features. Overview 1. Hardware 2. Set up the Software Development Environment A. Download and Install Codewarrior B. Download and Install Drivers 3. Set up the Hardware: Twr K40x256 Hardware Setup 4. Import the LED Project 5. Build the Code 6. Download/Debug/Run 7. Learning Step: LED Code Description Read/Write Functions Variables Header File Definitions Initialize the GPIO Blink the LED: Other K40 Tutorials: K40 Related Pages Credits / References Overview   In this exercise students will explore a Freescale Cup Car application which targets a Freescale K40 board attached to the Tower System.   Students will: Configure the Software Development Environment Configure the evaluation board hardware Learn how to import example files into a CodeWarrior project Build a project Download and run the code on a Kinetis K40 Tower System board Learn how to utilize the GPIO Peripheral to blink a LED     To successfully complete this exercise, students will need the following board and development environment. The K40 Tower card, TWR-K40x256 CodeWarrior for Microcontrollers USB Cord 1. Hardware     Read the Blink LED overview article for general information on LED circuits, GPIO pins and reference manuals.   2. Set up the Software Development Environment   There are several steps necessary to prepare the evaluation board and PC for microcontroller programming and development. Interfacing the evaluation board with a PC requires downloading and Install the CodeWarrior IDE, as well as the device drivers for programming the microcontroller via USB. A. Download and Install Codewarrior   Before completing this example project, download-and-install-codewarrior-10-1 or the latest version compatible with the twr-k40x256-kit.   B. Download and Install Drivers   In addition to CodeWarrior, it may(needs verified) be necessary to install one or both of the following tools: RAppID initialization tool- RAppID comes on the DVD provided with your evaluation board. In the main directory of the DVD, click on the "TRK_MPC5604B.html" file to open the DVD interface which provides user manuals, software, schematics and documentation for the evaluation board. P&E Microcomputer Systems, Inc drivers- P&E is a a computer driver for the TRK-MPC5604B and Kinetis Tower system device, enabling evaluation board programming via USB through the CodeWarrior debug OSJTAG interface. This driver can be downloaded here in case this isn't found on the disk.   3. Set up the Hardware: Twr K40x256 Hardware Setup   There are several Twr K40x256 hardware configuration steps. Follow the twr-k40x256-hardware-setup instructions before importing the LED Project. 4. Import the LED Project   After the software is successfully downloaded and installed, the next step is to import an existing project into your Workspace. in this case, the LED_BLINK_96MHZ Project. Follow the instructions on the codewarrior-project-import page to import the LED_BLINK_96MHZ project into CodeWarrior. If errors are encountered, look in the Problems view and resolve them. Ignore any warnings. 5. Build the Code   If there is more than one project in your project view, make sure the proper project is the focus. The most reliable way to do this is to right click the project and choose Build Project as shown below. You can also go to the Project menu and choose the same command. By default, the application is set to link to RAM. If you want your program in FLASH, make sure that you have that build configuration enabled:     Make sure you do a "Clean" operation (under the project menu) after you make the configuration change. If you encounter errors, look in the problems view and resolve them. You can ignore any warnings. 6. Download/Debug/Run   If the project builds correctly, it is time to download to the board and watch it work. Ensure that the USB cable that came with the board connects the board to the host computer’s USB port. There are multiple ways to issue the Debug command. Right click the project in the projects view and choose Debug As->CodeWarrior Download. Alternatively, y go to the Run menu and choose Debug (F11). Click the Resume button and your should see the LED blinking! Click the Pause button to stop execution. Click the Terminate button to end debugging. 7. Learning Step: LED Code Description Read/Write   If the LED was on Port C, Bit 7 we might have code like: #define LED_E1_Location(1<<7)   For example, to toggle a pin the following code might be used: GPIOC_PSOR=LED_E1_LOC     "Sets" the LED located at "E1" high.   the syntax means the following GPIOC refers to Port C   "Set" is one of three commonly utilized commands for GPIO control. There are also commands for "Clear" and "Toggle."   