恩智浦设计知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

NXP Designs Knowledge Base

讨论

排序依据:
Wind River's Ka Kay Achacoso demonstrates VxWorks 7 with graphics on the i.MX6 series applications processor. Features Demonstration of Graphics using VXWorks 7 The drivers are taking advantage of the i.MX processor's GPU to render hardware accelerated 3D graphics Using the accelerometer to show the orientation of the board The display shows a 3D view of how the board is being positioned taking into consideration perspectives and lighting shadows Featured NXP Products ARM® Cortex®-A9 Cores: i.MX 6 Series Multicore Processors Links NXP Connect - Wind River
查看全文
Description Earlier this year NXP organized a promotional opportunity for amateur radio enthusiasts to use their creativity and build their own power amplifier designs. NXP received numerous creative submissions in this competitive Homebrew RF Design Challenge. We appreciate the dedication and enthusiasm from the community that made this contest a success. First place winner An MRF101AN broadband amplifier design with 1 W Input, 100 W Output 1.8-54 MHZ Amplifier deck. (For more information visit:NXP MRF-101 - RFPowerTools )  It is an amplifier with a bandwidth of 1.8MHz to 54MHz. Maximum output power of 100W up to 30MHz and 70W up to 50MHz. Maximum power supply 50V to 4A, with a Voltage Standing Wave Ratio of 1.5:1 maximum. The design dimensions of the PCB is 5x5 cm (2x2 in). and 310g weight including fan and heat sink. Second place winner A 600W broadband HF amplifier using affordable LDMOS devices (For more information visit: https://qrpblog.com/2019/10/a-600w-broadband-hf-amplifier-using-affordable-ldmos-devices/  ) This project is meant to demonstrate the capabilities of the MRF300 transistors as linear broadband devices in the 2-50MHz range and to be used by radio amateurs as a starting point for a medium-high power amplifier. This is also my entry to the NXP Homebrew RF Design Challenge 2019. To achieve the target of 600W output while also minimizing the level of even-number harmonics, a “push-pull” configuration of two transistors is used. Luckily, the manufacturer made it easy to design the PCB layout for such a thing by offering two versions (the MRF300AN & MRF300BN) that have mirrored pinout. The common TO-247 package is used, with the source connected to the tab. Each individual MRF300 LDMOS transistor is specified at 330W output over a 1.8-250MHz working frequency range, a maximum 28dB of gain and over 70% efficiency. The recommended supply range is 30-50Vdc. By studying the specifications, it looks like with correct broadband matching and some operational safety margin we can get close to 600W output at a voltage of around 45V across a resonably large bandwidth; the aim is to cover 1.8 to 54MHz. Main challenges when designing this amplifier are related to achieving good input and output matching over the entire frequency range as well as maintaining high and flat gain. Good linearity and a low level of harmonic products are mandatory. As the TO-247 is not a package specifically designed for high-power RF, there are some challenges with thermal design and PCB layout as well. Information taken from the essay by the winner. Third place winner A High Efficiency Switchmode RF Amplifier using a MRF101AN LDMOS Device for a CubeSat Plasma Thruster (For more information visit: Research - SuperLab@Stanford ) The Class E amplifier utilizes the active device as a switch, operating in only cutoff (off) and saturated (on) conditions. This minimizes the overlap of voltage and current, reducing losses in the active device. To further reduce loss the Class E amplifier utilizes an inductively tuned resonant network to achieve zero voltage switching, bringing the voltage across the switch to zero before turn on, eliminating energy stored in the output capacitance of the active device that would otherwise be dissipated. This is achieved with an inductively tuned series resonant output filter.  In the Class E amplifier losses are almost entirely determined by the current conducted by the active device so a high drain impedance is desired to maximize efficiency. The drain impedance is ultimately limited by the voltage rating of the switch. For our desired output power of 40W and the maximum voltage rating of 133V for the MRF101AN this impedance is still less than 50 ohms, so a L match circuit is used to match the drain impedance to 50 ohms. The load network in our design provides a drain impedance of 15.4+12.8j. As the MRF101AN will operate in saturation a high drive level is desired. To eliminate the need for a preamplifier and allow for digital control, we use a high speed gate drive chip typically used in switch-mode power supplies, LMG1020, to drive the MRF101AN instead of a RF preamplifier. A resonant network is used to provide voltage gain at the fundamental and third harmonic, providing a quasi-square wave on the gate which helps insure the device remains in saturation. Conclusion It was a close call and highly competitive! Each participant had their own creative, unique and impressive way of displaying the capabilities of these new parts. NXP is always up for new design challenges. Ready for the next challenge?
