S12 / MagniV Microcontrollers Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

S12 / MagniV Microcontrollers Knowledge Base

Labels

Discussions

Sort by:
In the attached zip file you can find three software examples demonstrating clock module and PLL configuration on MagniV device MC9S12ZVM. The examples are made in CodeWarrior IDE v10.6 (Eclipse). The main.c source file of each project provides detailed description, comments and important notes.   The source code can be used with other devices within MagniV family based on S12Z core such as S12ZVL, S12ZVC, S12ZVH/Y, but the precaution must be considered about the max bus frequency of the device.   p.s. Revision 2: SYNR, REFDIV and POSTDIV values changed in PLL initialization to achieve highest PLL locking time.
View full article
For debug purposes, it is possible to read and write the user data and the ECC value directly from/to the SRAM memory. For these debug accesses a register interface is available.   By the debug access and writing incorrect data + ECC values into the system memory,  the single and double bit ECC errors may be simulated for checking the software error handling.   The debug registers may be modified only in a special mode.   The tested address 0x3000 is excluded from linker use - see prm linker file.   I hope it helps you. Radek
View full article
Here are the two utilities which can be used to calculate the following:   - PLL filter component values on HCS12 devices such as MC9S12DP256   - PLL register values on S12(X) devices such as S12XE, S12XF, S12XS, S12P and S12HY.   Both utilities come with appropriate user manuals in PDF.
View full article
Dear reader,   There is extended information provided in the attached document. it contains detailed description "how-to", example design, detailed memory maps and code examples.   Also tested example projects created under CodeWarrior are attached.   I believe the document as well as SW examples will help you in the design and avoid mistakes we have met under our work in the S12(X) support team.   Yours sincerely,   Ladislav
View full article
S12(X) S12 MagniV DOCUMENTS CAN setup calculator for S12(X) and MagniV devices  S12(X) MCU Security  S12(X) devices reference schematics  Useful documents for building own CAN bootloader  How-to Add missing derivatives to CodeWarrior Classic HCS12(X) 5.2 (Unofficial Method)  DOCUMENTS S12Z constant, variable, code allocation in CodeWarrior   BLDC 6-step control speed scaling using S12ZVM  MagniV Power Dissipation Calculator  MTRCKTSBNZVM128 vs MTRCKTSPNZVM128 kit motor  S12ZVM configuration for the motor control applications  Software for S12ZVM motor control kits  DEVKIT-ZVL128 EVB review  S12 family devices - COP recognition consideration calculator  MagniV PLL calculator  Bus-Off Handling in MSCAN   EXAMPLES CAN Standard ID and CAN Extended ID for S12(X) and MagniV devices, memories refreshment  S12XD, S12XE - External BUS design - Addendum To AN2708  S12X Examples Pack  TIC-S12-XDP512-FLASH-E_W-CW47  S12X_Interrupt_catcher (catch all unexpected interrupts)  API example code for S12G  Read paged const in S12  EXAMPLES How to get device ID and write program once field without programming application to the S12Z device in the CodeWarrior (Eclipse)  CAN Standard ID and CAN Extended ID for S12(X) and MagniV devices, memories refreshment  S12Z Protection Override  S12ZVC IFR Program Once Field  S12Z: Simulating ECC errors at EEPROM by cumulative write  S12Z: Simulating ECC errors at RAM by debug access  S12Z: Simulating ECC errors at Flash by cumulative write  S12Z SW example of COP Watchdog Reset  S12Z Interrupt catcher for unexpected interrupts  S12Z voltage measurement  S12Z EEPROM example code  S12Z Flash example code  Autonomous Clock Trimming SW example for MagniV devices  BATS Voltage Supply Sense example code for MagniV devices  High-Voltage Input (HVI) SW examples for MagniV devices  SW examples for MagniV S12ZVC and S12ZVL devices  PWM example code for S12ZVL  S12ZVL-TIM-FrequencyMeasurement-V1_0-CW106-TIC-EXAMPLE  SW example of Security feature with Backdoor Access Key option for S12ZVL  Example S12ZVL ADC0 triggered by TIM0 OC updates PWM duty cycle  S12ZVM clock module and PLL configuration - SW examples  Low power mode example code for S12ZVC  Single / double bit RAM ECC error example code at S12ZVC  S12ZVML-MINIBRD software ported from AN5327  Example: S12ZVC192-ACMP-POT-CW107  Example codes form "Easily Develop LIN-based Actuator Applications with Mixed-signal MCUs" webinar     
View full article
Interrupt catcher example code catches all unexpected interrupts. It can be used for debugging or directly in the application software. The Machine Exception routine is used here as example of expected interrupt.   A few notes: 1. For each expected interrupt you must remove a code line for given interrupt     from the part of the code "A Set of unimplemented interrupts" and     create your own service routine as it is, for example, made     for interrupt 5 void Machine_Exception_ISR(void)   2. All interrupt vectors have 32bit size, however, addresses have only 24bit,     therefore the most significant byte in interrupt vector is not used.     Definitions with the keyword "interrupt XX" where XX represents vector     order in the interrupt vector is used to define interrupt service function.      3. Interrupt number 0 is assigned to POR reset vector,                      1 is assigned to Unimplemented page1 op-code trap vector                      2 is assigned to Unimplemented page2 op-code trap vector                      3  ...                      4  ...     Interrupt number = (0x1FC-Vector Address)/4. See Table 1-11. Interrupt     Vector Locations at RM(page 62-65).     For Example: Interrupt number of SCI0 = (0x1FC-0x19C)/4 = 0x18 = 24.     So you can use either form                interrupt VectorNumber_Vsci0 void SCI0_isr(void)     or                interrupt 24 void SCI0_isr(void)     or                interrupt ((0x1FC-0x19C)/4) void SCI0_isr(void)       Note: VectorNumber_Vsci0 is defined in mc9s12zvl32.h      
