NXP Designs Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

NXP Designs Knowledge Base

Discussions

Sort by:
1. 引言 众所周知,我们一般使用调试器下载程序或调试设备。 FRDMK64在板上具有OpenSDA调试接口,因此不需要额外的调试器。但是如果我们要设计一个没有调试器但可以下载程序的电路板,则可以使用引导加载程序(Bootloader)。引导加载程序是一个小程序,目的是通过UART,I2C,SPI等接口更新MCU的应用程序。 本文将描述一个基于FRDMK64F的简单SD卡引导程序,使用SD卡更新MCU的应用程序。用户可以将二进制文件放入卡中。卡插入目标板后,板子将自动更新应用程序。本设计提供了对应的引导加载程序和应用程序代码,以便您可以在自己的板上进行测试。 2. Bootloader的实现 SD卡的示意图如下所示。该板使用SDHC模块与SD卡通信。 图1. SD卡示意图 我们使用FRDM-K64F的2.6.0版本的SDK。您可以在我们的网站上下载该SDK。 链接是“mcuxpresso.nxp.com”。 引导加载程序使用SDHC和fafts文件系统,因此我们应该添加文件来支持它。 图2.支持文件 在主代码中,程序将等待直到插入卡。然后它将在SD卡中找到名为“ a000.bin”的文件以更新应用程序。如果文件不存在,则开发板将直接执行该应用程序。如果没有应用程序,程序将结束。 以下代码显示了程序如何等待插入sd卡,此外它还将检查该地址是否包含应用程序的地址。 图3.代码-等待插入卡 以下代码显示了程序如何打开二进制文件,如果sd卡没有该文件,则程序将跳转到该应用程序开始执行。 图4.打开二进制文件 如果程序正常打开文件,则更新将开始,它将从0xa000擦除200k的空间,您可以根据自己的实际代码工程大小进行调整。 现在我将详细说明更新的方法。我们的数据被写入称为“ rBUff”的缓冲区,缓冲区大小为4K,在向其中写入数据之前,需要先将其擦除。 请注意,在擦除和编程闪存之前应该先禁用所有中断,当操作完成后再重新使能中断。 文件大小将决定将数据写入闪存的方式。 1.如果大小小于4k,我们只需读取文件数据进行缓冲,然后判断文件大小是否与8个字节对齐。如果不是,我们增加“readSize”的大小以读取称为“rBuffer”的数据缓冲区中的更多数据,这些多读出来的数据内容为0。 2.如果大小> 4K,我们使用“ remainSize”来记录剩余的数据量。每次读取4k直到其大小小于4k,然后重复步骤1。一次完成操作后,我们应清除缓冲区并增加扇区编号以准备下一次发送。   图5:写Flash操作代码 清除空间的方法如图所示。它将初始化闪存并从给定地址擦除给定大小。 “ SectorNum”用于显示要擦除的扇区。 图6.擦除操作代码 下图显示了如何将数据写入闪存。 图7.程序操作代码 在转到应用程序之前,我们应该修改在引导加载程序中所做的配置。 关闭Systick时钟并清掉其计数; 将VTOR中断向量寄存器恢复为之前的默认值; 我们的引导程序以PEE模式运行。因此,我们应该将其更改为FEI模式; 禁用所有引脚。 运行这些代码时,应禁用全局中断,并且不要忘记重新使能全局中断。 图8. 反初始化代码 然后我们可以转到应用程序。 图9.转到应用程序 3. 内存重定位 FRDMK64具有1M闪存,从0x00000000到0x00100000。如图10所示,我们使用0xa000作为应用程序的起始地址。 图10:内存映射 现在,我将向您展示如何在不同的IDE中为用户应用程序修改链接文件。 在IAR中: 图11:IAR的ICF 在MDK中: 图12.MDK的SCF 在MCUXpresso中: 图13. MCUXpresso的闪存配置 4. 运行演示 1)首先下载引导程序; 2)准备一个用户应用程序。 我们以“led blinky”为例; 3)修改链接文件; 4)用您的IDE生成二进制文件,请将其命名为“a000.bin”; 5)将其放入SD卡中,如图5所示。 图14:SD卡的内容 6)插入卡,并打开电源。请稍等片刻,该应用程序将自动执行。 5. 参考资料 1) Kinetis MCU的bootloader解决方案 2) KEA128_can_bootloader
View full article
引言 FRDM-KW36包含带有32 kHz晶体振荡器的RTC模块。此模块为以极低功耗模式运行的MCU生成32 kHz时钟源。该振荡器包括一组用作CLOAD的可编程电容器。改变这些电容器的值可以改变振荡器提供的频率。 此可配置电容的范围为0 pF(禁用电容器组)至30 pF,步长为2 pF。 这些值是通过组合启用的电容器获得的。可用值为2 pF,4 pF,8 pF和16 pF。可以完成这四个数值的任意组合。如果可以使用外部电容器,建议禁用这些内部电容器(清除RTC控制寄存器SFR中的SC2P,SC4P,SCS8和SC16位)。 要调整振荡器提供的频率,必须首先能够测量该频率。使用频率计数器将是非常好的,因为它提供了比示波器更精确的测量。您还需要输出振荡器频率。要输出振荡器频率,以任意一个蓝牙演示应用程序为例,您应该执行以下操作: 调整频率示例 本示例将利用Connectivity Software Stack中的心率传感器演示(freertos版本),并假定开发人员具有从SDK到IDE导入或打开项目的知识。 1.从SDK中打开或克隆“心率传感器”项目。 2.在工作区的board文件夹中找到board.c和board.h文件。 3.如下图所示在board.h文件中声明一个void函数。该函数将RTC管脚复用设置为输出到PTB3并能够测量频率。 4. 如下所示在board.c文件中开发BOARD_EnableRtcClkOut函数。 5. 代码如下: 6. 在BOARD_BootClockRUN(board.c文件)之后立即在hardware_init函数中调用BOARD_EnableRtcClkOut函数。 7. 在工作区的board文件夹中找到clock_config.c文件。 