S32 デザインスタジオ・ナレッジベース

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

S32 Design Studio Knowledge Base

ディスカッション

ソート順:
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Power Architecture 2017.R1 Update 1          What is new? S32 SDK for Power Architecture 0.8.2 EAR (Early Access Release) for MPC574x-B-C-G and MPC574xP derivatives (see attached release notes for more details) MPC5744B, MPC5745B, MPC5746B MPC5744C, MPC5745C, MPC5746C - 1N84S (Cut 2.1), MPC5747C, MPC5748C MPC5746G, MPC5747G, MPC5748G - 0N78S (Cut 3.0) MPC5741P, MPC5742P, MPC5743P, MPC5744P - 1N15P (Cut 2.2B) S32 SDK  Power Architecture v0.8.2 Examples - "Create S32DS Project from Example" Installation instructions The update is available for online (via Eclipse Updater) or offline installation (direct download link) online installation:  go to menu "Help" -> "Install New Software..." dialog  select predefined update site "S32DesignStudio - http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_POWER_2017.R1/updatesite" select all available items and click "Next" button   offline installation:   go to S32 Design Studio for ARM product page -> Downloads section or use  direct link to download the update archive zip file Start S32DS and go to "Help" -> "Install New Software..." Add a new "Archive" repository and browse to select the downloaded update archive zip file you downloaded in the previous step Select all available items and click "Next" button.   This will starts the update installation process.
記事全体を表示
In recent releases of S32DS (Power v2017.R1, ARM v2.0, Vision v2.0) is new feature - you can add custom example into example list by copy example folder into [S32DS_INSTALL]\S32DS\examples path:  If you select New project from example - you can see your recently added project in User Examples folder. You can filter all examples by name or MCU model (for example all examples for S32K148):  Another useful improvement is possibility rename project before is inserted into active workspace. It allows you to have more projects based on the same example: If in your project folder is present description.txt file - the content of the file is shown in Create project dialog:
記事全体を表示
Purpose   This document holds information about how S32 Design Studio and S32Debugger probe or PE Micro Debug probe can be used to debug applications running on NXP’s S32 family processors from the operating system perspective using FreeRTOS Kernel awareness.   Abbreviations Abbreviation Description RTOS Real Time Operating System RTD Real-Time Drivers   Background FreeRTOS is a market-leading open-source RTOS designed for microcontrollers and small microprocessors. It includes a kernel and a growing set of libraries. In S32 Design Studio, FreeRTOS Kernel awareness allows you to debug your application from the operating system perspective. Hardware Support FreeRTOS OS Awareness support in S32 Design Studio is available for: S32Z S32E S32G (Cortex-M7) -S32R45 (Cortex-M7) S32K1 S32K3 (K3xx and K396) S32M2 (S32M24x)   OS Support OSEK OS Awareness support is available only on Windows.     OS Information The FreeRTOS download includes source code for every processor port, and every demo application. Currently, FreeRTOS support is available only for single-core projects.   The core RTOS code is contained in three files, which are called tasks.c, queue.c and list.c. These three files are in the FreeRTOS/Source directory. The same directory contains two optional files called timers.c and croutine.c which implement software timer and co-routine functionality respectively. Each supported processor architecture requires a small amount of architecture specific RTOS code. This is the RTOS portable layer, and it is located in the FreeRTOS/Source/Portable/[compiler]/[architecture] sub directories, where [compiler] and [architecture] are the compiler used to create the port, and the architecture on which the port runs, respectively.    Document structure The basic workflow for setting up and managing FreeRTOS OS Awareness projects in S32 Design Studio remains consistent, irrespective of the debug probe used. The universal steps are described in “How to use FreeRTOS OS Awareness with S32 Design Studio and S32Debugger probe” section. For FreeRTOS OS Awareness projects utilizing PE Micro debug probe, only the specific considerations will be highlighted.   How to use FreeRTOS OS Awareness with S32 Design Studio and S32Debugger probe   Prerequisites Note: This HOWTo Guide describes the required steps for using FreeRTOS on a single-core example project for S32G399A Cortex-M7 in S32 Design Studio. Prerequisites might differ depending on the project hardware type.   Software environment S32 Design Studio project or example project delivered with FreeRTOS imported in S32 Design Studio Workspace S32G Development Package S32 RTD Autosar 4.4 Version 4.0.0 S32G3 RTD Autosar 4.4 Version 4.0.0 S32G FreeRTOS 10.4.6 version 4.0 Hardware environment Supported boards S32G-PROCEVB-S PCB RevX3 SCH RevB1 (Daughter Board) S32GRV-PLATEVB PCB RevA SCH RevB (Mother Board) S32G-VNP-RDB3 PCB 53060 RevC SCH RevF Connections PB_08 is controlling the LED. Debugger The debugger (S32 Debugger) must be connected to J64 20-pin JTAG Cortex Debug connector.     Project setup While in Design Studio, go to File -> New -> S32DS Project From Example  and select one of the existing single core S32 Design Studio Sample applications delivered with the NXP FreeRTOS or import your own S32 Design Studio project.       Select the desired project from the list of examples and click finish     Generating configuration Before running the example a configuration needs to be generated. First go to Project Explorer View in S32 Design Studio and right-click the current project.         Select the "S32 Configuration Tool" menu then click on the desired configuration tool (Pins, Clocks, Peripherals etc...).         Clicking on any one of those will generate all the components. Make the desired changes (if any) then click on the "S32 Configuration Tool → Update Code" button.     Building the project Select the project in the S32 Design Studio Workspace and click on Build. Clicking this button will start the build using the preset build type.    Debug configuration Click on Debug Configurations     Setup the Debug Probe Connection for the project. Select either USB or Ethernet, depending upon your hardware setup. If USB is selected, the COM port for the S32 Debug Probe will automatically be detected (unless not connected or more than one probe is connected). If Ethernet is selected, then enter either the hostname (fsl + last 6 digits of MAC address) or IP address. See ‘S32_Debug_Probe_User_Guide.pdf’ ({S32DS_installation_directory}/S32DS/tools/S32Debugger/Debugger/Docs/S32_Debug_Probe_User_Guid e.pdf) for more details on the setup of the S32 Debug Probe.      