查看全文
Overview   NXP smart amplifier is a high efficiency boosted Class-D audio amplifier with a sophisticated SpeakerBoost acoustic enhancement and Protection algorithm in on-Chip DSP with temperature and excursion protection. The internal adaptive DC-to-DC converter raises the power supply voltage, providing ample headroom for major improvements in sound quality. NXP portfolio counts with multicore solutions for multimedia and display applications with high-performance and low-power capabilities that are scalable, safe, and secure. This solution is based on an i.MX 8M Family MCU. This application processor provides industry-leading audio, voice and video processing. Block Diagram Products Category MPU Product URL i.MX 8M Family - Arm® Cortex®-A53, Cortex-M4, Audio, Voice, Video  Product Description The i.MX 8M family of applications processors based on Arm® Cortex®-A53 and Cortex-M4 cores provide industry-leading audio, voice and video processing for applications.   Category Wireless Product URL 1 QN9090/30(T): Bluetooth Low Energy MCU with Arm®Cortex®-M4 CPU, Energy efficiency, analog and digital peripherals and NFC Tag option  Product Description 1 The QN9090 and QN9030 are the latest microcontrollers in the QN series of Bluetooth low energy devices that achieve ultra-low-power consumption and integrate an Arm®Cortex®-M4 CPU with a comprehensive mix of analog and digital peripherals. Product URL 2 88W8987: 2.4/5 GHz Dual-Band 1x1 Wi-Fi® 5 (802.11ac) + Bluetooth® 5 Solution  Product Description 2 The 88W8987 is a highly integrated Wi-Fi (2.4/5 GHz) and Bluetooth single-chip solution specifically designed to support the speed, reliability and quality requirements of Very High Throughput (VHT) products. Product URL 3 NTAG I2C plus: NFC Forum Type 2 Tag with I2C interface  Product Description 3 The NTAG I2C plus combines a passive NFC interface with a contact I2C interface.   Category Power Management Product URL 1 TEA1833LTS: GreenChip SMPS Control IC  Product Description 1 The TEA1833LTS is a low-cost Switched Mode Power Supply (SMPS) controller IC intended for flyback topologies. Product URL 2 PCA9450: Power Manage IC (PMIC) for i.MX 8M Mini/Nano/Plus  Product Description 2 The PCA9450 is a single chip Power Management IC (PMIC) specifically designed to support i.MX 8M family processor in both 1 cell Li-Ion and Li-polymer battery portable application and 5 V adapter nonportable applications.   Category RF Amplifier Product URL BGS8324: WLAN LNA + switch  Product Description The BGS8324 is, also known as the WLAN3001H, a fully integrated Low-Noise Amplifier (LNA) and SP3T switch for Bluetooth path and transmit path.   Category Peripherals Product URL 1 PCT2075: I2C-Bus Fm+, 1 Degree C Accuracy, Digital Temperature Sensor And Thermal Watchdog  Product Description 1 The PCT2075 is a temperature-to-digital converter featuring ±1 °C accuracy over ‑25 °C to +100 °C range. Product URL 2 PCA9955BTW: 16-channel Fm+ I²C-bus 57 mA/20 V constant current LED driver  Product Description 2 The PCA9955B is an I2C-bus controlled 16-channel constant current LED driver optimized for dimming and blinking 57 mA Red/Green/Blue/Amber (RGBA) LEDs in amusement products.