8. 在文件顶部添加以下定义。 9. 在BOARD_BootClockRUN函数内部(也在clock_config.c文件中)搜索对函数的CLOCK_CONFIG_EnableRtcOsc调用,然后通过上述任意定义来编辑变量。 10. 最后,在项目源文件夹中的“ preinclude.h”文件中禁用低功耗选项和LED支持: 此时,您可以在PTB3中进行测量,并使用频率计数器进行频率调整。每次对电路板进行编程时,都需要执行POR以获得正确的测量。下表是从FRDM-KW36板版本B获得的,可用作调整频率的参考。 请注意,电容不仅由启用的内部电容组成,还包括封装,内部走线,芯片焊盘和PCB走线中的寄生电容。因此,尽管下面给出的参考测量值应接近实际值,但您还应该在电路板上进行测量,以确保频率是专门针对您的电路板和布局进行调整的。 Labels:KW   KW35 | 36 kinetis kw36a
View full article
LPC55S6x系列最初的硅芯片版本为0A并且该硅芯片已在Revision A1 LPCXpresso55S69评估板上使用。版本1B的硅片已用于版本A2的评估板上。两种版本的芯片都支持新的更加稳定的调试会话请求方式,而1B芯片就需要使用该方式。如果未使用正确版本的IDE和/或调试探驱动程序,调试操作将受到影响或不能工作。 当使用revsion A2 芯片的板子时,需要当前软件版本为: MCUXpresso IDE版本11.0.1或更高版本(建议使用11.1或更高版本) [注意:也可以使用IDE 11.0.1,但在使用A1版本时,此版本需要补丁程序。请参阅https://community.nxp.com/migration-blogpost/11165] 请注意,如果从使用A1版本开发切换到A2版本时(或切换到使用1B版本芯片的任何目标系统),则需要从一个新的工作区(workspace)开始。 IAR Embedded Workbench版本8.40.2或更高版本 Keil uVISION LPC55S6x设备软件包(DFP)12.0.1或更高版本 SEGGER J-Link 应使用J-link 6.54c或更高版本(从SEGGER网站下载),建议使用V6.64或更高版本。将J-link与非SEGGER IDE(MCUXpresso,IAR,Keil)一起使用时,请确保您的IDE配置指向最新的J-Link驱动程序。 如果使用MCUXpresso IDE 11.0.1,则需要将其下安装的J-link驱动程序更新为最新版本,以支持A1版本。更多信息,请参见在Windows上更新SEGGER J-LINK安装包的方法。   有关芯片修订和工具的更多信息,请参考了解LPC55S6x版本和工具。 另请注意,有关电路板版本,芯片的版本和相应工具有中文版本描述,如下所示: http://www.nxpic.org/module/forum/thread-618614-1-1.html http://www.nxpic.org/module/forum/thread-619338-1-1.html
View full article
这篇文章通过覆盖与GFSK (通用频移键控)通信并行的 低功耗蓝牙 多节点连接,提供了混 合应用程序( W ireless UART + GFSK Advertising )的示例。这是 SDK 的另一个示例,其中我 们定义了 混合应用程序,用于与 GFSK 通信并行进行蓝牙 LE 广告和扫描。 Products Product Category NXP Part Number URL MCU KW36/35/34 https://www.nxp.com/products/wireless/bluetooth-low-energy/kw36-35-34-arm-cortex-m0-pluskinetis-kw36-35-34-bluetooth-low-energy-32-bit-mcus-nxp:KW36-35 MCU KW39/38/37 https://www.nxp.com/products/wireless/bluetooth-low-energy/kw39-38-37-32-bit-bluetooth-5-0-long-range-mcus-with-can-fd-and-lin-bus-options-arm-cortex-m0-plus-core:KW39-38-37   Tools NXP Development Board URL FRDM-KW36 Freedom Development Kit https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/frdm-kw36-freedom-development-kit-for-kinetis-kw36-35-34-mcus:FRDM-KW36 FRDM-KW38 Freedom Development Kit https://www.nxp.com/design/designs/freedom-development-kit-for-kw39-38-37-mcus:FRDM-KW38   SDK SDK Version URL MCUXpresso SDK Builder https://mcuxpresso.nxp.com/en/welcome
View full article
Most of the Ethernet PHY support multi-functions and provide much more flexible configure capability to fine tune timing or function enable by configure their registers. Ethernet PHY registers tool provide a simple way to read/write PHY registers by MDC/MDIO. This will help in development or issue debug. 