View full article
******************************************************************************** Detailed Description: TIM0_Ch2 OC triggers ADC measurements on AN2 (DEVKIT S12ZVL32, potentiometer) every 50ms. ADC interrupt updates duty-cycle (0-100%) of 3 PWM signals that are shifted by 90°. ADC can work either in Trigger or Restart mode. PWM signals are routed to RGB LEDs (DEVKIT S12ZVL32). --------------------------------------------------------------------------------------------- Test HW: DEVKIT-S12ZVL32 MCU: S12ZVL32 Debugger: CW11 Target: internal_FLASH ********************************************************************************
View full article
Here is the example code demonstrating usage of BATS module integrated in MagniV devices such as S12ZVM, S12ZVC, S12ZVL etc. Find detailed description in the projects main.c file. The example project was created in CodeWarrior IDE v10.6.4 and tested on TRK-S12ZVL board.
View full article
 *******************************************************************************  * File              main.c  * Owner             LaMa-TIC-RPR  * Version           1.1  * Date              Jun/17/2016  * Classification    General Business Information  * Brief             S12Z Frequency Measurement at PT0 (IOC0_0) by TIM module  *                   in input capture mode  *******************************************************************************  * Detailed Description:  * The code measures frequency at PT0  * It demonstrates  * - It measures frequency at PT0 by means of TIM module IOC0_0.  * - The measurement is sensitive on rising edges so duty cycle has no affect  *   to the measurement  * - Constants:  *           BUSCLOCK  *           MAX_OVERFLOWS  *           TIMER_PRESCALLER  *      must be defined  * - MAX_OVERFLOWS determines minimum measurable frequency.  *   It is max. allowed number of overflows. When overflows counter reaches  *   this value it the flag FREQUENCY_TOO_LOW is set. The message  *   PERIOD BETWEEN TWO EDGES IS TO WIDE is then written to a variable "str"  *   This value gives time interval:  *     T = TIMER_PRESCALER * MAX_OVERFLOWS * 65536 / BUSCLOCK      *     For example:  *      - TIMER_PRESCALER = 1  *      - MAX_OVERFLOWS   = 1000  *      - BUSCLOCK        = 16,000,000Hz  *      T = 1 * 1000 * 65536 / 16,000,000 = 4,096s  => f=0,244140625Hz  * - TIMER_PRESCALER = { 1,2,4,8,16,32,64,128} - smaller values give more  *   precise values but it generates timer overflow more frequently  * - the physical representation of the measured frequency is stored in the  *   string "str"  *  * - The measurement precision is df which can be expressed as:  *  *    df = BUSCLK / ((n^2 + n) * PRESCALER); n = measured number of TCNT periods  *               *   For example: BUSCLK = 16MHz, n = 399, PRESCALER = 1  *     *     *             df = 16,000,000 / ((399^2 + 399) * 1) = 100.25Hz  *               *             so, count 399 means f=BUSCL/399=16,000,000/399 = 40,100.25Hz  *             so, count 400 means f=BUSCL/400=16,000,000/399 = 40,000.00Hz  *                   * So this method is not suitable for large frequencies as can be seen in  * following table (percentual error we can get is df/f):  * n   f[Hz]      df[Hz]                        n   f[Hz] df[Hz]  * 1   8000000   5333333,3           101 1553,0 30,1  * 2   2666666,6 1333333,3           102 1522,9 29,2  * 3   1333333,3  533333,3           103 1493,6 28,4  * 4    800000    266666,6             104 1465,2 27,6  * 5    533333,3  152380,9            105 1437,5 26,8  * 6    380952,3   95238,0             106 1410,6 26,1  * 7    285714,2   63492,0             107 1384,5 25,4  * 8    222222,2   44444,4             108 1359,1 24,7  * 9    177777,7   32323,2             109 1334,4 24,0  * 10   145454,5   24242,4            110 1310,4 23,4  * 11   121212,1   18648,0            111 1287,0 22,7  * 12   102564,1   14652,0            112 1264,2 22,1  * 13    87912,0   11721,6             113 1242,0 21,6  * 14    76190,4    9523,8             114 1220,4 21,0  * 15    66666,6    7843,1             115 1199,40,502  * 16    58823,5    6535,9             116 1178,8 19,9  * 17    52287,5    5503,9             117 1158,9 19,4  * 18    46783,6    4678,3             118 1139,4 18,9  * 19    42105,2    4010,0             119 1120,4 18,5  * 20    38095,2    3463,2             120 1101,9 18,0  * 21    34632,0    3011,4             121 1083,8 17,6  * 22    31620,5    2635,0             122 1066,2 17,1  * 23    28985,5    2318,8             123 1049,0 16,7  * 24    26666,6    2051,2             124 1032,2 16,3  * 25    24615,3    1823,3             125 1015,8 15,9  *  * - PCB setup:  *   - J35 is disconnected because measurement is done on PT0  *   - pulse generator is connected to the J35 pin 1. (PT0)  *    * - Reference to documentation: MC9S12ZVLMR1.pdf Rev. 1.02  * - Tested on TRK-S12ZVL  * - MCU MC9S12ZVL32 0N22G  * - OSCCLK = 4MHz  * - BUSCLK = 16MHz (set by PLL)  *  * The info about frequency and count is transmitted over the SCI0 Tx which is  * routed (MODRR) to PS1 pin  *  *******************************************************************************  Revision History:  Version Date          Author            Description of Changes  1.0     Jun/17/2016   LaMa-TIC-RPR      Initial version  ******************************************************************************/
View full article