Command: "GPIOC_PSOR" literally means PORT SET OUTPUT REGISTER which SETS a pin high Command: "GPIOC_PCOR" clears a pin, PORT CLEAR OUTPUT REGISTER which CLEARS a pin to the "low" state Command: "GPIOC_PTOR" toggles a pin opposite of the current state   the « is a "shift" command which is discussed in the c-programming-for-embedded-systems. You can alter the raw register as well using a MASK but the dedicated set/clear/toggle registers are more straightforward.   **NEEDS UPDATED ** Hardware Chip Port/Pin Comment SW3 PT cell-content SW4 cell-content cell-content Functions   The following functions can access the LED; //Where n is the LED number LED_En_TOGGLE;  //will toggle a LED to a different state LED_En_ON; // turns the LED ON LED_En_OFF // turns the LED OFF Variables   Locations of the LED's LED_E1_LOC LED_E2_LOC LED_E3_LOC LED_E4_LOC Header File Definitions   from k40_TOWER_BOARD_SUPPORT.h //The E1 LED is on Port C, Bit 7 #define LED_E1_LOC (1<<7) #define LED_E2_LOC (1<<8) #define LED_E3_LOC (1<<9) #define LED_E4_LOC (1<<11)    //There are dedicated set and clear registers.    //Write a one to PSOR Sets the Bits, Writing to PCOR clears bits.    //Toggling a bit can be done with the PTOR register    //You can access the raw register as well -> PDOR |= My Bit    //but the dedicated bit set/clear/toggle registers are easier!    //Also, The cathode of the LEDs are towards the port pin! This means    //you have to turn the port off to get the LED to turn the pin on. #define LED_E1_OFF   GPIOC_PSOR=LED_E1_LOC #define LED_E1_ON   GPIOC_PCOR=LED_E1_LOC #define LED_E1_TOGGLE   GPIOC_PTOR=LED_E1_LOC #define LED_E2_OFF   GPIOC_PSOR=LED_E2_LOC #define LED_E2_ON   GPIOC_PCOR=LED_E2_LOC #define LED_E2_TOGGLE   GPIOC_PTOR=LED_E2_LOC #define LED_E3_OFF   GPIOC_PSOR=LED_E3_LOC #define LED_E3_ON   GPIOC_PCOR=LED_E3_LOC #define LED_E3_TOGGLE   GPIOC_PTOR=LED_E3_LOC #define LED_E4_OFF   GPIOB_PSOR=LED_E4_LOC #define LED_E4_ON   GPIOB_PCOR=LED_E4_LOC #define LED_E4_TOGGLE   GPIOB_PTOR=LED_E4_LOC Initialize the GPIO   From K40_TOWER_BOARD_SUPPORT.c void InitK40GPIO() {    SIM_SCGC5 = SIM_SCGC5_PORTA_MASK | SIM_SCGC5_PORTB_MASK | SIM_SCGC5_PORTC_MASK | SIM_SCGC5_PORTD_MASK | SIM_SCGC5_PORTE_MASK;    //To use a Port, its Clock must be enabled!!    //Lets just enable the clocks for ALL of the ports    //Important! Each IO pin has a dedicated 32-bit Register to set it up (Selection GPIO vs peripheral, IRQ, Etc.)    //Setup port C7,C8,C9 and B11 as GPIO and enable High Drive Strength    PORTC_PCR7 = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK;  //Enable GPIO on on the pin    PORTC_PCR8 = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK;  //Enable GPIO on on the pin    PORTC_PCR9 = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK;  //Enable GPIO on on the pin    PORTB_PCR11 = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK;  //Enable GPIO on on the pin    PORTC_PCR18 = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK;    PORTE_PCR28 = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK;    //Make Sure the GPIO is setup to be an output    GPIOC_PDDR |= LED_E1_LOC | LED_E2_LOC | LED_E3_LOC;    GPIOB_PDDR |= LED_E4_LOC;    LED_E1_OFF;    LED_E2_OFF;    LED_E3_OFF;    LED_E4_OFF; } Blink the LED:   Within Main.c or any other C file created, Blink the LED's using the following functions: LED_E1_TOGGLE; LED_E1_ON; LED_E2_OFF; Other K40 Tutorials:   K40 Related Pages   K40: Turning A Servo Tutorial   K40: Drive DC Motor Tutorial Kinetis K40 TWR-K40X256 K40: Blinking LED Credits / References   Some of the content from this tutorial originated from:   Shawn Moffit: Electrical Engineering, Penn State University for - K40 Code   Processor Expert Hands-On Lab Rev. 1.0, 05/2011 by Jim Trudeau, Freescale Semiconductor, Inc. for - some text descriptions of steps Original Attachment has been moved to: LED_BLINK_96MHZ.zip
View full article
CW_SIMPLE_DEBUG.wmv
View full article