Selecting FreeRTOS OS Awareness and starting debug From the OS Awareness tab select “FreeRTOS” from the OS dropdown list and click Debug.      FreeRTOS views Navigate to go to Window -> Show View -> Other…  and select the FreeRTOS view       Using the Heap Usage, Queue List, Task List and Timer list views, Design Studio can display information about the tasks status on the target. Heap usage view     Queue List view Queues are the primary form of inter-task communications. They can be used to send messages between tasks, and between interrupts and tasks. In most cases they are used as thread safe FIFO (First In First Out) buffers with new data being sent to the back of the queue, although data can also be sent to the front.   Task List view A real time application that uses an RTOS can be structured as a set of independent tasks. Each task executes within its own context with no coincidental dependency on other tasks within the system or the RTOS scheduler itself       Timer List view A software timer (or just a 'timer') allows a function to be executed at a set time in the future. The function executed by the timer is called the timer's callback function. The time between a timer being started, and its callback function being executed, is called the timer's period. Put simply, the timer's callback function is executed when the timer's period expires. Note, a software timer must be explicitly created before it can be used. How to use FreeRTOS OS Awareness with S32 Design Studio and PE Micro Debug probe   Prerequisites Note: This HOWTo Guide describes the required steps for using FreeRTOS on a single-core example project for S32K396 Cortex-M7 in S32 Design Studio. Prerequisites might differ depending on the project hardware type.   Software environment S32 Design Studio project or example project delivered with the NXP FreeRTOS imported in S32 Design Studio Workspace S32 Design Studio 3.5.6 development package with support for S32K396 devices: SW32K39x_S32DS_3.5.6_D2309 S32K396 RTD AUTOSAR 4.4 Version 3.0.0 Code Drop 02 FreeRTOS for S32K396 version 0.8.0 Hardware environment •    Supported boards X-S32K396-BGA-DCConnections PB_08 is controlling the LED - PTH7 is controlling the LED_BLUE in X-S32K396-BGA-DC board - when HIGH LED is ON or when LOW LED is OFF •     Debugger The debugger (PE Micro Debugger) must be connected to J20 20-pin JTAG Cortex Debug connector   Project setup Go to File -> New -> S32DS Project From Example  Select the desired project from the list of examples delivered with PE Micro Debug probe support or import your own S32 Design Studio project and click finish   Generating configuration   Please refer to the steps described in the “Generating configuration” section from “How to use FreeRTOS OS Awareness with S32 Design Studio and S32Debugger probe”.   Building the project Select the project in the S32 Design Studio Workspace and click on Build. Clicking this button will start the build using the preset build type.    Debug configuration Click on Debug Configurations. Select the debug configuration associated with your current build configuration and click on the “PEmicro Debugger” tab. Verify proper interface and port and if the device is properly detected.     Selecting FreeRTOS OS Awareness and starting debug From the OS Awareness tab select “FreeRTOS” from the OS dropdown list and click Debug.      FreeRTOS views Navigate to go to Window -> Show View -> Other…  and select the FreeRTOS view Using the Heap Usage, Queue List, Task List and Timer list views, Design Studio can display information about the tasks status on the target.   Further details can be found in the “FreeRTOS views” section from “How to use FreeRTOS OS Awareness with S32 Design Studio and S32Debugger probe”         Revision history: Revision no. Revision date Description 01 Nov 2023 Created document about how to use FreeRTOS OS Awareness in S32 Design Studio with PE Micro and S32 Debug probes    
記事全体を表示
This document shows the step-by-step process to create a simple blinking LED application for the S32R45 family using the S32 RTD AUTOSAR drivers. This example used for the S32R45 EVB, connected via ethernet connection through S32 Debugger. Preparation Setup the software tools Install S32 Design Studio for S32 Platform Install the S32R45 development package and the S32R45 RTD AUTOSAR 4.4. Both of these are required for the S32 Configuration Tools. Launch S32 Design Studio for S32 Platform Procedure New S32DS Project OR Provide a name for the project, for example 'Blinking_LED_RTD_With_AUTOSAR'. The name must be entered with no space characters. Expand Family S32R45, Select S32R45 Cortex-M7 Click Next Click '…' button next to SDKs   Check box next to PlatformSDK_S32RXX_4_0_0_S32R45_M7_0. (or whichever latest SDK for the S32R45 is installed). Click OK And also, uncheck the other cores Cortex_M7_1 ,  Cortex_M7_2.   Click Finish. Wait for project generation wizard to complete, then expand the project within the Project Explorer view to show the contents. To control the LED on the board, some configuration needs to be performed within the Pins Tool. There are several ways to do this. One simple way by double-click on the MEX file. Select the overview tab and disable Pins tool. Make sure to overview tab windows shows settings shown as below.  Here, we are disabling pin tools and using MCAL driver from peripheral tools for using AUTOSAR drivers. Now from Overview menu, select peripheral tools and double click to open it. In the driver sections, “Siul2_Port_1 driver” is the non-AUTOSAR version driver and so it must be replaced. Right click on ‘Siul2_Port_1’ and remove it. Keep osif_1 driver as it is. Click on the ‘+’ next to the MCAL box. Click on the ‘+’ next to the MCAL box again, and Locate and then select the ‘Dio’ component from the list and click OK. Click on the ‘+’ next to the MCAL box again, and Locate and then select the ‘Mcu’ component from the list and click OK. Click on the ‘+’ next to the MCAL box again, and Locate and then select the ‘Port’ component from the list and click OK. Now components tab should show like below : Now we required to configure the different MCAL drivers that we added. Starting with Dio configuration, open the Dio configuration. Now, open the ‘DioConfig’ tab, and Edit Dio Port id to 3 as shown below: Now, in “Dio Configuration” window only, Select  “+” sign adjacent to DioChannel. Then