View full article
Overview With this application we create a proposal to automate the click and collect service in the wholesale warehouses, taking into account the operation as a large vending machine. Working as a vending machine, it has the characteristic of managing inventories, modules for secure connection to a server to receive orders and at the same time make re-stock orders, nfc reader modules to read wholesale customer cards. All this driven internally by a system of conveyor belts managed by motors. With current technologies we can present the evolution of wineries to Industry 4.0 powered by NXP.   We have a control by sections managed by a main controller, we have the following sections: Inventory reception: It consists of a reader of an NFC tag or a QR code to read the product and be able to move it to its corresponding storage section Inventory management: Connection to the cloud to be monitoring in real time to use algorithms handling orders, inputs and outputs Internal logistics: It consists of motor control by section for the mobility and arrangement of articles. It uses sensors for safety in mobility and accident prevention. Customer interface: NFC or QR code reader for package pickup reading indicator, touch screen to display data and customer confirmation. Block Diagram     Products MCU Link i.MX RT1060 i.MX RT1060 Crossover MCU with Arm® Cortex®-M7 Core   Wireless Link Wi-Fi 88W8801: 2.4 GHz Single-Band 1x1 Wi-Fi® 4 (802.11n) Solution NFC Reader PN7462: NFC Cortex®-M0 All-in-One Microcontroller with Optional Contact Interface for Access Control NFC Tag NTAG213F, NTAG216F: NFC Forum Type 2 Tag Compliant IC with 144/888 B User Memory and Field Detection   Secure Element Link EdgeLock™ SE051 EdgeLock™ SE051: Proven, Easy-to-Use IoT Security Solution with Support for Updatability and Custom Applets   Power Management Link PMIC PCA9420: PMIC for Low Power Applications AC-DC Controller TEA19161T: Resonant Power Supply Control IC   Sensors Link Accelerometer MMA8450Q: ±2g/±4g/±8g, Low g, Digital Accelerometer Temperature sensor PCT2075: I2C-Bus Fm+, 1 Degree C Accuracy, Digital Temperature Sensor And Thermal Watchdog   Motor Driver Link HB2001 HB2001: SPI Programmable 10 A H-Bridge Brushed DC Motor Driver   Demo Motor control: Download the software AN12214SW Unzip and install   Open MCUXpresso Import project   Look in the AN12214SW software installation folder   Click on finish Build project Open the freemaster folder in the software installation folder and open the pmsm_ref_sol   Change mode expert a basic   Click on app control and run   Extra links PN710 reader demo Getting Started with NXP Wi-Fi® modules using i.MX RT platform NXP Tech Session - Implementing Graphics in Real-time Industrial HMI Systems with NXP MCUs and Embedded Wizard
View full article
Overview Bluetooth® and WiFi are popular technologies in wireless headphones and speakers. These technologies require the smartphone to be paired with the audio devices to enable the connection, and NFC is a simple and reliable solution for this. Tap your phone to a Bluetooth speaker or headphone, and the two are securely paired automatically, without searching for a connection or typing a code. NFC is also an excellent choice for easy pairing wireless speakers together and creating a multispeakers audio system.   Block Diagram     Product Description PN7150  High performance NFC controller with integrated firmware for smart devices PN7120  NFC controller with integrated firmware and NCI interface for Home appliances   Documents NXP-NCI MCUXpresso example   Bluetooth & Wi-Fi pairing with NFC  
View full article
Overview The S12ZVH-REF-V1 is a reference design engineered for being a design base for starting an instrument cluster project, also it helps to reducing Automotive Cluster development time and maximizing engineering resources. Based on the 16-bit S12 MagniV® S12ZVH mixed-signal microcontrollers, the S12ZVH-REF-V1 provides a production-looking design with impressive integration. The S12ZVH-REF-V1 reference design is not only provided as a hardware reference but also as a software and mechanical design. Block Diagram   Products Product Features S12ZVH MagniV Mixed-signal MCU  16-bit S12 MagniV® S12ZVH mixed-signal microcontrollers for instrument cluster.   Features Interfaces   LIN physical transceiver and connector CAN connector interfaced with MCUs CAN physical transceiver Components 1 x custom 160 segment LCD 1 x low-power piezoelectric speaker 4 x stepper motors 49 x LEDs used as telltales and backlights 6 x user buttons 2 x potentiometers S12ZVH The S12ZVH-REF-V1 does not include on-board programming/debugging circuitry; it requires an external programmer compatible with the BDM protocol. Files S12ZVH-REF-V1 Mechanical and Assembly files  S12ZVH-REF-V1 Reference Design Software (CW10.5) 
View full article
Overview   The RDS12VR is a solution engineered for window lift, power windows, and sun roof systems. Developed in partnership with Tongji University and based on the 16-bit S12 MagniV® S12VR mixed-signal microcontrollers, the RDS12VR offers control by multiple LIN salve nodes or LIN master node, through the easy-to-control Graphics User Interface (GUI). The RDS12VR reduces unnecessary external components, lowers the total bill of material (BoM), improves system quality, and saves space in automotive applications through a smaller PCB. The RDS12VR solution includes hardware for real door/window in-vehicle applications, as well as software including anti-pinch algorithms and low-level S12VR drivers for reducing time to market. Block Diagram   Products Product Features S12VR  16-bit S12 MagniV® S12VR mixed-signal microcontrollers, efficient and scalable relay driven DC motor control solution   Features Features   Window manual/automatic up/down, automatic up/down with stop function Anti-pinch in both manual/automatic mode, anti-pinch region and force can be adjusted Stuck detection out of anti-pinch region, motor overload protection Soft stop when window is close to the top/bottom Self learning, calibration by updating the window/motor parameters stored in EEPROM Use hall sensor as well as current sense to judge anti-pinch in algorithm Power   Fault diagnosis, indicating low voltage, over voltage/current/temperature etc. Low power mode (leveraging S12VR low power mode) to reduce power consumption GUI Easy-to-control GUI, set the parameters and get the status Window lift can be controlled either by multiple LIN salve nodes or LIN master node, through GUI Functional Safety Able to comply with relevant content in US Federal Motor Vehicle Safety FMVSS No. 118 standard Document DRM160, Window Lift and Relay Based DC Motor Control Reference Design Using the S12VR Microcontrollers     
View full article
该Demo运行在MIMXRT1062-EVK上。MIMXRT1062跨界处理器 运行FreeRTOS操作系统,系统同时创建 88W8801 wifi stack 任务和 LVGL v7.3 GUI库任务,能够在LCD屏幕上实现GUI输入输出。用户可以通过LCD触摸操作,对WiFi的SSID和密码进行输入,从而完成设备入网Provision的功能。 Product Category NXP Part Number URL MCU   WiFi SoC MIMXRT1060   88W8801 https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-... 88W8801: 2.4 GHz Single-Band 1x1 Wi-Fi 4® (802.11n) Solution | NXP Semiconductors   SDK SDK Version URL MCUXpresso SDK mcuxpresso.nxp.com   Demo Video
View full article