查看全文
This post entry provides a detailed description of the OM29263ADK kit, a new antenna tuning development kit specially designed to facilitate the NFC antenna prototyping process. This document has been structured as follows: OM29263ADK kit contents This kit consists of a single PCB board that includes:  A pre-matched antenna of 2 turns and a size of 77 by 113 mm.  A second pre-matched antenna of 4 turns and a smaller size of 20 by 20 mm.  And, 8 extra boards to prepare the matching for custom antennas. As a result, this kit is a perfect resource for different purposes such as evaluating the RF performance of different antenna sizes and, for prototyping your custom antenna quickly. In addition, this NFC antenna development kit is compatible with our existing product support package. You can directly connect it to CLRC663 demoboards, as well as to PN5180 and PN7462 demoboards after a minor tuning. Using OM29263ADK kit with CLEV6630A or CLEV6630B The process is really straightforward… First, take one CLRC663 demoboard and separate the main PCB from the antenna & matching circuit. The board includes cut lines, so you can divide both sections easily by only using your hands. Second, break the kit OM29263ADK PCB so that you separate the pre-matched antenna from the other PCB parts. Then, it is just a matter of connecting the two parts together. The kit antenna includes pin male connectors while the CLRC663 board includes the corresponding female connectors. Therefore, hook up the antenna with the main board, solder the connectors and that’s all. We can observe that when we connect the kit large antenna to the reader PCB, the  impedance measured with our network analyzer shows that the tuning is adjusted to approximately, 19 Ohms. This is the result obtained without any hardware modification The same process applies for the smaller antenna: Similarly, we can observe that when we connect the kit small antenna to the reader PCB, the  impedance measured with our network analyzer shows that the tuning is adjusted to approximately, 36 Ohms. This is the result obtained without any hardware modification: Using OM29263ADK kit with PNEV5180B or PNEV7462C In case you are interested to connect the OM29263ADK kit antennas to the PNEV5180B or PNEV7462C boards, the preparation process is the following: First, separate the antenna and the matching section from the PN5180 or PN7462 demoboards, as before, using the cut lines. Then, take one kit sample, and separate the pre-matched antennas for the other PCB parts. And finally, adjust the EMC filter. The EMC filter adaptation is required because the kit antenna is prepared for asymmetric tuning while the PN5180 and PN7462 original antenna use a symmetrical tuning. The main difference between both types of tuning is the cut off frequency. The symmetric tuning uses a cutoff frequency around 15MHz, while the asymmetric can go up to 22 MHz. In practice, for this adaptation, we only need to change the value of the capacitor C0 in the main board. For instance, the existing 220 pF capacitor can be replaced for another one of 68 pF. Using OM29263ADK kit to connect your own antenna coil This section describes how to use the kit PCB boards for our custom antenna tuning. For this task, the list of material that we need is: A reader PCB board, in the example, we picked CLRC663 One of the PCBs for antenna matching included in the kit And, the any antenna to be matched  In our case, we have selected one sample antenna available in our lab. The following explanation will be guided using this antenna as a reference, but any antenna can be tune using the same process. The usual list of steps to tune a custom antenna are: First, we need to define target impedance and Q factor, as design parameters for our reader Then, we will characterize the antenna coil and find its parameters After that, we will design the EMC filter With this, we will calculate the matching components using an Excel sheet Afterwards, we will assemble the calculated components and measure the first results. We will take field measurements, which probably will show that it is not perfect, so we may need to adapt the matching values With these fine-tuned vales, we will re-assemble again And finally, we will design the receiver circuit. Define target impedance and Q-factor First, we start defining the target impedance and Q-factor. The target impedance is a design parameter, which needs to be chosen according to our needs whether we want to go for maximum field strength or minimum battery consumption or a trade-off in between. Typically, reasonable values are between 20 Ohms and 80. Another important design parameter is the Q factor. The Q factor is a dimensionless parameter indicating the performance of a resonant circuit. The higher the Q factor, the higher the read range. On the other hand, increasing the Q factor also reduces the bandwidth of the circuit. As a result, in practical implementation, Q-factor values below 30 are demonstrated to fit well for the ISO14443 wave form timing requirements and corresponding spectrum.  