Edit Name to “Digital_Output_LED” and Dio Channel Id to ‘5’ instead of ‘0’. From the schematic for S32GR45 EVB, checking for user LED from the schematic, channel 5 is connected to user LED signal, so we use channel 5 signal line to the chip for the user LED. So, we select the singal line for Dio channel Id 5 for the user LED connected on the S32R45 EVB. Now Select Port tab for Port configuration. And open the Port Configuration tab, and from that open “PortConfigSet” tab. Change the PortPin Mscr to ‘53’ and slew rate to ‘SRE_208MHZ_1_8V_166MHZ_3_3V’ and, PortPin Direction to PORT_PIN_INOUT as shown below: Now, at the bottom you will find the “UnTouchedPortPin ’’ . Click on “+’’ and add PortPins. Now add port pins 0, 1, 2, 3 as per below configuration Now configure MCU component. Select Mcu component in MCAL, and then open the Mcu configuration. In Mcu configuration click on MCUModuleConfiguration and then select “McuModesettingConf” from the dropdown menu as shown below. From McuModeSettingConf, select McuPartitionConfiguration tab. Then open the “McuPartition0Config” tab. And under the McuCore0Configuration or “McuCoreClockEnable” select checkbox and for “McuCoreResetEnable” uncheck the checkbox. Similarly, And under the McuCore1Configuration for “McuCoreClockEnable” select checkbox  and for “McuCoreResetEnable” uncheck the checkbox. Similarly, And under the McuCore2Configuration for “McuCoreClockEnable” select checkbox and for “McuCoreResetEnable” uncheck  the checkbox. After modification it should be as shown below: Now open the “McuPartition1Config” tab. for " Partition1 Clock Enable" select checkmark to true and for " Partition1 Clock Reset Enable" uncheck the checkmark for " CA53 CORE 0 cluster0 Core Clock Enable" select checkmark to true and for " Cortex-A53 Core 0 cluster 0 Clock Reset Enable" uncheck  the checkmark In the McuCore1Configuration, and for " Cortex-A53 Core 1 cluster 0 Clock Reset Enable" uncheck the checkmark In the McuCore2Configuration, for " Cortex-A53 CORE 0 cluster 1 Core Clock Enable" select checkmark to true and for " Cortex-A53 CORE 0 cluster 1 Clock Reset Enable" uncheck the checkmark In the McuCore3Configuration, for " Cortex-A53 CORE 0 cluster 1 Clock Reset Enable" uncheck the checkmark After modification it should be as shown below: Now open the “McuPartition2Config” tab. for " Partition2 Clock Enable" select checkmark to true and for " Partition2 Clock Reset Enable" uncheck the checkmark Now open the “McuPartition3Config” tab. for " Partition3 Clock Enable" select checkmark to true and for " Partition3 Clock Reset Enable" uncheck the checkmark Now the device configurations are complete and the RTD configuration code can be generated. Click ‘Update Code’ from the menu bar. To control the output pin which was just configured, some application code will need to be written. Return to the ‘C/C++’ perspective. If not already open, in the project window click the ‘>’ next to the ‘src’ folder to show the contents, then double click ‘main.c’ file to open it. This is where the application code will be added. Before anything else is done, Initialize the clock tree and apply PLL as system clock, Apply a mode configuration, Initialize all pins using the Port driver by adding – editing code before write code here comment in main function.        /* Initialize the Mcu driver */        Mcu_Init(&Mcu_Config_BOARD_InitPeripherals);        /* Initialize the clock tree and apply PLL as system clock */        Mcu_InitClock(McuClockSettingConfig_0);        /* Apply a mode configuration */        Mcu_SetMode(McuModeSettingConf_0);        /* Initialize all pins using the Port driver */        Port_Init(NULL_PTR); Now replace the logic of for loop as shown below code section in the main function, which will enable the LED blinking for 10 times: You also need to declare and initialize the loop variable uint8 i = 0U; . Then replace the code as below after write your code comment: /*Logic for blinking LED 10 times*/ while (i++ < 10) {           /* Get input level of channels */           Dio_WriteChannel(DioConf_DioChannel_Digital_Output_LED, STD_HIGH);           TestDelay(3000000);           Dio_WriteChannel(DioConf_DioChannel_Digital_Output_LED, STD_LOW);           TestDelay(3000000); } Before the 'main' function, add a delay function as follows: void TestDelay(uint32 delay); void TestDelay(uint32 delay) {      static volatile uint32 DelayTimer = 0;      while(DelayTimer<delay)      {             DelayTimer++;      }      DelayTimer=0; } Update the includes lines at the top of the main.c file to include the headers for the drivers used in the application: Add #include "Mcu.h" #include "Port.h" #include "Dio.h" Build 'Blinking_LED_RTD_AUTOSAR'. Select the project name in 'C/C++ Projects' view and then press 'Build'. After the build completes, check that there are no errors. Open Debug Configurations and select 'Blinking_LED_RTD_with_AUTOSAR_Debug_RAM'. Make sure to select the configuration which matches the build type performed, otherwise it may report an error if the build output doesn’t exist. And make selection as shown in screenshot below. You need to select the ethernet connection for S32 debugger and provide its IP address Click Debug To see the LED blink, click ‘Resume' This code as it will blink the LED 10 times, you can make changes in for loop condition to blink it infinitely.
記事全体を表示
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Power Architecture v2.1 Update 12          What is new? Integrated S32 SDK for Power Architecture RTM 3.0.3 (replacing 3.0.2) Integrated AMMCLIB 1.1.21 This is a cumulative update - it includes all the content of previous updates (Update 1,Update 2, Update 7, Update 8, Update 10)   Installation instructions The update is available for online installation (via S32DS Extensions and Updates) or offline installation (direct download link)  installation:  go to menu "Help" -> "S32DS Extensions and Updates" dialog  select from available items and click "Install/Update" button offline installation:   go to S32 Design Studio for Power product page -> Downloads section or use direct link to download the update archive zip file      Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates", then click 'Go to Preferences' link And add a new site "Add..." repository and browse to select the downloaded update archive zip file you downloaded in the previous step   Select the 'S32 Design Studio for Power Architecture Device Package' and 'Update with S32 SDK 3.0.2 for Power Architecture' packages and click "Install/Update" button.     This will start the update installation process.