About this demo This demo was created to give you a headstart for a UART - based GPRS module. The goal was to build the project on top of FreeRTOS ensuring a good implementation for task management and adaptability for any other project based on AT commands using a UART module.  According to the documentation of the module, the SIM800L from SIMCOM is controlled via AT commands. The advantage of using these commands is that, by tweaking some of the tasks, the application can be used for any other AT command based module. In this demo I'm going to walk you through the key elements that were used and give you a functional project that has the addition of working on a FreeRTOS environment. This offers great reliability for a fully working application that won't hang for an untested reason. Exploring this project should give you a good idea of how semaphores are implemented for various tasks management depending on each priority. Project Scope The project is intended to work with a SIM800L connected to a Freedom Development Platform for Kinetis® K64 through UART. Due to the high current consumption during some functions, the SIM800 module requieres a >1200mAh battery or a >2A buck converter. This GPRS module is a low-cost item but requires a 2G SIM card to work properly. This might be complicated to obtain in some countries. The project was built using the MCUXpresso SDK's FreeRTOS UART example. Useful Links Link Description https://mcuxpresso.nxp.com/en/builder SDK Builder for the Kinetis K64 https://www.simcom.com/product/SIM800.html SIMCOM SIM800 site documentation https://www.freertos.org/xSemaphoreCreateBinary.html FreeRTOS   Required Items Link Description https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-k64-k63-and-k24-mcus:FRDM-K64F NXP's FRDMK64 Board https://simcom.ee/modules/gsm-gprs/sim800/ SIMCOM SIM800 GPRS Module Buck converter   Power supply to deliver up to 4.3 V and 2 Amps   Cellular antenna     Hardware Diagram Due to the SIM800 module's high current consumption, powering it requires a buck converter that is capable of delivering a current larger than 2 Amps while the module is sending a message. This is when the module consumes the highest current.    SIM 800L  ===>    FRDM K64         VCC    ===>    3V9 Buck Converter           RX     ===>    TX (PTC17/J1-4)           TX     ===>    RX (PTC16/J1-2)        GND    ===>    GND   Step-by-Step Guide for testing the Demo Get the K64 SDK from https://mcuxpresso.nxp.com/en/select   Get the latest version of MCUXpresso using this link: https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE Get the SIM800 AT commands documentation in this link: https://www.elecrow.com/wiki/images/2/20/SIM800_Series_AT_Command_Manual_V1.09.pdf Install the K64 SDK in MCUXpresso. Import the attached project in this document.  Attachments are found at the bottom of this document. Connect the K64 through the USB cable. Connect the SIM800L as indicated in the previous chapter: Diagram. Build and Debug the project using MCUXpresso. In the console, you should be able to see the flow of the Tasks that are being executed. Also, the commands that are being sent and received by the UART. Due to the TaskDelay from the send_task, the application will execute every 10,000 ticks. This depends entirely on the portTick_PERIOD_MS, in this case, which in this case is roughly every 25 seconds. Additional Demo Information These next steps are intended to guide the developer to an easier understanding of the modifications that were made from the base project. This additional information intends to give you a greater understanding of how the project was built and a further explanation of the different topics this application needs for its implementation. The usage of FreeRTOS wasn't mandatory, but the usage of an operative system gives the application an additional layer of reliability for safe deployment. In addition to the actual tasks, you could implement a new task for an OTA update for new drivers, a fully functional response parser, or any other addition depending on your project needs. The usage of a task-based project ensures flexibility of the project since many modifications will not require a complete rebuilding of the application. As mentioned before, the implementation of semaphores will provide reliable task management depending on the required function. The project started from the freertos_uart example and from there three additional tasks were built: a connect task, send task, and a check task. Here is a brief explanation of each task to provide a full understanding of the functionality.  uart_task() This task was only slightly modified. The UART was changed to the UART3 interface. The UART_RTOS_Send() and UART_RTOS_Receive() functions are in the loop because the semaphore implementation is doing the release of retainment of the different tasks based on their priority. Priority is very important for this project because based on its priority the application flow would be affected. uart_task() has the highest priority. This will ensure that every time a new command is required to be sent, the application will retain the actual task and release the uart task. At the end of this task, a new semaphore is called. This semaphore will call the check_task() whose functionality is to compare the received string to the expected one. check_task() This task is executed right after the buffer has received the number of bytes that were expected from the function parameters. The first step of this task is to eliminate the extra characters ´\n´ and ´\r´ that compose the SIM800 module answer message. Depending on the command sent, the task compares the response in order to look for an Error response or a positive one. This might be different than a simple OK, depending on the command. connect_task() This task is called when the SIM800 module is disconnected. This implementation is a simple string copy that use semaphores to call the task uart and then the check task compares the received string. After the module returns an IP address, the semaphore gives the order to call the send task to continue the application flow. send_task() This task has the least priority but is the first one created, it calls the sendRoutine() function which intends to gather the data to be sent. This connect task is triggered when a command that expects an IP address, returns an ERROR response. The command sent is AT+CIFSR plus the response comparison. The application flow enters to an if conditional that calls a semaphore for the connect_task() routine. Then, the frame to be sent through the TCP function of the SIM800 module is built. Due to the protocol chosen, the SIM800 module expects a response from the server, specifically a 200 HTTP code. Depending on your module, this is where the protocol modifications can be done. A point that is worth mentioning is that the module works in a 2G bandwidth. This can be a problem in some countries due to the SIM card version incompatibility between your area network and the module. If this is the case in your country, I strongly recommend looking for a 4G module like the SIM7080 or any other NB-IoT module. This might be more expensive but you are ensuring your project will work on top of the newest cellular bands.    