Hello Freescale Cup Teams,   MathWorks is pleased to support the 2015 Freescale Cup EMEA Competition! Take advantage of our: Complimentary Access to MATLAB & Simulink Your team is eligible for an offer of Complimentary Software Licenses. Your team leader or faculty advisor should review and complete the Student Competition Software Request Form http://www.mathworks.com/academia/student-competitions/software/Freescale_Cup_Offer%20of%20Complimentary%20Software%20License(s).pdf to take advantage of our software offer.   Deploy your Simulink models directly to the Freedom board and shield MathWorks is offering hardware support for the Freescale Cup hardware (FRDM-KL25Z, FRDM-MC-SHLD).  Find all relevant information on http://www.mathworks.com/hardware-support/frdm-kl25z.html and install your the package without additional fees. For more information visit the hardware support page http://www.mathworks.de/hardware-support/ and the MakerZone http://makerzone.mathworks.com/ .   Interactive tutorials There are a total of five tutorials, narrated by specialists from MathWorks that include interactive exercises to reinforce learning on our dedicated webpage: http://www.mathworks.de/academia/student-competitions/freescale-cup/ .   Technical support Send an email to freescalecup@mathworks.com .   We are looking forward to working with you and wish you all the best.    Best regards, The MathWorks Student Competition Program  
View full article
For details on how to use the Motors, visit theDC Motor Tutorial Images Boards before 2013 Current Board Rev. 0 Rev. 1 Technical Details Revision 1 (Schematics, design files, sample code, instructional videos) Revision 0 (Schematics) H-Bridge Specifications Freescale MC33931 Datasheet Pro Tips: #1 - Electro-Magnetic Interfence (EMI) This has been mitigated in the rev. 1 board. In many cases the dc drive motors give off much EM interference causing poor data from the camera, and decreasing the servo motor performance substantially. In most cases around a PWM value of 20-25 duty cycle at the drive motors, caused detrimental problems. This problem was remedied in two ways, (1) connecting capacitors between the motor leads, the closer to the drive motor the better; (2) There is a way to connect the camera directly to the kwikstik and bypass the motor board. #2 - Rev. 0 Board workaround to Enable Braking This has been fixed in the rev. 1 board. In order to go forward AND backwards, you have to have control over IN1 and IN2 (see table below). If you look at the schematic, you can see that IN1 is directly connected to GND. In order to enable breaking you need to lift pin 43, solder a wire to it and control it properly. Tutorials General Tutorial on the DC Motor Control Qorivva: DC Motor Tutorial Kinetis Tower: DC Motor Tutorial Design evolution of motor board prior to 2010 - Freescale Cup Cars utilized the MC33932EVB 2010~2012 - Freescale Cup teams migrated to the current Interface/Motor board featuring Dual H-Bridges [Not manufactured] Tower and Trak Compatible Interface/Motor Control Board (Design files if you want to make one!) 2013+ - FRDM-KL25Z shield
View full article
Este proyecto fue realizado por estudiantes de Mecatrónica del Tecnológico de Monterrey Campus Guadalajara y está diseñado para pacientes con problemas motrices, principalmente en brazos y piernas. La intención de nuestro prototipo es que el paciente pueda transportarse autónomamente en su silla de ruedas mediante una especie de casco que detecte la dirección deseada, además de que sea una manera recreativa de trasladarse. Este casco usa acelerómetros y se mueve detectando los ejes X y Y, este último es para trasladarse hacia adelante y en reversa. Nuestra intención es demostrar nuestro punto usando un carrito constituido por una ProtoBoard, dos servomotores y una tarjeta Freedom® KL25Z de Freescale® y controlarlo por medio de dicho casco
View full article
Join the fun and watch the who will be crowned Freescale Cup Champion, LIVE from the Fraunhofer Institute for Integrated Circuits. Check the event info at https://www.facebook.com/events/1425416907713292/ LIVECAST http://p.livecoder.com/Freescale_IIS
View full article
Hardware Servos are specialized dc motors geared to produced high-torques and set at specific angles vs rotating continously. The ability to position the servo at a specific angle over and over makes them ideal for robotics, radio controlled car and other various applications. A typical servo will have range of motion from 180-270 degrees. Most modern servos have a three wire interface, red (V+), black (ground), and white (control). To control a servo you must send it a variable length commands (pulse) in 20ms increments. This type of control is called Pulse Width Modulation. Pulse Width Modulation is a square wave with a set period. By changing the width controlling the proportion of on versus off time, you can obtain a digital ratio from 0-100%. That ratio of on versus off time is called the duty cycle. A microcontroller