記事全体を表示
NXP devices can be secured either with password or challenge and response authentication scheme. The S32 Debugger included within the S32 Design Studio for S32 Platform IDE with the S32 Debug Probe provides the ability to debug a secured device. This document provides only the necessary commands specific to launching a debug session on secured NXP devices.. Once the device is unsecured, it will remain so until a power-on-reset or destructive reset occurs. The images shown throughout this document are of the S32R45 device implementation and are provided for illustration purposes. Preparation Setup the software tools Install S32 Design Studio for S32 Platform  Install the Development Package for the device you are debugging. This package is important as it contains the S32 Debugger support component           Setup the hardware Confirm the setup of the evaluation board.  i     Connect the power supply cable Setup the S32 Debug Probe. Refer to the S32 Debug Probe User Manual for installation instructions. i      Connect the S32 Debug Probe to the evaluation board via JTAG cable.  ii     Connect the S32 Debug Probe to the host PC via USB cable OR via Ethernet cable (via LAN or directly connected and configured for static IP address) and power supply connected to USB port. Launch S32 Design Studio for S32 Platform Open existing project or create a new project and check that it successfully builds. If creating a new project, be sure the S32 Debugger is selected in the New Project Wizard. Procedure Before starting a secure debug session, first confirm that the device is indeed secure. Once one core is unlocked, all cores are unlocked and will remain so until a power-on-reset or destructive reset occurs. After confirming the device is secured, then select the procedure which applies to the lifecycle of the SoC to be debugged.    Check the state of the SoC   Open a command window from the installation directory containing the GTA server:              {S32DS Install Path}\S32DS\tools\S32Debugger\Debugger\Server\gta\ Execute the following command:              gta.exe -t s32dbg   This will invoke a utility that launces a new GTA server instance and then communicates with the target via the S32 Debug Probe and will request a set of properties of the SoC. These properties are available to be read regardless of security state. The GTA server will close once the information is returned.   As is shown above, the Debug state is ‘Locked’. This means it is secured and the secure debug steps outlined within this document must be used. There is no way to determine the security enabled on the SoC, so this should be known by the user in order to select the correct authentication scheme. Proceed from here using the method (Password or Challenge & Response) which applies for your SoC security configuration.    Password   From S32DS, open the Debug Configurations menu, select the configuration for the project you wish to debug, select the ‘Debugger’ tab and scroll down until the ‘Secure debugging’ section is visible.   Check the box for ‘Enable secure debugging’ and then select the Debugging type ‘Password’.   Click Debug. When the debug session initialization reaches the stage where the password must be entered to unsecure the SoC, the following menu will appear.   Enter the password. This is a 16-byte value entered as a hexadecimal without the leading ‘0x’. If you choose to check the box for ‘Store keyword in secure storage’, the value entered will be stored within the Eclipse secure storage and will remain available for the duration of the current S32DS instance. This saves the user from having to enter the password again, should the security state of the SoC becomes once again secured.   Now the debug session initialization will complete and debug activities may be executed as with any SoC which is not secured. After terminating the debug session, the GTA utility can be used again to see the new state of the SoC.   This utility cannot be executed while the debug session is running. It launches a new instance of the GTA server, which would be blocked by the already running debug session.   Challenge & Response   For the Challenge & Response security scheme, the included Secure Keys Registry must be used. From the S32DS menu bar, select Window -> Show View -> Other -> ‘Secure Keys Registry’.   The Secure Keys Registry will now appear in the current perspective.   Since there is no current key stored in the Secure Keys local storage, a new key must be registered. Click on ‘Register Key’. This will bring up the Secure Keys Registry command dialog.   Now enter the ADKP value (Application Debug Key/Password) which is correct for the SoC to be debugged.                  The Secure Keys Registry utility uses the same functionality as the command-line GTA utility shown earlier to check the state of the SoC. This will read the UID from the Soc. Click Connect to load the UID (Device Unique ID) from the SoC. The UID is associated with the ADKP when it is registered within the Secure Keys local storage for easier access in the future.   Click OK to complete the registration of the new key.   Now the key is registered, the debug session can be setup and started.   Open the Debug Configurations menu, select the configuration for the project you wish to debug, select the ‘Debugger’ tab and scroll down until the ‘Secure debugging’ section is visible.   Check the box for ‘Enable secure debugging’ and then select the Debugging type ‘Challenge & Response’.   Click Debug. Now the debug session initialization will complete and debug activities may be executed as with any SoC which is not secured. During debug session initialization, the key that was registered will be used to unsecure the SoC. After terminating the debug session, the GTA utility used earlier can be used again to see the new state of the SoC.   This utility cannot be executed while the debug session is running. It launches a new instance of the GTA server, which would be blocked by the already running debug session.   Smart Card Authentication   When using a smart card, the user will need to authenticate with it. IDE has a mechanism to provide the user password for this purpose.    This mechanism is available from any S32 Debug Configuration, as well as Secure Key Registry views, and will be triggered anytime the IDE will call a command that requires authentication on the connected smart card (e.g.: registering a key, fetching the registered keys and trying to perform secure debug with challenge & response.)   Troubleshooting There are some messages displayed when things go wrong that can help to identify the cause of the issue. Due to the sensitive nature of the Secure Debug, the error indications detailed below are inherently general and are provided as a guide for interpreting them to determine the likely cause.   Debug session started when SoC is still secured There is an error message reported in the S32 Debugger Console to indicate the SoC is still secure. To see this message the GDB Server log must be enabled in Debug Configurations -> Debugger tab, GDB Server section:   When this error is incurred, first indication is popup error message for Error code 102:              Next, the following text will be displayed in the S32 Debugger console window:   If needed, select this view from the menu:   In addition, if GDB Traces log is enabled, the following error message can be found in the gdb traces console view:   Enable the GDB Traces log in Window->Preferences, then search on GDB:   To select the view from console:                 Incorrect Challenge/Response Or Password If the SoC is setup for Challenge & Response security scheme, but Password security scheme is selected in Debug Configuration, or Challenge & Response is correctly selected but the wrong ADKP value is provided, below are the expected error messages. The result is same if the SoC is setup for Password and either Challenge & Response or wrong password is used.   First error message is Error code 601:   Next, the gdb traces console displays the following error:   There is no error displayed in the S32 Debugger console. Make sure you have selected the appropriate authentication scheme and provided the correct value for the security asset corresponding to that authentication scheme. E.g. For password - provide the correct password.   For challenge & response, have the correct debug key registered on the smart card.   Note: you may be required to power cycle the board before attempting to debug again after failing to authenticate properly.   Configuration Settings     SDAF (Secure Debug Authorization Framework) – the framework for which the Secure Keys Registry view serves as a graphical interface, is configurable in various aspects and the UI can be used to update the configuration. From the Secure Key Registry interface, click on Settings:   The configuration parameters that can be updated with this view are the following: Working mode: This configuration parameter is used for selecting the working mode regarding the smart card connection. There are two possible values for this:   Managed: volkano.dll (SDAF component) iterates through all the PC/SC readers locally connected to the PC where volkano is running and identifies if a smart card with the volkano applet installed is present. If such a smart card is identified, volkano will connect and interact with it accordingly.      Client: volkano will try to connect to another instance of volkano running in server mode (be it remotely or on the same PC where S32DS is running). Note: Due to the fact that all the commands sent by volkano to the smart card will go through the network via TCP, some latency is expected.       Host: Specifies the hostname/IP address of the PC on which a volkano instance is running in server mode.   Port: Determines the port of the remote volkano instance (running in server mode) that the client will try to connect to. Logging_Verbosity: This config parameter controls the level of detail in the program’s log output. The available verbosity levels are: ERROR: Provides messages that indicate exceptions that have occurred during the execution and data transmission errors. This is the default value of the config parameter.       INFO: Provides informational messages that contains details about the normal execution flow.   DEBUG: Provides detailed debugging information.   
記事全体を表示
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Power Architecture 2017.R1 Update 7          What is new? MPC574xx SDK BETA 1.9.0 S32R SDK BETA 1.9.0  Radar SDK for S32R274 & S32R372 RTM 1.1.1 AMMCLib 1.1.13 for MPC560xB, MPC560xP, MPC564xL, MPC567xF, MPC567xK, MPC574xC, MPC574xG, MPC574xP, MPC574xR, MPC577xC, MPC577xK,  MPC577xM This is a cumulative update - it includes all of the content of previous updates (Update 1, Update 2, Update 3, Update 4, Updates 5 and 6). Installation instructions The update is available for  (via S32DS Eclipse Updater) or offline installation (direct download link)  installation:  go to menu "Help" -> "Install New Software..." dialog  select predefined update site "S32DesignStudio - http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_POWER_2017.R1/updatesite" select all available items and click "Next" button   offline installation:   go to S32 Design Studio for Power product page -> Downloads section or use direct link to download the update archive zip file  Start S32DS and go to "Help" -> "Install New Software..." Add a new "Archive" repository and browse to select the downloaded update archive zip file you downloaded in the previous step Select all available items and click "Next" button.   This will start the update installation process.