This example simulates ECC issue by cumulative write into the same Flash area without an erasing.   The Flash erase operation set all bits into log1. The Flash program operation may keep bit cells in log1 state or change it into log0 state, but not in opposite way.   The S12Z MCU Flash is protected by 39-Bit ECC Scheme. Every aligned 32bits is protected by additional 7 bits with ECC checksum. The ECC values are not accessible for users. Every Flash reading triggers also ECC check by internal logic. The single bit error in user data may be corrected by ECC checksum. The double bit error cannot be corrected.   The ECC protection is implemented also at flash controller commands and results are signaling by MGSTAT bits.     The first case simulates Single-bit ECC error during reading. The MGSTAT bits after the second write are 0b10 due to fact that just 1 bit is different during write verification (correctable error)   The second case simulates Single-bit ECC error during reading. The MGSTAT bits after the second write are 0b11 due to fact that more than 1 bits are different during write verification (non-correctable error)   The third case simulates Double bit ECC error during reading. The MGSTAT bits after the second write are 0b11 due to fact that more than 1 bits are different during write verification (non-correctable error)     The flash patterns are selected for highlighted described behavior and they don't have any real meaning.   The cumulative write is not allowed for normal operation!!! The code from this example should be used only for design testing - not in production!!!   Please, see the prm file. Address range 0xFF0000-0xFF01FF is excluded from default ROM and is used as user flash memory The size of sectors is 512 bytes = 64 phrases.   Note: The PFLASH_Program() function was updated - erase verification is skipped     I hope it helps you. Radek
View full article
Attached zip file contains three Code Warrior project for MagniV devices (S12ZVM, S12ZVL and S12ZVC). Each of them demonstrates usage of High Voltage Input feature. Find detailed description in the header of main.c file of the CW project.
View full article
The example code shows how to invoke single or double bit RAM ECC error at S12Z devices.   Some basic overview about S12Z ECC codes may be found in thread AM/FLASH ECC Error handling .
View full article
I would like to mention some of the many programming/debugging possibilities by this document. Possibilities for production We have no solution for mass production such as stand-alone programmers, you have to turn to the third party products. CodeWarrior (CW) Simulator/Debugger tool Hiwave: After entering into the debug mode in the CW, we can see the "True-Time Simulator & Real-Time Debugger" window which is Hiwave. Also, the Hiwave can be launched by hiwave.exe independently from the CodeWarrior which is located in the Prog folder in the CW install directory: \Prog\hiwave.exe However, we need to use it together with PEmicro BDM. PROG12Z- Flash Programmer software: PROG12Z | 68HC(S)12(X) Flash/EEPROM Programmer Software | PEmicro  Also, includes the command-line version of the programmer software - CPROG12Z. But we need to use it together with PEmicro BDM. USB Multilink Universal: USB-ML-UNIVERSAL Compatible with ARM devices from many manufacturers as well as NXP's Kinetis, LPC, S32, ColdFire V1/+V1, ColdFire V2-4, MPC55xx/56xx/57xx, HCS08, RS08, HC(S)12(X), S12Z. For more information look at the link: MULTILINK | Debug Probe | PEmicro 1 Stand-alone programmer, test & debug interface: The CYCLONE_UNIVERSAL  supports a wide variety of ARM Cortex devices from many manufacturers as well many non-Arm based devices including from NXP (S32, Qorivva (MPC5xxx), MPC5xx/8xx, S12Z, RS08, S08, HC08, HC(S)12(X), Coldfire, Kinetis, LPC),  Note: The Cyclone Pro is no available. It has been replaced by the Cyclone Universal and Cyclone Universal FX production programmers. These programmers support all of the devices supported by Cyclone PRO CYCLONE | In-System Flash Programmers | PEmicro  Or LFBDMPGMR: Lead-Free BDM Flash Programmer for S08, S12x|NXP  As a low-cost solution can be used: Open Source BDM interface: OSBDM  Or USBDM: USBDM Debugger interface for Freescale RS08,HCS08,HCS12,Coldfire and ARM-Kinetis Devices.  In the chapter Device Characteristics and links to documentation, can be found supported devices by USBDM and useful links for the USBDM devices where are described, for example, compatible IDEs and other useful information.   And one of the advanced tool TRACE32: LAUTERBACH DEVELOPMENT TOOLS 
View full article
Interrupt catcher you can use for debugging or directly in your software. Few notes: 1. You should replace lines for expected interrupt by your interrupts routines as in example of SCI0 interrupt routine. 2. All interrupt vectors are only 16bit addresses, therefore all your interrupt routines must be placed in non banked memory (for example by #pragma commands) 3. Interrupt number 0 presents POR reset vector, 1 is CM reset, 2 is COP reset, … , 119 is Spurious Interrupt. Interrupt number = (0xFE-Vector Address)/2. See Table Interrupt Vector Locations at RM. For Example: Interrupt number of SCI0 = (0xFE-D6)/2 = 0x14 = 20.