For our tuning exercise, the design parameters chosen are an impedance of 20 ohms and a Q factor of 25 Measure antenna coil Next step is to characterize the antenna coil. Any antenna coil has an input impedance. This input impedance is complex and consists of an inductance, capacitance as well as some losses represented by a resistance (R). The actual values depend, among others, on antenna material, thickness of conductor, distance between the windings, number of turns, etc.  The coil characterization needs to be done with a network analyzer. It could be a high end, such as Agilent or Rohde & Schwarz, which is powerful, accurate, easy to use, but expensive. Or we can also go for low end solutions, such as the miniVNA PRO, which is cheap compared with the previous ones, and accurate enough for our needs. In our case, the characterization of our lab antenna shows:  An inductance around 1.3 uH And a resistance of 2.5 Ohms Design EMC filter The next step is to design the EMC filter. As we are using CLRC663, we will go for an asymmetric antenna tuning. Good inductor values are between 330nH and 560nH. and 21MHz cutoff frequency is ideal for asymmetric tuning. Fixing this two parameters, we can easily calculate the required capacitor component for our EMC filter with the formula below. In our example, we need to use a capacitor of C= 122 pF. With this, we just pick up the closer commercial value from our components box Calculate matching circuit components We have characterized the antenna coil and completed the EMC filter. Now, we can calculate the matching network components. The matching components need to be calculated so that the maximum power from the reader is transmitted to the antenna. This happens when the equivalent impedance seen from the reader IC only has the real part, without the complex part. There are some complex calculation involved in the process. In order to avoid these cumbersome formulas, NXP provides a useful Antenna Tuning excel sheet that calculate the appropriate components for you. Below, you can see a screenshot of the Excel sheet in the slide. This sheet calculates C1 and C2 matching values according to the inputs expected from the user. These are The measured antenna coil parameters The EMC filter parameters. The target impedance and Q-factor of our design With these values, The Excel sheet calculates and outputs the value of the matching components: C0, C1, C2 and Rs. In our exercise, the output values calculated for the matching network by the Excel sheet are C1 around 43 pF and C2 around 144 pF Assemble and measure Typically, the calculated values do not match with commercial components. The easiest way is to add components in parallel to get as close as possible to the calculated values. If we take a closer look to the kit antenna matching PCB board, the pad location is the following: We have two slots for C0 – so we can have two capacitors in parallel to achieve a better accuracy on the capacitance value we need to achieve We also have two slots for C1, for the same purpose We have two more slots for C2 soldering We also have two slots for the dampening resistor, in case we need to reduce the Q-factor of our antenna. And finally, one slot for the receiver resistor circuit. After the first component assembly, it is worth performing a field measurement to find out how accurate our matching is in reality. Typically, the measured impedance is different than the impedance calculated in the simulation. Therefore, the calculated matching components were not 100% accurate. But we knew that in advance. We were aware that we were just getting a rough approximation to the antenna parameters. As a result, a good matching is achieved after a number of iterations according to the field measurements that we obtain. As a general rule,  C1 changes the magnitude of the matching impedance and C2 changes its imaginary part. In our exercise, after soldering the first components, the equivalent impedance is around 19 Ohms but it also has a significant imaginary part. As a result, it can be fine-tuned towards better performance. We modified C1 and C2 a couple of times until we found out the final values that work better. obtaining a impedance with only real part at 22 Ohms (C1= 36pF and C2=154 pF). Adjust receiver circuit The last step of tuning our antenna is to design the receiver circuit. The Rx circuit that consists of a voltage divider and a coupling capacitor connected from the output of the EMC filter to the RX pins of the NFC reader. The objective is to set the voltage level at the reception pins to achieve the compromise between a good sensitivity. For CLRC663 plus, the serial resistor is in the range of 7 and 15 kΩ. You can start with a 11 KOhm value, then, the resistor can be adjusted depending on the voltage measured in the Rx pins. If the voltage at Rx pin is higher than 1.7 V, it is recommended to increase