View full article
Overview   The PN7462 family consists of 32-bit Arm® Cortex®-M0-based NFC microcontrollers offering high performance and low power consumption. Because of the integrated NFC, many of the applications in which this product is used require interaction between some controllers, either to send data or instructions. In this case the board serves as a device for reading or writing NFC devices.   Required Material OM27462CDKP: NFC Controller development kit  MCUXpresso Software and Tools    Step-by-Step Download MCUXpresso Download and unzip attachment Open the Project in MCUXpresso Build it Connect LPC Link to PN7462 card Connect the two cards to the pc Debug the Project Use GPIO 4 and 5 for select interface Use GPIO 6, 7 and 8 for select operation mode
View full article
Overview   NXP has a proud heritage of supplying solutions for automotive and aerospace applications. Many of these solutions also apply to the rapidly evolving field of mobile robotics. Whether your system operates on the ground, under the sea or in the sky, NXP offers a complete portfolio of sensors, controllers and communications solutions. NXP® processing solutions for transportation systems communication scale from MCUs to multicore MPUs. The transponder is designed to provide high performance and great reliability. Its user-friendly interface enables an intuitive handling of complex features AIS class A delivers. This solution will cover a wide range of uses for vehicular, marine and flight applications. This solution is based on i.MX RT technology. Use Cases Solutions for connecting functional modules within a vehicle or transportation system and connecting them to external networks. Some applications for this could be: Service-Oriented gateways Transponders V2X Communication Ethernet Chassis Switch Block Diagram Products Category MCU Product URL 1 i.MX RT1050 Crossover MCU with Arm® Cortex®-M7 core  Product Description 1 The i.MX RT1050 is the industry's first crossover MCU and combines the high-performance and high level of integration on an applications processors with the ease of use and real-time functionality of a microcontroller. Product URL 2 K22_120: Kinetis® K22-120 MHz, Cost Effective, Full-Speed USB Microcontrollers (MCUs) based on Arm® Cortex®-M4 Core  Product Description 2 Kinetis® K22 MCUs have been optimized for cost-sensitive applications requiring low power flexibility and processing efficiency.   Category Ethernet PHY Product URL TJA1101: 2nd generation Ethernet PHY Transceivers - IEEE 100BASE-T1 compliant  Product Description TJA1101 is a high-performance single port, IEEE 100BASE-T1 compliant Ethernet PHY Transceiver.
View full article
Overview   NXP is a one-stop partner for the different technologies needed to power major home appliances. They need a robust, reliable and attractive user interface, a powerful motor control optimized for efficiency and low noise as well as secure and accurate environment sensing. NXP portfolio counts with multiple processing solutions ranging from MCUs to multicore MPUs enabling motor control, system control and advanced HMI. This solution is based on a Kinetis Ke1xF-168 MHz MCU. This 5 V solution with the high-performance Cortex-M4 core running up to 168 MHz, integrates CAN 2.0B compliant FlexCAN and provides a highly reliable serial communication interface for industry applications. Block Diagram Products Category MCU Product URL KE1xF: Kinetis KE1xF-168MHz, Performance with CAN 5V Microcontrollers based on Arm® Cortex®-M4  Product Description Kinetis KE1xF MCUs are the high end series MCUs in Kinetis E family, providing robust 5V solution with the high performance Arm® Cortex®-M4 core running at up to 168 MHz.   Category Power Management Product URL 1 TEA19363LT: GreenChip SMPS Primary Side Control IC with QR/DCM Operation and Active x-Capacitor Discharge  Product Description 1 The TEA19363LT is a member of the GreenChip family of controller ICs for switched mode power supplies. Product URL 2 MC33813: One Cylinder Small Engine Control IC  Product Description 2 The NXP® MC33813 is an engine control analog power IC delivering a cost-optimized solution for managing one and one-cylinder engine.   Category Driver Product URL PCA9959: 24-Channel SPI Serial Bus 63 mA/5.5 V Constant Current LED Driver  Product Description The PCA9959 is a daisy-chain SPI-compatible 4-wire serial bus controlled by a 24-channel constant preset current LED driver optimized for dimming and blinking 63 mA Red/green/blue/amber (RGBA) LEDs.   Category Sensor Product URL PCT2075: I2C-Bus Fm+, 1 Degree C Accuracy, Digital Temperature Sensor And Thermal Watchdog  Product Description The PCT2075 is a temperature-to-digital converter featuring ±1 °C accuracy over ‑25 °C to +100 °C range.