View full article
Introduction In many old-fashioned automotive motor control systems, PWM command communication is still preferred over LIN or CAN. Even for in-lab application debugging, it is very convenient to use PWM command communication to control the motor placed in a test-bench or in an acoustic or thermal chamber, especially when the BDM debugger or the SCI/RS232 communication is not available. PWM control is usually specified on the OEM level and it is not provided as a public standard. Nevertheless, adjustable software driver can be created to help the PWM command signal to be detected. The following code has been developed for S12ZVM, but it can be easily adopted to fit in whatever device with a timer input capture feature. Hardware specification may be different for many cases and the implementation is the matter of proper design case-by-case and may be a very easy task for a skilled designer. However, software design can be abstracted and reused for different hardware implementation. In order to help you use the PWM control signal, the following description is provided. The example provided is targeting NXP MagniV S12ZVML devices, but may be used along with any device accordingly. The S12ZVML MCU contains LIN physical layer which will be used as PWM input in our case. PWM Signal Specification Since there is no public standard specification on PWM signal, let's target a general case with adjustable parameters. Since the PWM control signal is being replaced by LIN communication, the specification may be based on 5.5V to 18V voltage range with nominal 12V level. PWM frequency varies from 10 Hz to 1 kHz (or more), but it really depends on the requirements of the application, compatibility, etc. Duty-cycle range of the PWM signal might be from 15% to 90% from stand-by to full speed. Hysteresis at low duty-cycle range (between 10 and 15%) prevents the system from periodic on/off switching at the lowest duty-cycle. Duty-cycles outside of this range may be identified as not valid and appropriate action may be taken (e.g. full speed command to an engine cooling fan). The signal definition should consider some specific values to help with the signal reading. Following values are defined: Label Description noSignalLevel No signal detected below this duty cycle noSignalOutput Output on "no signal" detected lowSignalOutput Output on "low signal" detected hystLowSignalOff Low level of the hysteresis. Smaller duty-cycle means "low signal" state, higher duty-cycle enters the hysteresis range (min speed or stand-by) hystLowSignalOn High level of the hysteresis. Smaller duty-cycle means "hysteresis area: min speed or stand-by", higher duty-cycle means "run"  in the linear signal range, with the speed given by the duty-cycle. linearSignalOutputMin Low level of the linear mode linearSignalLevelMax High level of the linear mode Considering normal operation in stand-by mode, the duty-cycle is between noSignalLevel and hystLowSignalOff. In order to add some distortion-proof feature, the duty-cycle can go up to the hystLowSignalOn and the stand-by mode would be still detected. In order to engage the "run" state, the duty-cycle has to exceed the hystLowSignalOn value and the linear area is reached. Corresponding output is calculated to meet the linearSignalOutputMin at the hystLowSignalOn value and linearSignalOutputMax at the linearSignalLevelMax. System keeps the output at linearSignalOutputMax for duty-cycles higher than linearSignalLevelMax. When slowing down, reaching the hystLowSignalOn sets the output to linearSignalOutputMin and keeps this output until the hystLowSignalOff is reached. This way, the hysteresis feature is provided in order to prevent motors from randomly switch on and off in case the PWM signal is noisy. Lowering the duty-cycle below the hystLowSignalOff, zero output is set, which represents the stand- by mode. Duty-cycles below the noSignalLevel are treated as not valid and noSignalOutput is engaged (which can be set to zero or to max, according to the application requirements). Requirements on Timer In order to correctly detect PWM signal frequency and duty-cycle, hardware timer with input capture feature and rising/falling edges detection shall be used. Timing and chaining of multiple timer channels may be needed to increase the frequency range or duty-cycle resolution. Following example will be simplified to use just one 16-bit timer channel (timer module TIM16B4CV3 used in S12ZVML128). The input of the timer shall be routed to an input pin, on which the PWM signal will be sensed. Integrated LIN physical layer module of S12ZVML128 device can be used for signal conditioning since the signal voltage range is up to 18V. In the example, LINPhy module has to be enabled and the LPRXD0 signal is routed to the timer T0 input capture channel 3 by setting "T0IC3RR1-0" of the MODRR2 register to 0b01. Input capture and timer overflow interrupts are used to detect correct