記事全体を表示
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Power Architecture v2.1 Update 1          What is new? Integrated Radar SDK RTM 1.3.0 (see the Radar SDK release notes) Installation instructions The update is available for online installation (via S32DS Extensions and Updates) or offline installation (direct download link)  installation:  go to menu "Help" -> "S32DS Extensions and Updates" dialog  select from available items and click "Install/Update" button offline installation:   go to S32 Design Studio for Power product page -> Downloads section or use direct link to download the update archive zip file  Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates", then click 'Go to Preferences' link And add a new site "Add..." repository and browse to select the downloaded update archive zip file you downloaded in the previous step Select the 'RSDK 1.3.0 for S32R274 and S32R372' package and click "Install/Update" button.   This will start the update installation process.
記事全体を表示
There are a number of existing ISP Graph diagrams provided within the VSDK. It is possible to import them into S32DS for Vision and use them in a new C/C++ project. The steps to do this are detailed in this document. 1) Launch S32DS for Vision 2) Select File -> New -> S32DS Application Project or select "S32DS Application Project" from the toolbar. 3) Enter a project name, such as: ISP_ISP_Generic_demo 4) Select 'A53 APEX/ISP Linux' 5) Click Next 6) Unselect the APEX2 options and 'ISP Visual Modeling' option. 7) Click Finish 😎 Select File -> New -> S32DS Project from Example or select "S32DS Project from Example" from the toolbar. 9) Select isp_generic. 10) Select Finish 11) Open isp_generic in the project explorer 12) Double-click ISP data flow ; isp_generic. The ISP data flow graph will appear in the editor 13) Define a new configuration for emitting code from the graph       a) Create a folder in the application project to receive the emitted code. Right-click on the application project and select New -> Folder.       b) Enter a name for the folder and click Finish       c) Right-click in the ISP data flow window and select Emit As -> Emit Configurations...       d) Select ISP Emitter       e) Select New Launch Configuration       f) Enter a name       g) Select the graph, Browse Workspace       h) Expand each item until you can select the .isp file. Click OK       i) Select the location of the emitted output to the application project, select Browse Workspace       j) Select the name of your application project, then OK       k) Write A53_gen to the Dynamic sequences sources folder box. This is the folder within the target project that generated code will be stored. Check the box for Emit host code.       l)Now select the location to store the configuration file. Go to the Common tab, select Shared file and click Browse       m) Select the folder name you created earlier inside ISP_ISP_Generic_demo and click OK       n) Click Apply and Emit. Dialog box will appear when code generation is successful              o) Expand the folders within ISP_ISP_Generic_demo, A53_gen, src and inc, to see the newly generated output files 14) Change to C/C++ perspective, click on ‘C/C++ Development’ 15) Build the project 'ISP_ISP_Generic_demo' for ISP 16) Open file 'ISP_ISP_Generic_demo/A53_inc/isp_user_define.h' and change '#define __DCU_BPP' to "#undef __DCU_BPP" 17) Using the method detailed in steps 8 - 10, create the example project 'isp_sonyimx224_csi_dcu'. Take from this project the file 'isp_sonyimx224_csi_dcu/A53_src/main.cpp' and use it to replace the file 'ISP_ISP_Generic_demo/A53_src/main.cpp' in the current project. Then make the following modifications:  On line 40, change <#include "mipi_simple_c.h"> to <#include "isp_generic_c.h">. On line 303, change <gpGraph_mipi_simple> to <gpGraph> AND <gGraphMetadata_mipi_simple> to <gGraphMetadata> On line 330, change <FDMA_IX_FastDMA_Out_MIPI_SIMPLE> to <FDMA_IX_ISP_OUTPUT>. Please see C:\NXP\S32DS_Vision_v2.0\S32DS\s32v234_sdk\docs\drivers\SDI_Software_User_Guide.pdf for details on what this code is for. 18) In Project Explorer, right-click on "...\A53_gen\src\isp_process.cpp" and select Build path -> Remove from -> A53 19) Select 'ISP_ISP_Generic_demo:A53' in the Project Explorer panel, then Build for A53 20) Run it remotely on the target using the method fromHOWTO: Create A53 Linux Project in S32DS for Vision. Should get results similar to this:
記事全体を表示
Requirements: PC machine with telnet client (for Windows you can use Putty - Download PuTTY - a free SSH and telnet client for Windows ) DHCP server running on your PC machine or network connection with DHCP server How to install DHCP server on Linux https://www.ostechnix.com/install-dhcp-server-in-ubuntu-16-04/  DHCP server for Windows - Open DHCP Server download | SourceForge.net      S32 debug probe connected to network (with DHCP server) and visible for your PC machine   separate network using static IP addresses (or direct connection between PC and S32 debug probe). The scenario is similar like on this picture:  Procedure:   Connect power to S32 debug probe with already connected ethernet cable and wait until green LED (RX/TX) starts blink.Connect to S32 debug probe by telnet client. You can use default domain name FSLXXYYZZ where XXYYZZ are last 6 digits from S32 debug probe MAC address or assigned IP address: Static IP address can be set by netparam static_ip_address ADDRESS:NETMASK command. Make sure that you are choosing IP address from range of your Embedded network. My network uses standard 192.168.1.xxx here is mt setings:  netparam static_ip_address 192.168.1.100:255.255.255.0 You also need to set boot config from DHCP to Static: netparam bootconfig static Turn OFF and ON again S32 debug probe and check the settings by telnet with static IP address - in my case 192.168.1.100: We are done. 
記事全体を表示
Hi,     With S32DS and multilink, you can try the follow steps to dump flash or RAM data into file.  1. Attach    (https://community.nxp.com/t5/S32-Design-Studio/How-attach-to-running-program/m-p/1030375) 2. Export the data which you need    (https://community.nxp.com/t5/S32-Design-Studio/S32DS-how-to-properly-dump-RAM-in-debug-session/m-p/649974#M1089) Cheers! Oliver
記事全体を表示
Quick Fix is a feature of the Java editor in Eclipse which enables a user to resolve problems found in the Java code of their project. This feature is available to be used within S32 Design Studio for some problems. Such problems will be identified with the 'light bulb' icon in the description field, as shown below: For example, such problems sometimes occur when importing a project created in a previous version of S32 Design Studio, are provided from another user, or some files in a project have become corrupted. To resolve issues identified with the 'light bulb' icon, right-click on the problem and from the pop-up menu, select 'Quick Fix'.  The Quick Fix menu will appear, providing the available solutions for the problem. In most cases, there will be just one solution. Click finish to implement the fix. In some cases, more information will be required from the user to complete the fix. Complete the form to provide the additional information, then click OK. Now the problem should be resolved.