View full article
Overview   NXP Home Appliances is dedicated to provide intelligent, reliable and appealing solutions to make everyday life a bit easier. Home appliances are part of our daily lives and have been evolving with us. Our wireless MCUs add HAN, WiFi and NFC and along our security devices ensure high-quality wireless connectivity. We have a wide range of precise sensors and complete solutions to simply add voice control to any home appliance. From gas cooktops to inductive and RF cooking; electric toothbrushes with low-energy consumption and battery charging; blenders with efficient, reliable and robust motor control, and all of them need to have sensing options and secure connectivity to offer a personalized and optimal experience. Block Diagram   Products Category MCU Product URL KE1xZ: up to 72MHz, 5V main stream CM0+ MCU with NXP Touch (TSI) and CAN control  Product Description KE1xZ MCUs are based on the Arm® Cortex®-M0+ core, running up to 72 MHz.   Category Power Management Product URL TEA19363LT: GreenChip SMPS Primary Side Control IC with QR/DCM Operation and Active x-Capacitor Discharge  Product Description The TEA19363LT is a member of the GreenChip family of controller ICs for switched mode power supplies.   Category Drivers Product URL 1 PCA9955BTW: 16-channel Fm+ I²C-bus 57 mA/20 V constant current LED driver  Product Description 1 The PCA9955B is an I2C-bus controlled 16-channel constant current LED driver optimized for dimming and blinking 57 mA Red/Green/Blue/Amber (RGBA) LEDs in amusement products. Product URL 2 PCF8579: LCD column driver for dot matrix graphic displays  Product Description 2 The PCF8579 is a low power CMOS LCD column driver, designed to drive dot matrix graphic displays at multiplex rates of 1:8, 1:16, 1:24 or 1:32. Product URL 3 NX5P2924CUK: Logic controlled high-side power switch  Product Description 3 The NX5P2924C is a high-side load switch which features a low ON resistance N-channel MOSFET with controlled slew rate that supports 2.5 A of continuous current.   Category RTC Product URL PCA85073A: Automotive tiny Real-Time Clock/Calendar with alarm function and I2C-bus  Product Description The PCA85073A is a CMOS1 Real-Time Clock (RTC) and calendar optimized for low power consumption. An offset register allows fine-tuning of the clock.  
View full article
Overview   NXP smart amplifier is a high efficiency boosted Class-D audio amplifier with a sophisticated SpeakerBoost acoustic enhancement and Protection algorithm in on-Chip DSP with temperature and excursion protection. The internal adaptive DC-to-DC converter raises the power supply voltage, providing ample headroom for major improvements in sound quality. NXP portfolio counts with multicore solutions for multimedia and display applications with high-performance and low-power capabilities that are scalable, safe, and secure. This solution is based on an i.MX 8M Family MCU. This application processor provides industry-leading audio, voice and video processing. Block Diagram Products Category MPU Product URL i.MX 8M Family - Arm® Cortex®-A53, Cortex-M4, Audio, Voice, Video  Product Description The i.MX 8M family of applications processors based on Arm® Cortex®-A53 and Cortex-M4 cores provide industry-leading audio, voice and video processing for applications.   Category Wireless Product URL 1 QN9090/30(T): Bluetooth Low Energy MCU with Arm®Cortex®-M4 CPU, Energy efficiency, analog and digital peripherals and NFC Tag option  Product Description 1 The QN9090 and QN9030 are the latest microcontrollers in the QN series of Bluetooth low energy devices that achieve ultra-low-power consumption and integrate an Arm®Cortex®-M4 CPU with a comprehensive mix of analog and digital peripherals. Product URL 2 88W8987: 2.4/5 GHz Dual-Band 1x1 Wi-Fi® 5 (802.11ac) + Bluetooth® 5 Solution  Product Description 2 The 88W8987 is a highly integrated Wi-Fi (2.4/5 GHz) and Bluetooth single-chip solution specifically designed to support the speed, reliability and quality requirements of Very High Throughput (VHT) products. Product URL 3 NTAG I2C plus: NFC Forum Type 2 Tag with I2C interface  Product Description 3 The NTAG I2C plus combines a passive NFC interface with a contact I2C interface.   Category Power Management Product URL 1 TEA1833LTS: GreenChip SMPS Control IC  Product Description 1 The TEA1833LTS is a low-cost Switched Mode Power Supply (SMPS) controller IC intended for flyback topologies. Product URL 2 PCA9450: Power Manage IC (PMIC) for i.MX 8M Mini/Nano/Plus  Product Description 2 The PCA9450 is a single chip Power Management IC (PMIC) specifically designed to support i.MX 8M family processor in both 1 cell Li-Ion and Li-polymer battery portable application and 5 V adapter nonportable applications.   Category RF Amplifier Product URL BGS8324: WLAN LNA + switch  Product Description The BGS8324 is, also known as the WLAN3001H, a fully integrated Low-Noise Amplifier (LNA) and SP3T switch for Bluetooth path and transmit path.   Category Peripherals Product URL 1 PCT2075: I2C-Bus Fm+, 1 Degree C Accuracy, Digital Temperature Sensor And Thermal Watchdog  Product Description 1 The PCT2075 is a temperature-to-digital converter featuring ±1 °C accuracy over ‑25 °C to +100 °C range. Product URL 2 PCA9955BTW: 16-channel Fm+ I²C-bus 57 mA/20 V constant current LED driver  Product Description 2 The PCA9955B is an I2C-bus controlled 16-channel constant current LED driver optimized for dimming and blinking 57 mA Red/Green/Blue/Amber (RGBA) LEDs in amusement products.
View full article
Overview   As gaming application needs real time, quick and fast reaction, user would like to have low latency solution for gaming application. Existing BT solution has higher latency. Also power consumption is critical in the design with limited battery capacity. NXP’s gaming headset solution combined with low latency and lower power consumption than competitors. We provide two platforms. One use KL27 MCU and the other one use LPC5528 MCU as processor. The key different feature between these two MCU platform is the audio resolution support. KL27 platform supports 48K sampling rate and LPC5528 platform supports USB audio up to 96K sampling rate. We design USB dongle and headset side solution, either module or Arduino interface H/W design. Also PMIC is important in the headset side. NXP can provide MCU, BLE and PMIC for this application. Block Diagram Products Category MCU Product URL 1 KL2x: Kinetis® KL2x-72/96 MHz, USB Ultra-Low-Power Microcontrollers (MCUs) based on Arm® Cortex®-M0+ Core  Product Description 1 The Kinetis® KL2x is an ultra-low-power MCU family that adds a full-speed USB 2.0 On-the-Go (OTG) controller or a full-speed crystal-less USB 2.0 device controller in addition to the Kinetis KL1x series. Product URL 2 LPC552x/S2x: Mainstream Arm® Cortex®-M33-based Microcontroller Family  Product Description 2 The LPC552x/S2x MCU family further expands the world’s first general purpose Cortex-M33-based MCU series   Category Power Management Product URL PCA9420: PMIC for Low Power Applications  Product Description The PCA9420 is a highly integrated Power Management IC (PMIC), targeted to provide power management solution for low-power microcontroller applications or other similar applications powered by Li-ion battery.   Category Wireless Product URL NXH3670: Ultra-low Power, Low Latency Audio for Wireless Gaming Headphone  Product Description The NxH3670 constitutes a highly integrated, single-chip ultra-low-power 2.4 GHz wireless transceiver with embedded MCU (Integrated Arm® Cortex®-M0 processor), targeted at wireless audio streaming for gaming headphones, delivering low latency audio and ultra-low power consumption.