generates a PWM signal using a timer. The time from the beginning of one sequence to the next is called the period. The main timer registers include: Counter, Modulo, Count Initialization Value, Channel Value, FTM Status & Control, and Channel Status & Control. The Counter will count up from the Count Initialization Value and reset after reaching Modulo. One tradeoff of the design is the Modulo value we set. It represents the count value of a full duty cycle and also the resolution of our servo control. Setting a higher Modulo value allows for more precise variation in the servo, i.e. more accurate steering. The downside is that a higher value requires more time per cycle. It is necessary to configure a timer module for the drive motor separate from the servo because they each require different clock frequencies. Another tradeoff of pulse width modulation is whether it is edge-aligned or center-aligned. Edge-aligned PWM, where the channel is cleared at counter overflow and set at channel match, is simpler to implement in hardware. Center-aligned PWM, where the counter counts up and down, is more difficult to implement but does not give as much noise interference when the channel matches. Servos have 3 wires coming out of them: Ground: Black, Brown Power: Red PWM Signal: White, Yellow, Orange Spec Sheet for Servo used in Freescale Cup Futaba-S-3010 Creating the PWM Signal Much of what is needed to create this signal is discussed in the Motor Control tutorial. Click here to review how to configure a PWM signal on your microcontroller. The same microcontroller configuration utilized to drive a motor can be modified slightly to rotate the arm of a servo. Since the Servo and motor require different clock frequencies, it is necessary to configure a timer module for the servo separate from the motor. Freescale Cup participants will configure the timer modules to output signals that control a steering Servo via varying the Duty Cycle of a PWM signal. Microcontroller Reference Manual: Timer Information You will find high level information about Timer usage in several different areas of a reference manual. See the reference-manual article for more general information. Relevant Chapters: Introduction: Timer modules - lists the memory map and register definitions for the GPIO System Modules: System Integration Modules (SIM) - provides system control and chip configuration registers Chip Configuration: Timers Signal Multiplexing: Port control and interrupts Methods of controlling steering angles Construct a look-up table One way of controlling the steering angles is to construct a look-up table. The input of the look-up table can be the shift distance(in pixels) from the center, and the output could be the steering angles. The look-up table can be put into an excel file. So when you want to use it, just copy and paste the table into your code file. Here is an example of how to construct a look-up table. 1. Set up basic parameters of your car: height of camera(h), angle of camera(theta), velocity of car(v), servo delay(s).. 2. Draw a graph to help you develop a function between your input parameters and your output steering angles 3. Put all paraments into excel. So if you want to change any parameters in the future it will be very convenient. 4. Copy and paste look-up table into code file Note: depending on how you define your parameters, the look-up table may not work as well as you expected. Experiments show that the look-up table works well when the shift distance is small( small turns) and the car tends to go off track when the shift distance is big(sharp turns). Poportional Control (P Control) You can map your servo angle based directly on your line location. Take the derivative of the camera signal and use the derivative peaks as the edges of the line. Take the location of each peak and subtract them from each other to get the line width. Taking the min line peak plus line width will give you the location of the line. Now take that location and map it to your servo. We made Camera.Lock = loc and using this we made Motor.ServoAngle = Camera.Lock»1; This made our line location map directly to our servo and it seemed to work well for us. Additional Theory Training Resources Freescale Motor Control Tutorial Freescale Lecture 1: Introduction and Motor Basics Freescale Lecture 2: Pulse Width Modulaiton Freescale Lecture 3: Control Design Freesacle Lecture 4: Speed and Position Freescale Lecture 5: MPC5607B Overview
View full article
All results of the NXP CUP survey can be found here.