記事全体を表示
This document shows the step-by-step process to create a simple blinking LED application for the S32R41 family using the S32 RTD AUTOSAR drivers. This example used for the S32R41 EVB, connected via ethernet connection through S32 Debugger. Preparation Setup the software tools Install S32 Design Studio for S32 Platform Install the S32R41 development package and the S32R41 RTD AUTOSAR 4.4. Both of these are required for the S32 Configuration Tools. Launch S32 Design Studio for S32 Platform Procedure New S32DS Project OR Provide a name for the project, for example 'Blinking_LED_RTD_With_AUTOSAR'. The name must be entered with no space characters. Expand Family S32R41, Select S32R418AB Cortex-M7  Click Next Click '…' button next to SDKs   Check box next to PlatformSDK_SAF85_S32R41_2022_08_S32R418AB _M7_0. Click OK And also, uncheck the other core Cortex_M7_1 Click Finish. Wait for project generation wizard to complete, then expand the project within the Project Explorer view to show the contents. To control the LED on the board, some configuration needs to be performed within the Pins Tool. There are several ways to do this. One simple way by double-click on the MEX file. Select the overview tab and disable Pins tool. Make sure to overview tab windows shows settings shown as below.  Here, we are disabling pin tools and using MCAL driver from peripheral tools for using AUTOSAR drivers. Now from Overview menu, select peripheral tools and double click to open it. In the driver sections, “Siul2_Port_1 driver” is the non-AUTOSAR version driver and so it must be replaced. Right click on ‘Siul2_Port_1’ and remove it. Keep BaseNXP driver as it is. Click on the ‘+’ next to the MCAL box. Locate and then select the ‘Dem’ component from the list and click OK. Click on the ‘+’ next to the MCAL box again, and Locate and then select the ‘Dio’ component from the list and click OK. Click on the ‘+’ next to the MCAL box again, and Locate and then select the ‘Mcu’ component from the list and click OK. Click on the ‘+’ next to the MCAL box again, and Locate and then select the ‘Port’ component from the list and click OK. Now components tab should show like below : Now we required to configure the different MCAL drivers that we added. Starting with Dio configuration, open the Dio configuration. No change is required for Dem configuration. Now, open the ‘DioGeneral’ tab, and select checkmark as per shown below: Now, open the ”DioConfig” tab. In that Select  “+” sign adjacent to Dio Channel. Then Edit Name to “Digital_Output_LED_0” and Dio Channel Id to ‘4’ instead of ‘0’. From the schematic for S32R41 EVB, checking for signal line for the user LED, channel 4 is connected to user LED signal, so we use channel 4 for signal line for user LED on the chip. So, we select the signal line for Dio channel Id 4 for the LED connected on the S32R41 EVB. Now Select Port tab for Port configuration. And open the Port Configuration tab, and from that open “PortConfigSet” tab. Change the PortPin Mscr to 36 , PortPin Direction to PORT_PIN_INOUT as shown below: Now, at the bottom you will find the “UnTouchedPortPin ’’ . Click on “+’’ and add PortPins. Now add port pins 0, 1, 2, 3,4 as per below configuration Now configure MCU component. Select Mcu component in MCAL, and then open the Mcu configuration. In Mcu configuration click MCUModuleConfiguration and then select  “McuModesettingConf” from the dropdown menu as shown below. From McuModeSettingConf select McuPartitionConfiguration Now open “McuPartition0Config” tab. And under the McuCore0Configuration for “McuCoreClockEnable” select checkbox and for “McuCoreResetEnable” uncheck  the checkbox. Similarly, And under the McuCore1Configuration for “McuCoreClockEnable” select checkbox and for “McuCoreResetEnable” uncheck  the checkbox. After modification it should be as shown below: Now open the “McuPartition1Config” tab. for "McuPartitionClockEnable" select checkmark to true and for "McuPartitionResetEnable" uncheck  the checkmark   And under McuCore0Configuration for "McuCoreClockEnable"  select checkmark to true and for "McuCoreResetEnable" uncheck  the checkmark After modification it should be as shown below: Now, click on global setting icon as shown below: And, Confirm that ComponentGenerationMethod is set to “FunctionalGroups” Now the device configurations are complete and the RTD configuration code can be generated. Click ‘Update Code’ from the menu bar. To control the output pin which was just configured, some application code will need to be written. Return to the ‘C/C++’ perspective. If not already open, in the project window click the ‘>’ next to the ‘src’ folder to show the contents, then double click ‘main.c’ file to open it. This is where the application code will be added. Before anything else is done, Initialize the clock tree and apply PLL as system clock, Apply a mode configuration, Initialize all pins using the Port driver by adding – editing code before write code here comment in main function.        /* Initialize the Mcu driver */        Mcu_Init(&Mcu_Config_BOARD_InitPeripherals);        /* Initialize the clock tree and apply PLL as system clock */        Mcu_InitClock(McuClockSettingConfig_0);        /* Apply a mode configuration */        Mcu_SetMode(McuModeSettingConf_0);        /* Initialize all pins using the Port driver */        Port_Init(NULL_PTR); Now replace the logic of for loop as shown below code section, which will enable the LED blinking for 10 times: You also need to declare and initialize the loop variable: uint8 i = 0U; Then replace the code as below after write your code comment: /*Logic for blinking LED 10 times*/ while (i++ < 10) {       /* Get input level of channels */       Dio_WriteChannel(DioConf_DioChannel_Digital_Output_LED_0, STD_HIGH);       TestDelay(3000000);       Dio_WriteChannel(DioConf_DioChannel_Digital_Output_LED_0, STD_LOW);       TestDelay(3000000); } Before the 'main' function, add a delay function as follows: void TestDelay(uint32 delay); void TestDelay(uint32 delay) {     static volatile uint32 DelayTimer = 0;     while(DelayTimer<delay)     {         DelayTimer++;     }     DelayTimer=0; } Update the includes lines at the top of the main.c file to include the headers for the drivers used in the application: Add #include "Mcu.h" #include "Port.h" #include "Dio.h" Now, in open peripheral tools again by clicking on icon as shown below. And then click on global setting icon as shown below: And, Confirm that ComponentGenerationMethod is set to “FunctionalGroups” Build 'Blinking_LED_RTD_AUTOSAR'. Select the project name in 'C/C++ Projects' view and then press 'Build'. After the build completes, check that there are no errors. Open Debug Configurations and select 'Blinking_LED_RTD_with_AUTOSAR_Debug_RAM'. Make sure to select the configuration which matches the build type performed, otherwise it may report an error if the build output doesn’t exist. And make selection as shown in screenshot below. You need to select the ethernet connection for S32 debugger and provide its IP address Click Debug To see the LED blink, click ‘Resume' This code as it will blink the LED 10 times, you can make changes in for loop condition to blink it infinitely.