or faulty signal. Requirements on Application Software PWM signal detection is called within the Timer Input Capture interrupt. This way, the duty-cycle is calculated immediately. Signal lost event is detected within the Timer overflow interrupt. It is recommended that the detected duty-cycle is filtered by a low-pass filter (moving average or IIR), which is usually called within some real-time interrupt routine, such as PWM reload or ADC end-of-scan interrupt. Reading of the output value can be done anytime within the code, e.g. within a speed loop to read the demanded speed command. Algorithm Description Frequency and Duty-cycle Detection Frequency of PWM signal is given by the time between two consecutive rising edges or two falling edges. The duty-cycle is a ratio between the time of high-level state over the entire period, as indicated below. The key is to capture the time of the rising edge tR1, change the detection mode to the falling edge to capture the time of the falling edge tF1, again change the detection mode to rising edge, etc. This detection can be easily done within the input capture timer interrupt. The time values captured are then used to calculate "High" and "Period" values. Frequency and duty-cycle is calculated based on the following equations. The timer settings should follow requirements on frequency range and duty-cycle resolution. It is recommended that the timer settings allow detecting frequencies slightly beyond the required frequency range. Let's consider an example of: Limit Specified frequency limits Detected frequency Detected period Minimal PWM frequency 20 Hz 19.5 Hz 0.051282 s Maximal PWM frequency 1000 Hz 1010 Hz 0.00099 s Based on these limits, Timer settings can be calculated, considering the MCU clock settings and prescalers: For example, if the fbus = 50 MHz and the TimerPrescaler = 50, MinPeriodTicks for MaxDetectedFreq = 1010 Hz equals 495 ticks of the timer. The duty-cycle resolution at 1010 Hz is then 1/495, which is 0.202%. MaxPeriodTicks is key information for the timer settings since it needs to fit in the 16bit range with no overflow. In this case, the number of ticks is 25641 for 19.5Hz, which is suitable for 16-bit range with no issues. If the detected period (number of timer ticks) is outside of this range, the algorithm should go to the noSignalLevel state with defined noSignalOutput. Finally, if the PWM signal is lost or corrupted, timer overflow event occurs and corresponding interrupt is called. Within the interrupt routine, the entire algorithm should be reset to wait for another rising edge, while turned in the noSignalLevel state with defined noSignalOutput. Selecting Detected State Based on the PWM signal condition, frequency and duty-cycle detected, the algorithm state is selected. Following states are defined to help users with state identification: State Description Output  PWM_NoSignalDetect PWM signal is not detected or the PWM period is outside of the range noSignalOutput, usually zero or full command (according to the application requirements) PWM_LowSignalDetect PWM signal is detected, the duty-cycle is within the noSignalLevel and hystLowSignalOn or hystLowSignalOff (depends on the hysteresis) lowSignalOutput, usually zero/stand-by PWM_LinearCtrlDetect PWM signal is detected, the duty-cycle is within the hystLowSignalOn and linearSignalLevelMax output = (dutyCycle * linearSignalSlope + linearSignalOffset) << linearSignalNshift, from linearSignalOutputMin to linearSignalOutputMax PWM_HighSignalDetect PWM signal is detected, the duty-cycle is higher than linearSignalLevelMax linearSignalOutputMax Linear Output Calculation Linear output calculation is an easy way of interpolating two endpoints by a linear equation. In order to calculate the coefficients (slope and offset) and to improve the fixed point range, shifting is implemented as well. Algorithm Integration Interfaces The algorithm is designed as a set of static functions with a structure of settings as a parameter to all the interfaces. This way, the same functionality can be used in multiple instances.  /* PWM Control data structure */ typedef struct { pwmControlStatus_t flags; //Control status bits pwmControlConfig_t config; //Configuration unsigned int period; //Modulation period unsigned int dutyCycle; //dutyCycle unsigned int hystDutyCycle; //previous hysteresis of duty cycle #ifndef PWM_CONTROL_SW unsigned int overflowCntr; //timer overflow counter #endif tFrac16 outputValue; //Output value unsigned int ControlInputClass; //Classification of the input signal } pwmControl_t;‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ The input-output characteristics are defined by a set of parameters as discussed earlier using the following structure: typedef struct { /* No signal definition */ tFrac16 noSignalLevel; //Level of the duty cycle for NoSignal detection tFrac16 noSignalOutput; //Output when NoSignal is detected /* Low signal definition */ tFrac16 lowSignalOutput; //Output when LowSignal is detected /* Linear signal definition */ tFrac16 hystLowSignalOff; //LowSignal-to-NoSignal hysteresis level tFrac16 hystLowSignalOn; //NoSignal-to-LowSignal hysteresis level tFrac16 linearSignalLevelMax; //Level of the duty cycle for LinearSignal saturation tFrac16 linearSignalOutputMin; //Output at hystLowSignalOn tFrac16 linearSignalOutputMax; //Output at linearSignalLevelMax tFrac16 linearSignalSlope; // ((linearSignalOutputMax - linearSignalOutputMin)/(hystLowSignalOn - linearSignalLevelMax)))*2^(-linearSignalNshift) tFrac16 linearSignalOffset; // (linearSignalOutputMax - (linearSignalSlope * linearSignalLevelMax))*2^(-linearSignalNshift) tU16 linearSignalNshift; // scaling shift of the linear curve /* timing settings */ unsigned int minPeriod; //minimal period of the signal to be detected, shorter period leads to PWM_NoSignalDetect unsigned int maxPeriod; //maximal period of the signal to be detected, longer period leads to PWM_NoSignalDetect } pwmControlConfig_t;‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ More details on the structures and values are described in the header file in attachment. There is a set of exported functions to be integrated into the application. /* Exported function headers */ extern void PWMControlInit(pwmControl_t * data); //Clears all the internal accumulators and prepars the algorithm for usage extern unsigned int PWMControlUpdate(unsigned int pin, pwmControl_t * data); //To be called within the timer input capture interrupt, updates the internal values and calculates the PWM frequency and duty-cycle extern tFrac16 PWMControlGetOutputValue(pwmControl_t * data); //To be called where necessary by the application to get the output value extern void PWMControlTimerOverflow(pwmControl_t * data);‍‍‍‍‍ //To be called within the timer overflow interrupt to indicate that the signal is lost‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Integration The PWM control source and header files should be included in the project to be compiled. The project uses NXP Automotive Math and Motor Control Library Set (AMMCLib version v1.1.17 or higher), which needs to be added to the project as well. For more information, please visit https://www.nxp.com/support/developer-resources/run-time-software/automotive-software-and-tools/automotive-math-and-motor-control-library-set:AUTOMATH_MCL?lang=en&lang_cd=en& The next step is to include the header file in the main application source code: #include "pwm_control.h"‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ In order to provide necessary settings and to handle the output, the following global variables are recommended: // PWM Control data pwmControl_t pwmControlData; //PWM input control data structure static tBool pwmControlEnabled = false; // Off by default‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Device initialization should include clock settings, timer, and input pin routing settings accordingly. For S12ZVML device, the configuration of TIM, PIM and LIN modules is following: Within the initialization part of the application, the following code should be placed to initialize the PWM control. Please consider the values as an example only.  // PWM control initial settings pwmControlData.config.minPeriod = 495; //Period of the max frequency pwmControlData.config.maxPeriod = 25641; //Period of the min frequency pwmControlData.config.noSignalLevel = FRAC16(0.05); //No signal detected below this duty cycle pwmControlData.config.noSignalOutput = FRAC16(0); //Output on ""no signal"" detected pwmControlData.config.lowSignalOutput = FRAC16(0); //Output on ""low signal"" detected pwmControlData.config.hystLowSignalOff = FRAC16(0.1); //Low level of the hysteresis. Smaller duty cycle means ""low signal"", higher duty cycle means ""switch on"" pwmControlData.config.hystLowSignalOn = FRAC16(0.15); //High level of the hysteresis. Smaller duty cycle means ""min speed or off"", higher duty cycle means ""switch on and linear"" pwmControlData.config.linearSignalLevelMax = FRAC16(0.85); //High level of the linear mode pwmControlData.config.linearSignalOutputMin = FRAC16(0.116666666666667); //Output within the hysteresis mode pwmControlData.config.linearSignalOutputMax = FRAC16(0.833333333333333); //Output at the linearSignalLevelMax pwmControlData.config.linearSignalSlope = FRAC16(0.511904761904762); //Linear signal slope = (linearSignalOutputMax - linearSignalOutputMin) / (linearSignalLevelMax - hystLowSignalOn) * 2^(-linearSignalNshift) pwmControlData.config.linearSignalOffset = FRAC16(-0.018452380952381); //Linear signal offset = (linearSignalOutputMin - (linearSignalOutputMax - linearSignalOutputMin) / (linearSignalLevelMax - hystLowSignalOn) * hystLowSignalOn) * 2^(-linearSignalNshift) pwmControlData.config.linearSignalNshift = 1; //Linear signal shift pwmControlData.config.f16pwmInputMA.u16NSamples = 5; //Moving average filter settings 2^n samples