View full article
Overview   Digital dashboard market is growing, especially e-Scooter, E-bike demand are also growing. This solution will cover a wide range of uses for identification and vehicular applications. This solution is based on i.MX RT technology and our NFC portfolio products. Near Field Communication (NFC) is a fast, intuitive technology that lets you interact securely with the world around you with a simple touch. NFC wireless proximity technology is available in billions of smartphones, tablets, consumer and industrial electronics—with new devices arriving almost daily. Block Diagram Products Category MCU Product URL 1 i.MX RT1060 Crossover MCU with Arm® Cortex®-M7 core  Product Description 1 The i.MX RT1060 is the latest addition to the industry's first crossover MCU series and expands the i.MX RT series to three scalable families. Product URL 2 LPC551x/S1x: Baseline Arm® Cortex®-M33-based Microcontroller Family  Product Description 2 The LPC551x/S1x MCU family expands the world’s first general purpose Cortex-M33-based MCU series, offering significant advantages for developers, including pin-, software- and peripheral-compatibility.   Category Charger Product URL 1 MWCT1x23: 65W+ Wireless Power Transmitter Controller  Product Description 1 The NXP® MWCT1x23 65W+ Wireless Power Transmitter Controller IC provides high speed control loops, robust foreign object detection, over voltage and over current protection to enable safe and secure power delivery through non-magnetic materials such as air, glass, wood, and plastic. Product URL 2 MWPR1x24: 65W+ Wireless Power Receiver with Integrated Radio  Product Description 2 The NXP® MWPR1x24 65W+ Wireless Power Receiver Controller with Integrated Radio IC provides all receiver parameters monitoring, communication with transmitter, over voltage and over current protection to enable safe and secure power delivery through non-magnetic materials such as air, glass, wood, and plastic.   Category Wireless Product URL 1 88W8987: 2.4/5 GHz Dual-Band 1x1 Wi-Fi® 5 (802.11ac) + Bluetooth® 5 Solution  Product Description 1 The 88W8987 is a highly integrated Wi-Fi (2.4/5 GHz) and Bluetooth single-chip solution specifically designed to support the speed, reliability and quality requirements of Very High Throughput (VHT) products.   Category Secure Element Product URL EdgeLock™ SE050: Plug & Trust Secure Element Family – Enhanced IoT security with maximum flexibility  Product Description The EdgeLock SE050 product family of Plug & Trust devices offers enhanced Common Criteria EAL 6+ based security, for unprecedented protection against the latest attack scenarios.   Category NFC Product URL 1 PN5180: Full NFC Forum-compliant frontend IC  Product Description 1 The PN5180 is a high-performance full NFC Forum-compliant frontend IC for various contactless communication methods and protocols. Product URL 2 PN7462: NFC Cortex®-M0 all-in-one microcontroller with optional contact interface for access control  Product Description 2 The PN7462 family consists of 32-bit Arm® Cortex®-M0-based NFC microcontrollers offering high performance and low power consumption. Product URL 3 MIFARE® DESFire® EV3: High-Security IC for Contactless Smart City Services  Product Description 3 The features of the MIFARE DESFire EV3 IC reflect NXP’s continued commitment to secure, connected and convenient contactless Smart City services.   Category Peripherals Product URL 1 PCA9955BTW: 16-channel Fm+ I²C-bus 57 mA/20 V constant current LED driver  Product Description 1 The PCA9955B is an I2C-bus controlled 16-channel constant current LED driver optimized for dimming and blinking 57 mA Red/Green/Blue/Amber (RGBA) LEDs in amusement products. Product URL 2 TJA1041A: High-speed CAN transceiver with standby and sleep mode  Product Description 2 The TJA1041A provides an advanced interface between the protocol controller and the physical bus in a Controller Area Network (CAN) node. Product URL 3 PCA85073A: Automotive tiny Real-Time Clock/Calendar with alarm function and I2C-bus  Product Description 3 The PCA85073A is a CMOS1 Real-Time Clock (RTC) and calendar optimized for low power consumption.