記事全体を表示
The S32 Design Studio for S32 Platform supports the S32R45 device with the S32 Debugger. This document provides the details on how to setup and begin a debugging session on the S32R45 evaluation board.   Preparation Setup the software tools Install S32 Design Studio IDE   Use the Extensions and Updates menu within S32 Design Studio for S32 Platform to add the S32R4xx Development Package.   Setup the hardware Confirm the setup of the S32R45 evaluation board.  Configure the JTAG. The S32R45 evaluation board supports both 10- and 20- pin JTAG connections. The default board configuration is set to 20-pin, change the position of the jumper J59 from 2-3(default)  to 1-2, if you are using the 10 Pin JTAG interface. Both are supported by the S32 Debugger and S32 Debug Probe. Connect the power supply cable Setup the S32 Debug Probe Connect the S32 Debug Probe to the evaluation board via JTAG cable. Refer to the S32 Debug Probe User Manual for installation instructions. Use the JTAG connection as was confirmed in the previous step. Connect the S32 Debug Probe to the host PC via USB OR via Ethernet (via LAN or directly connected, and configured for static IP address) and power supply connected to USB port. Launch S32 Design Studio for S32 Platform Create new or open existing project and check that it successfully builds. If creating a new project, be sure the S32 Debugger is selected in the New Project Wizard.     Procedure Open the Debug Configurations menu, then follow the steps depending on whether an S32 Debugger configuration exists for your project. If the project was created using the New Project Wizard in S32 Design Studio for S32 Platform, and the S32 Debugger was selected as the debugger, then it likely has existing debug configuration(s).       S32 Debugger Configuration(s) Exist If existing S32 Debugger configuration, proceed with probe configuration. Otherwise, skip to the next section. Below is shown the debug configuration which appears for the provided SDK example project 'hello_world_s32r45'. The suffixes 'debug', 'ram', and 's32debugger' refer to how the project was built and the debugger the configuration is for. Select the debug configuration which corresponds to the project, build type debug, and primary core (if a multicore project) Select the Debugger tab Select the Interface (Ethernet/USB) by which the S32 Debug Probe is connected. If connected via USB and this option is selected for interface, then the COM port will be detected automatically (in the rare event where 2 or more S32 Debug Probes are connected via USB to the host PC, then it may be necessary to select which COM port is correct for the probe which is connected to the EVB) If connected via Ethernet, enter the IP address of the probe. See the S32 Debug Probe User Manual for ways to determine the IP address.   S32 Debugger Configuration(s) Do Not Exist There might be no existing debug configuration if the project is being ported from another IDE or was created to use another debugger. Select the S32 Debugger heading and click New Launch configuration (or double click on the S32 Debugger heading, or right click on the S32 Debugger heading and select New from the context menu) A new debug configuration appears with the name set to the name of the active project in the Project Explorer window(this can be set by opening a file from the project or selecting an already opened file from the project in the editor), and the build type which was used to build it. If this is not matching your intended project then it can either be modified to match or deleted and recreated after the active project has been changed to the desired project. Adjust the name of the project as desired. From the Main tab, check that the Project field is set to the correct project name, as listed in the Project Explorer, and that the C/C++ Application is set to the ELF file which was built. The name of the project can be customized, but '_' must be used instead of spaces. If the Project field is not set or incorrect, click Browse... and then select the correct project name from the list. If more than one project is open in the workspace, then each will be listed. This shows how, regardless of which project is active in the C/C++ perspective, any available workspace project could be associated. This can be useful when reusing a debug configuration from one project in another. If the C/C++ Application is not set or incorrect, click Search Project... and then select the correct binary file (will only work if Project field is correct and project was successfully built). Switch to the Debugger tab, Click 'Select device and core' and then select the correct core from the list. In this case, the M7_0 core is correct. If this is not the primary core, then uncheck the box next to 'Initial core'. This is done only for multi-core projects for the non-boot cores. This causes the scripts to skip the initialization of the core as the boot core will launch the other cores so additional initialization will not be required. Select the Interface (Ethernet/USB) by which the S32 Debug Probe is connected. If connected via USB and this option is selected for interface, then the COM port will be detected automatically (in the rare event where 2 or more S32 Debug Probes are connected to the host PC, then it may be necessary to select which COM port is correct for the probe which is connected to the EVB) If connected via Ethernet, enter the IP address of the probe. See the S32 Debug Probe User Manual for ways to determine the IP address. Click Apply Click Debug. This will launch the S32 Debugger. When the debugger has been successfully started, the Debug perspective is opened and the application is executed until a breakpoint is reached on the first line in main().  
記事全体を表示
Create From Example 1 | Create an ISP Project from Example A demonstration of how to load an example ISP image processing application project featuring RGB, YUV, and GS8 image formats, in the S32 Design Studio. 2 | Create an APEX2 Project from Example A demonstration of how to load an example ORB-based APEX2 image processing application project in the S32 Design Studio. https://www.nxp.com/support/training-events/getting-started-with-s32-design-studio-ide-for-vision-2018.r1:TIP-S32DS Create New Project 3 | Create a New ISP Project A demonstration of how to create a new Debayer-based ISP image processing application project in the S32 Design Studio. 4 | Create a New APEX2 Project A demonstration of how to create a new APEX2 image processing application project featuring upscaling and downscaling in the S32 Design Studio. https://www.nxp.com/support/training-events/getting-started-with-s32-design-studio-ide-for-vision-2018.r1:TIP-S32DS Debug 5 | ISP Debugging w/ S32 Debug Probe A demonstration of how to setup and debug an ISP application project using S32 Design Studio, S32 Debugger, and S32 Debug Probe. 6 | APEX2 Debugging w/ S32 Debug Probe A demonstration of how to setup and debug an APEX2 application project using S32 Design Studio, S32 Debugger, and S32 Debug Probe. 7 | APEX2 Debugging with Emulator A demonstration of how to debug an emulated-APEX2 image processing application project in the S32 Design Studio. 8 | Debug a bare-board APEX2 Project A demonstration of how to debug a bareboard APEX2 image processing application project in the S32 Design Studio with Lauterbach TRACE32. 9 | Debug a Linux A53 Project A demonstration of how to debug a Linux A53 application project in the S32 Design Studio for Vision version 2.0. The example shown also includes code for APEX, but currently GDB Remote Linux only supports debug of the A53 code. 10 | Debug a bare-board A53 Project A demonstration of how to debug a bareboard A53 image processing application project in the S32 Design Studio for Vision version 2.0 using PEMicro GDB interface. The example shown also includes code for APEX, but currently PEMicro only supports debug of the A53 code.