the resistor value and if the voltage at Rx pin is below than 1.2 V, it is recommended to decrease the resistor value. Using OM29263ADK kit to evaluate the performance of different antenna shapes The section covers how you can use the antennas included in the kit for performance comparison. Please note that this lab exercise is shown only for illustrative purposes on how the kit can be used to evaluate the performance of different antenna shapes. As an example, we defined a sample scenario where we want to characterize how the field strength decreases with distance when using antennas of different size. For that, we used the following setup: A class 1 ISO14443 Reference PICC A scope A CLRC663 board connected to the small antenna A CLRC663 board connected to the large antenna A ruler to measure the distance The measurements were taken in this way: We tuned the large and small antennas to 20 Ohms We connected the board to the laptop, and we executed the NFC Cockpit tool to control the RF field. We measured with the scope the voltage level obtained by the ISO14443 Class 1 Reference PICC while we increased the distance. Background information Before actually showing you the results, it is worth it to review a couple of antenna design principles to properly understand the results. Coupling coefficient Before actually showing you the results, it is worth it to review a couple of antenna design principles to properly understand the results. The coupling coefficient is a parameter that indicates how much of the magnetic field generated by the reader is picked up by the card. The coupling coefficient takes a value between 0 and 1 If the coupling equals 1, it means we have a perfect coupling, all magnetic field lines are picked by the card If the coupling equals 0, it means we have no coupling at all, no magnetic field lines are picked by the card The key message is that the coupling coefficient is just a geometric quantity. It depends on: The reader and card antenna dimensions (both antenna radius) Their relative position (whether in parallel or perpendicular, they will pick a different amount of magnetic field lines) The distance between them And the magnetic properties of the medium Mutual inductance Very related to the coupling coefficient, we have the mutual inductance. The mutual inductance allows us to determine the voltage induced in the card antenna, that depends on: Coupling coefficient  Better coupling, higher the voltage Driver current  The higher the current we drive in the reader antenna, the stronger the magnetic field Antenna inductance Precisely, in this setup, we are going to measure the voltage perceived by the reference PICC when using two different antennas. Antenna tuning components used for the large antenna First, we prepared a tuning of 20 Ohms in the large antenna. This task was done using the process described above. As an example, we selected a low Q-factor of 10, which helped us to accommodate high bit rates for ISO14443. In the figure below, you can see the components we assembled to tune the large antenna near to 20 Ohms. Antenna tuning components used for the small antenna Second, we prepared a tuning of 20 Ohms in the small antenna so that the results are comparable. The same Q-factor and EMC filter values were used, but obviously, as the antenna size is different, we used different C1, C2 and Rs values to achieve the same equivalent impedance OM29263ADK large antenna vs small antenna The following graph shows the results we obtained: The blue line, represents the DC output voltage obtained from the Class 1 Reference PICC as we increase the distance from the reader using the large antenna… The green line, represents the DC output voltage obtained from the Class 1 Reference PICC but using the reader with the small antenna connected. As a result, what we see is that at close distance, both antennas are able to deliver the same field strength. However, as distance increases, the RF field of the small antenna starts to attenuate quickly from 2 cm distance of the reader while the RF field of the large antenna is more or less stable until 5 cm, after that, it starts to attenuate quickly as well. Potentially, what we can conclude is that for this setup, we might be able to get more reading distance with the large antenna. ISO/IEC14443 vs ISO/IEC15693 reader - Quality factor We need to bear in mind that our antenna is not only for energy transfer, but also it should match with the waveform requirements. Therefore, from the practical point of view, the Q factor of the system is limited by the bandwidth as if we increase the Q, we increase the field strength but we decrease the bandwidth. Our reader can be optimized whether we are designing a reader for ISO14443 or ISO15693 as the signals modulation and timing requirements of the rise and fall times for both RF protocols are different. Actually, in practice, ISO15693 allows us a higher Q factor because there is a lower bandwidth requirement as the