View full article
Overview   Smart, integrated building systems empower users to improve energy efficiency, lower maintenance costs and conveniently control environments from smartphones and advanced HMIs. Their interconnected features house a platform of big data to make smarter, environmental-friendly decisions while ensuring maximum comfort and performance. NXP® delivers all-encompassing solutions engineered to meet the environmental, longevity and energy-efficient requirements of smart buildings, from lighting to HVAC, networking to building access and beyond. Our integrated product features are helping to drive the next wave of intelligent buildings, lower system costs and speed time-to-market.   Use Cases   Smart Control and Access Building Safety HVAC Lighting Security Surveillance Connectivity   Block Diagram   Products Category MCU Product URL K70_120: Kinetis® K70-120–150 MHz, High-Speed USB, Ethernet, DDR and Anti-Tamper Microcontrollers based on Arm® Cortex®-M4 Core  Product Description The Kinetis® K70 MCU family offers industry-leading low power and mixed-signal analog integration for applications such as industrial control panels, navigational displays, point-of-sale terminals, and medical monitoring equipment.   Category Power Management Product URL 1 TEA1723FT: HV Start-up Flyback Controller with Integrated MOSFET for 11 W Applications, F~Burst = 1750 Hz  Product Description 1 The TEA1723 is a small and low cost module Switched Mode Power Supply (SMPS) controller IC for low power applications (up to 11 W) and operates directly from the rectified universal mains input. Product URL 2 NTS0104: Dual supply translating transceiver; open drain; auto direction sensing  Product Description 2 The NTS0104 is a 4-bit, dual supply translating transceiver with auto direction sensing, that enables bidirectional voltage level translation.   Category Zigbee Product URL JN5189/88 (T): High Performance and Ultra-low power MCUs for Zigbee® and Thread with Built-in NFC option  Product Description The JN5189 portfolio is designed to power the next generation of very low current wireless devices, supporting Zigbee 3.0, Thread, and IEEE 802.15.4.   Category Sensors Product URL 1 PCF85063A: Tiny Real-Time Clock/calendar with alarm function and I2C-bus  Product Description 1 The PCF85063ATL is a CMOS Real-Time Clock (RTC) and calendar optimized for low power consumption. Product URL 2 PCT2075: I2C-Bus Fm+, 1 Degree C Accuracy, Digital Temperature Sensor And Thermal Watchdog  Product Description 2 The PCT2075 is a temperature-to-digital converter featuring ±1 °C accuracy over ‑25 °C to +100 °C range.   Category Drivers Product URL 1 PCF85176: 40 x 4 universal LCD driver for low multiplex rates  Product Description 1 The PCF85176 is a peripheral device which interfaces to almost any Liquid Crystal Display (LCD) with low multiplex rates. Product URL 2 PCA9633: 4-bit Fm+ I²C-bus LED driver  Product Description 2 The PCA9633 is an I²C-bus controlled 4-bit LED driver optimized for Red/Green/Blue/Amber (RGBA) color mixing applications.   Category Interfaces Product URL 1 SC16IS752_SC16IS762: Dual UART with I²C-bus/SPI interface, 64 bytes of transmit and receive FIFOs, IrDA SIR built-in support  Product Description 1 The SC16IS752/SC16IS762 is an I²C-bus/SPI bus interface to a dual-channel high performance UART offering data rates up to 5 Mbit/s, low operating and sleeping current; it also provides the application with 8 additional programmable I/O pins. Product URL 2 TDA5051AT: Home automation modem  Product Description 2 The TDA5051A is a modem IC, specifically dedicated to ASK transmission by means of the home power supply network, at 600 baud or 1200 baud data rate. It operates from a single 5 V supply. Product URL 3 PCA9848: 8-channel ultra-low voltage, Fm+ I2C-bus switch with reset  Product Description 3 The PCA9848 is an ultra-low voltage, octal bidirectional translating switch controlled via the I²C-bus. Product URL 4 PCA6408A: Low-voltage, 8-bit I²C-bus and SMBus I/O expander with interrupt output, reset, and configuration registers  Product Description 4 The PCA6408A is an 8-bit general purpose I/O expander that provides remote I/O expansion for most microcontroller families via the I²C-bus interface. Product URL 5 PCA9629APW: Fm+ I2C-bus advanced stepper motor controller  Product Description 5 The PCA9629A is an I²C-bus controlled low-power CMOS device that provides all the logic and control required to drive a four phase stepper motor.  
View full article
Overview   In the power supply and distribution system, TTU (Transformer Terminal Unit) is used to collect and control the information of the distribution transformer. It can monitor the operation condition of the distribution transformer in real time and transmit the collected information to the main station or other intelligent devices to provide the data needed for the operation control and management of the distribution system. NXP provides many solutions on electricity conversion, including AC to AC, AC to DC and DC to DC converters NXP has a broad portfolio of software and processors for Smart Grid market. Regarding software, NXP has original LSDK Linux with Docker supporting and Edgescale solution for edge computing; Regarding processors, NXP has scalable solution from 1xA53 to 16xA72.   Block Diagram Products Category MPU Product URL Layerscape® 1043A and 1023A Multicore Processors  Product Description The LS1043A processor was NXP's first quad-core, 64-bit Arm®-based processor for embedded networking.   Category Bluetooth Product URL QN9090/30(T): Bluetooth Low Energy MCU with Arm®Cortex®-M4 CPU, Energy efficiency, analog and digital peripherals and NFC Tag option  Product Description The QN9090 and QN9030 are the latest microcontrollers in the QN series of Bluetooth low energy devices that achieve ultra-low-power consumption and integrate an Arm®Cortex®-M4 CPU with a comprehensive mix of analog and digital peripherals.   Category Power Management Product URL MC34VR500: Multi-Output DC/DC Regulator  Product Description The NXP® MC34VR500 power management solution for network processor systems is a high-efficiency, quad buck regulator with up to 4.5 A output and five user-programmable LDOs.   Category Peripherals Product URL 1 PCF85063B: Tiny Real-Time Clock/calendar with alarm function and SPI‑bus  Product Description 1 The PCF85063BTL is a CMOS Real-Time Clock (RTC) and calendar optimized for low power consumption. Product URL 2 SA56004X: SMBus-Compatible, 8-Pin, Remote/Local Digital Temperature Sensor  Product Description 2 The NXP Semiconductors SA56004X is an SMBus compatible, 11-bit remote/local digital temperature sensor with over-temperature alarms. Product URL 3 NTS0101: Dual supply translating transceiver; open drain; auto direction sensing  Product Description 3 The NTS0101 is a 1-bit, dual supply translating transceiver with auto direction sensing, that enables bidirectional voltage level translation.
View full article