PWMControlInit(&pwmControlData);‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ The configuration can be generated using an Excel sheet in the attachment. Content of the cell "D34" can be copied-pasted in the code. Name of the structure can be changed in "H1" cell. Orange-colored cells are customizable, while grey-colored cells use formulas to calculate output. Timer input capture interrupt routine should call the PWM control "Update" routine and switch the input capture mode between the rising edge and falling edge detection. In the case of S12ZVML device, the timer interrupt example follows: INTERRUPT void TIM0chan3_ISR(void) { // Read PWM input control pin and update status PWMControlUpdate(TIM0TC3, &pwmControlData); // Read the PWM Control output pwmControlData.outputValue = PWMControlGetOutputValue(&pwmControlData); // Toggle edge detection if(pwmControlData.flags.risingEdge) { TIM0TCTL4_EDG3A = 1; TIM0TCTL4_EDG3B = 0; } if(pwmControlData.flags.fallingEdge) { TIM0TCTL4_EDG3A = 0; TIM0TCTL4_EDG3B = 1; } // Clear interrupt flag TIM0TFLG1 = TIM0TFLG1_C3F_MASK; //TIM0TFLG1_C0F_MASK | TIM0TFLG1_C1F_MASK | TIM0TFLG1_C2F_MASK | TIM0TFLG1_C3F_MASK; }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Timer overflow interrupt routine shall implement PWM control "Overflow" handler as follows (again, for S12ZVML device). Output value updater should be called as well to update the output value. INTERRUPT void TIM0overflow_ISR(void) { // Detect PWM input control period overflow (ultra low frequencies PWMControlTimerOverflow(&pwmControlData); pwmControlData.outputValue = PWMControlGetOutputValue(&pwmControlData); // Clear interrupt flag TIM0TFLG2 = TIM0TFLG2_TOF_MASK; }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Finally, within the application task, the PWM control data can be accessed and used in the application. For example, based on the ControlInputClass, the input signal processing may be enabled or disabled and the output value can be used as the required speed value of an engine cooling fan. [Application Task] { // ... // PWM Control // If no signal is detected, enable manual switch (using FreeMASTER) if(pwmControlData.ControlInputClass == PWM_NoSignalDetect) { if(pwmControlEnabled == true) { cntrState.usrControl.switchAppOnOff = 0; pwmControlEnabled = false; } } else { pwmControlEnabled = true; } // If PWM input control enabled, update the demanded speed if(pwmControlEnabled) { //If the linear or high signal is detected, switch the app on if(pwmControlData.ControlInputClass >= PWM_LinearCtrlDetect) { cntrState.usrControl.switchAppOnOff = 1; //Store the demanded speed drvFOC.pospeControl.wRotElReq = pwmControlData.outputValue; } //else switch off the app... else { cntrState.usrControl.switchAppOnOff = 0; //...and if a fault is indicated, clear the fault if(cntrState.state == fault) { cntrState.usrControl.switchFaultClear = true; } } } // ... }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Example code Example code is provided for S12ZVML-MINIKIT. The code is a modified devkit SW, which is available here (and related AN5327 here). The FreeMASTER project file is included with added PWM Control subblock. If there is no PWM signal detected, the application can be controlled via FreeMASTER on/off button. If the PWM signal is detected (even with a duty-cycle below the minimal value), the application listens and reacts as defined by the signal definition. Conclusion PWM control is still being used as one of the control signals to control auxiliary electric drives in automotive. Even if being replaced by LIN or CAN communication, there are still facilities which can benefit from software drivers enabling such a feature. In this document, a software driver is provided to be integrated within the application. The example is provided for S12ZVML devices, however, it can be easily adopted to any device which meets the hardware requirements necessary for such PWM control signal detection.
View full article
CAN Standard ID, CAN Extended ID memories refreshment   A human is a creature forgetting things, procedures and a lot of useful principles in a very short time especially when it often jumps between different projects. I also solve the CAN interface filter setup issues occasionally and even I did it a lot of times I always have to think how to set the filter easily and fast. Because of this, on the basis of last experience, I created an excel sheet this year which provides me an easy return to my CAN filter memories. I am not sure it will be helpful for everyone as it is helpful for me, however, I am sharing..... Each of us has different thinking and ways of visualization so any idea for improvement is appreciated in advance.      
View full article
This short video demonstrates a path through NXP website to the CodeWarrior v5.1 download link. On the final place other downloads are available such as service packs, updates, patches etc. Login to NXP site is required.