記事全体を表示
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Power Architecture 2017.R1 Update 8          What is new? S32 SDK for Power Architecture 1.8.0 EAR supporting MPC5777C, MPC5775B, MPC5775E, MPC5746R, MPC5745R, MPC5743R This is a cumulative update - it includes all of the content of previous updates (Update 1, Update 2, Update 3, Update 4, Updates 5 and 6, Update 7 ). Installation instructions The update is available for  (via S32DS Eclipse Updater) or offline installation (direct download link)  installation:  go to menu "Help" -> "Install New Software..." dialog  select predefined update site "S32DesignStudio - http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_POWER_2017.R1/updatesite" select all available items and click "Next" button   offline installation:   go to S32 Design Studio for Power product page -> Downloads section or use direct link to download the update archive zip file  Start S32DS and go to "Help" -> "Install New Software..." Add a new "Archive" repository and browse to select the downloaded update archive zip file you downloaded in the previous step Select all available items and click "Next" button.   This will start the update installation process.
記事全体を表示
This release of S32K116 Bootloader was compiled and tested with the following development tools: S32DS Rappid Bootloader  Tested on the hardware: Development Board S32K116EVB – Q048 Processor  PS32K116MLF- Q048   Supported communication: UART0 (Pin PTB0-PTB1) CAN0 (Pin PTE4-PTE5)
記事全体を表示
Project created by S32 Design Studio (S32DS) new project wizard typically contains the debugger configurations to load  and debug the project into the code memory (Flash/RAM). However there might be situations that require also to load a content/data (e.g. calibration values) into a special on-chip memory (such as shadow flash, data flash, utest flash...) or an external memory (QSPI). This document describes how to program multiple memory types (using different programming algorithms) just by single click on the debug button. The decription applies to PEMICRO probes (Multilink Universal, Multilink FX or OpenSDA) anyway a similar approach might be applicable for other vendor probes. The process can be splitted into two steps: 1. create a separate debugger configurations to program a specific memory modules(QSPI,  data flash,..) 2. associate the program and debug configurations into the single launch group  - this alows to execute multiple actions by invoking the single debug launch . Let's demonstrate this on MPC5744P and program code and data flash memory using S32DS for Power v2.1 (similar approach can be applied also to other architectures/versions of S32DS). •  Create a new empty project for MPC5744P. Such a project typically contains Debug/Debug_RAM debugger configuration. First we will add a dummy code  (see below) that creates a record to be stored into the data flash memory (different to code flash memory block). • The project linker file (MPC57xx_flash.ld) should have the data flash memory block and a linker section associated with data flash (.dflash) defined: MEMORY { dflash : org = 0x00800000, len = 0x1F /* not entire dflash - just for test*/ flash_rchw : org = 0x00FA0000, len = 0x4 cpu0_reset_vec : org = 0x00FA0004, len = 0x4 m_text : org = 0x1000000, len = 2048K m_data : org = 0x40000000, len = 384K local_dmem : org = 0x50800000, len = 64K } SECTIONS { .dflash : { KEEP(*(.dflash)) } > dflash … •Add a test code into main.c that results in creating a dummy data record in data flash memory (0x0800000) __attribute__((section(".dflash"))) volatile char dflash_data[]="DTEST String"; // place the string into .dflash segment int main(void) { volatile int counter = 0; volatile char test_str[10]; test_str[0] = dflash_data[0]; // use DFLASH data (to avoid deadstripping) /* Loop forever */ for(;;) { counter++; } } Now if you build the project you can see the data that belong to dflash and code flash in the .map or srec file. If you debug the project using the default debug configuration data flash (DFLASH) memory is not programmed. To program DFLASH you should create another debug configuration simply by duplicating the existing one and changing the programming algorithm to dflash one: nxp_mpc5744p_1x32x20k_dflash.pcp. Note: There are many flash programming algorithms available in PEMICRO eclipse plugin folder typically located here (version of plugin may vary): "C:\NXP\S32DS_Power_v2.1\eclipse\plugins\com.pemicro.debug.gdbjtag.ppc_2.0.2.202005132054\win32\gdi\P&E\" S32DS: Duplicate Debug Configuration S32DS: Load parameters S32DS: Choose alternative programming algorithmNow the new debug configuration (MPC5744P_code_dflash_Debug_DFLASH) is able to program data flash memory. The final step is to create a launch group configuration and associate it with all the programming/debugging configurations that should be executed once debug is started. Add the debug configuration used just for programming purpose as flash type and code debug configuration as debug type. In order to avoid interference between programming of various memories select post launch action -> "Wait until terminated" Finally as soon as the debug session is established by launching the launch group created above - all the memories are programmed and you can debug the code. Note: There is an information about executed flash configurations in the debug context view. Since the programming has alredy finished the thread is terminated and could be cleared by double cross icon. Enjoy single click programming&debugging in S32 Design Studio!
記事全体を表示
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for ARM® 2018.R1  Update 5          What is new? Service Pack WCT101xS. This is a cumulative update - it includes all the content of previous updates (Update 1, Update 2, Update 3, Update 4) Installation instructions The update is available for online (via Eclipse Updater) or offline installation (direct download link) online installation:  go to menu "Help" -> "Install New Software..." dialog  select predefined update site "S32DesignStudio - http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_ARM_2018.R1/updatesite" select all available items and click "Next" button   offline installation:   go to S32 Design Studio for ARM product page -> Downloads section or use direct link to download the update archive zip file Start S32DS and go to "Help" -> "Install New Software..." Add a new "Archive" repository and browse to select the downloaded update archive .zip file you downloaded in the previous step Select all available items and click "Next" button.   This will starts the update installation process.
記事全体を表示
KEA64 RAppID Bootloader rbf file for KEA64    MPC57xx RAppID Bootloader rbf file for MPC5744P   RAppID Bootloader rbf file for MPC5746R  RAppID Bootloader rbf file for MPC5777C  RAppID Bootloader rbf file for MPC5777C - BookE (non-VLE)    S32Kxx RAppID Bootloader rbf file for S32K116 RAppID Bootloader rbf file for S32K144W  
記事全体を表示