View full article
The Fraunhofer Institute of Integrated Circuits in Erlangen (Germany) is the inventor (with Thomson) of the MP3 files most of use today in our smartphone and media players. They are over 20,000 researchers strong and a force in the R&D community in Germany and around the world. The institute will welcome and host the Freescale Cup 2014 EMEA finals on 29-30 April 2014. It is a great chance for the student teams that will be at the event to get a glimpse of engineering R&D at its best and make contact with talented Fraunhofer Institute engineers shaping the world of tomorrow. See the press release at 20130715_Freescale_2014 - Fraunhofer Institute for Integrated Circuits IIS
View full article
We are excited to be coming to Rice University to tell you about Freescale.  Please RSVP and join us at our informational session and career expo. If you'd like to pre-submit resumes please do so here! javierprado - (LinkedIn) - Digital Networking - Design Manager at Freescale Jonathan Burnett - (LinkedIn) - Signal Intregrity Norman Herr Cheryl Lednicky Andrew Mawer James Vacek Charles Calvin greghale - (LinkedIn) -  Engineer noahllozada Ben Schmid Jason Nearing Maureen Helm - (LinkedIn) Mark Lohman - (LinkedIn) - Design Lead
View full article
Instructions There are several main hardware configuration steps. After installing the battery, once the USB cable has been connected between the evaluation board and PC, it may be necessary to update the chip firmware which requires moving a jumper pin on the evaluation board. Install the included battery into the VBAT (RTC) battery holder. Then, connect one end of the USB cable to the PC and the other end to the Power/OSJTAG mini-B connector on the TWRK40x256 module. Allow the PC to automatically configure the USB drivers if needed. Before updating the firmware, it is necessary to start a CodeWarrior Project. Open Codewarrior Navigate to File-> New ->Bareboard Project Select Kinetis K40->MK40X256VMD100 , P&E Open Source Jtag, C Language, No Rapid Application Development ,Finish Click on the main.c To get project focus Selection Project->Build Configurations->MK40X256VMD100_INTERNAL_FLASH Project-»Build All Run->Debug Configurations—> Use the Codewarrior download Filter and Select "PROJECTNAME_MK40XD256VMD100_INTERNAL_FLASH_PnE_OSJTAG" Additional step is required if the firmware is out of date: Firmware Upgrade Instructions (if needed) Firmware may change after an evaluation board has been manufactured and shipped. As a result, an alert will be displayed during the first attempt to download software to the board. Follow the instructions carefully. Unplug the USB cable. Look for the two pins labeled JM60 Boot and put a jumper on those pins Note: As it comes from the factory, the K40 board has a free jumper on the board. . Jumper J13 is labeled "JM60 BOOT." It connects two header pins which set the evaluation board in the firmware programming mode. This jumper is behind the LCD screen, and right next to LED/Touch Sensor "E3". Remove the LCD creen to gain access to the jumper. Reconnect the USB cable and click OK. Wait for the new firmware to download. A new dialog will appear when the process is complete. Unplug the cable, remove the jumper, and reconnect the cable. Then click OK. (You can store the jumper on the board, just set it so that it does not connect pins.) You may or may not encounter the firmware issue, or the multiple configurations issue. Once resolved, you should not see them again. With propertly set up hardware, users can return to Step 3: Import the LED Project of the Blink a LED on Kinetis Tutorial
View full article
Further Reading MCU 101: How does a DC Motor work? MCU 101: Pulse Width Modulation for DC Motors Specifications of Included DC Motor Conditions of Standard Operation Driving Voltage: 7.2V Direction of Rotation: CW viewing from metal housing Position of Motor: Horizontal Operating Temperature: 10 to 30 (Celsius) Operating Humidity: 30%RH to 95%RH Electrical Characteristics No Load Speed: 16000+/- 3200 rpm No Load Current 220mA (max) Mechanical Noise (Distance from housing side A=10cm Background Noise =30dB (max) 75 dB Stall Current: (two points method 1.2&3.9mNm) 3800mA (max) Stall Torque (two points method 1.2&3.9mNm) 80g.cm min End Play of Shaft 0.05~0.60 mm
View full article