View full article
This document includes in attachment excel file calculation that might be useful for those using the S12 MagniV for motor control and proper PLL setting in their projects.   Following parameters can be set and reused for different scenarios via attached excel sheet calculation for the S12 MagniV BLDC motor control applications: #define CPMU_REFDIV // PLL setting of ref. divider #define CPMU_SYNDIV // PLL setting of multiplier #define CPMU_POSTDIV // PLL setting of the post divider #define CPMU_REFFRQ // PLL setting of ref. frequency #define CPMU_VCOFRQ // PLL setting of VCO frequency #define ADC_TIM // setting of ADC timer #define MIN_ADC_TRIGGER_FIRST // setting of ADC trigger #define MIN_ADC_TRIGGER_SECOND // setting of ADC trigger #define PWM_MODULO // PMF module config. #define PWM_DEADTIME // PMF module config. #define TIM_PRESCALER // Timer prescaler #define TIMER_1MS // Setting of timer #define SCI_BAUDRATE // setting of SCI baud rate   This is how it can look for setting either internal or external clock: // PLL settings /* /* // Internal clock 1MHz, 100/50 MHz CPU/Bus clock, 8.33 MHz ADC clock #define _INTERNAL_CLOCK                        // 1 MHz internal clock is used #define    CPMU_REFDIV        0 #define    CPMU_SYNDIV        49 #define    CPMU_POSTDIV       0 #define    CPMU_REFFRQ        0 #define    CPMU_VCOFRQ        3 #define    ADC_TIM            2 #define    MIN_ADC_TRIGGER_FIRST     24 #define    MIN_ADC_TRIGGER_SECOND    144 #define    PWM_MODULO                5000 #define    PWM_DEADTIME              50 #define    TIM_PRESCALER      6         // Timer prescaler 64; 50 MHz/64 = 1.28 us #define    TIMER_1MS          781 #define    SCI_BAUDRATE       5208 */  // External clock 4MHz, 25/12.5 MHz CPU/Bus clock, 6.25 MHz ADC clock #define _EXTERNAL_CLOCK #define    CPMU_REFDIV        3 #define    CPMU_SYNDIV        24 #define    CPMU_POSTDIV       1 #define    CPMU_REFFRQ        0 #define    CPMU_VCOFRQ        1 #define    ADC_TIM            0 #define    MIN_ADC_TRIGGER_FIRST     8 #define    MIN_ADC_TRIGGER_SECOND    48 #define    PWM_MODULO                1250 #define    PWM_DEADTIME       13 #define    TIM_PRESCALER      4         // Timer prescaler 16; 12.5MHz/16 = 1.28 us #define    TIMER_1MS          781 #define    SCI_BAUDRATE       1302     It is used in following function for Clock, Reset and Power Management Unit configuration: //Clock, Reset and Power Management Unit configuration //* //*****************************************************************************/ void initCPMU(void) {     // Wait for stable supply after power up     while (GDUF_GLVLSF)         GDUF_GLVLSF = 1;      CPMUREFDIV_REFDIV = CPMU_REFDIV;     CPMUREFDIV_REFFRQ = CPMU_REFFRQ;     CPMUSYNR_SYNDIV = CPMU_SYNDIV;     CPMUSYNR_VCOFRQ = CPMU_VCOFRQ;     CPMUPOSTDIV_POSTDIV = CPMU_POSTDIV;  #ifdef _EXTERNAL_CLOCK     CPMUOSC_OSCE = 1;     while (CPMUIFLG_UPOSC == 0) {}; // Wait for oscillator to start up (UPOSC=1) and PLL to lock (LOCK=1) #endif      while (CPMUIFLG_LOCK == 0) {};     CPMURFLG  = 0x60;     //Clear PORF and LVRF }          Or setting of ADC clock for both ADC modules in ADC module configuration function:   //ADC0CTL_1 = 0;        ADC0TIM = ADC_TIM;          // clock: clk = fbus / (2x(reg.value + 1)) [0.25 - 8MHz]        //ADC1CTL_1 = 0;        ADC1TIM = ADC_TIM;          // clock: clk = fbus / (2x(reg.value + 1)) [0.25 - 8MHz]        All the rest of the corresponding registers settings can be found in the example for the BLDC motor control of 3-pase sensorless BLDC development kit with S12 MagniV in section download: MTRCKTSBNZVM128_SW: Complete motor control application software package for MTRCKTSBNZVM128
View full article
Have you ever wondered what is the difference between the electric motors included in those two Development Kit with S12 MagniV?     MTRCKTSBNZVM128: 3-phase Sensorless BLDC Development Kit with S12 MagniV S12ZVM MTRCKTSPNZVM128: 3-phase Sensorless PMSM Development Kit with S12 MagniV MC9S12ZVML128 MCU   Well frankly writing none. They include the same motor model 45ZWN24-90       . So the motors are same from physics perspective, only the flux distribution in an air gap is different. It is sinusoidal for PMSM whereas it is trapezoidal for BLDC motor. The powerstage is same for both but what is different however is the control strategy. The Linix motor equipped with the DevKits is in fact somewhere between PMSM and BLDC, The flux is not sinusoidal nor trapezoidal.   Further information and motor parameters can be found at manufacturer product pages:                          http://www.linixmotor.com/3-3-Tool-Motor.html
View full article
The example code demonstrates MCU low power modes: STOP and WAIT. For detailed description see main.c file of the project. * - tested on X-VLG-S12ZVC board * - BUSCLK = 6.25MHz based on internal oscillator clock IRCCLK = 1MHz.The PLL set by default in PEI mode. * - Reference documentation: MC9S12ZVCRMV1.pdf (REV 1.9) VLG-MC9S12ZVC-SCH.pdf (Document Number SCH-28038, SPF-28038)
View full article