waveform timings are more relaxed and, the power transfer requirement is lower than ISO14443. For such optimization, you can refer again to NXP antenna tuning excel sheet. If you recall, one of the input fields of the excel sheet is the Q-factor. Therefore, you can introduce here a value below 30 for ISO14443 readers or below 100 for ISO15693 readers. The excel will output reasonable matching values for the first components adjustment. After that, you can do a fine tuning according to the process I explained before. Further information You can find more information about NFC in: Our NFC everywhere portal: https://www.nxp.com/nfc You can ask your question in our technical community: https://community.nxp.com/community/identification-security/nfc You can look for design partners: https://nxp.surl.ms/NFC_AEC And you can check our recorded training: http://www.nxp.com/support/online-academy/nfc-webinars:NFC-WEBINARS Video recorded session On 21 June 2018, a live session explaining this topic. You can watch the recording here:
查看全文
Demo Hexiwear platform combines the style and usability found in high-end consumer devices, with the functionality and expandability of sophisticated engineering development platforms, making Hexiwear the ideal form factor for the wearable market, as well as other edge-node IoT solutions. Completely open-source and developed by MikroElektronika in partnership with NXP, the Hexiwear hardware includes the low power, high performance Kinetis K6x Microcontroller based on ARM Cortex-M4 core, the Kinetis KW40Z multimode radio SoC, supporting BLE in Hexiwear. The Hardware features included 6 on-board sensors such as Optical Heart Rate Monitor, Accelerometer and Magnetometer, Gyroscope, Temperature, Humidity, light and Pressure sensor's. Hexiwear also includes Color OLED Display, Rechargeable battery and External flash memory. $49 NXP Hexiwear, IoT and Wearables development platform – ARMdevices.net   Hexiwear is supported with its own application for Android and iOS, so customers can connect the device to the cloud straight out of the box, without any additional software development. Hexiwear uses FreeRTOS, the Kinetis software development kit (SDK) and the Kinetis Design Studio IDE. The Hexiwear platform is also expandable with the option to add nearly 200 different, additional sensors through click boards™      Features •       Eye-catching small form factor (smaller than 2” by 2”) board with open source hardware with 7 NXP components and 8 sensors on-board. •       Designed for wearable applications with the onboard rechargeable battery, OLED screen and onboard sensors such as optical heart rate, accelerometer, magnetometer and gyroscope. •       Designed for IoT end node applications with the onboard sensor’s such as temperature, pressure, humidity and ambient light. •       Complete software solution with open source embedded software, cell phone apps and cloud connectivity. •       Flexibility to let you add the sensors of your choice from 180+ plug and play add on boards. NXP Products Recommended ARM Cortex-M4|Kinetis K64 120 MHz 32-bit MCUs|NXP  ARM Cortex-M0+|Kinetis KW40Z 2.4 GHz 32-bit MCUs|NXP  FXOS8700CQ Accelerometer and Magnetometer FXAS21002 Gyroscope MPL3115A2R1 Altimeter MC34671 Battery charger Other Links Kickstarter Hexiwear Design Files Hexiwear|NXP     News Module Targets Rapid IoT Development | Embedded content from Electronic Design  NXP Accelerates Smart Wearable Product Development | Business Wire  Mouser Stocking the Hexiwear Open Source IoT Platform from MikroElektronika and NXP | Electronics360  Contest Hexiwear: The Do-Anything Device! - Hackster.io  Hexiwear: Quickly Build Quality IoT Devices - HWTrek  http://www.rs-online.com/designspark/electronics/eng/blog/test-drive-hexiwear-the-wearable-iot-development-kit  Blogs https://www.linkedin.com/pulse/hexiwear-complete-iot-wearable-development-solution-powered-kedia?trk=prof-post  Introduction to Hexiwear – a wearable development kit for the IoT era – HWTrek Blog  Win an Oculus Rift! Hexiwear Design Contest | mbed  https://mcuoneclipse.com/2016/07/12/hexiwear-teardown-of-the-hackable-do-anything-device/  Freedom development platform: Hackster.io conte... | element14 Community  JavaScript mobile apps for your NXP Hexiwear BLE device | Evothings 
查看全文
Overview   As gaming application needs real time, quick and fast reaction, user would like to have low latency solution for gaming application. Existing BT solution has higher latency. Also power consumption is critical in the design with limited battery capacity. NXP’s gaming headset solution combined with low latency and lower power consumption than competitors. We provide two platforms. One use KL27 MCU and the other one use LPC5528 MCU as processor. The key different feature between these two MCU platform is the audio resolution support. KL27 platform supports 48K sampling rate and LPC5528 platform supports USB audio up to 96K sampling rate. We design USB dongle and headset side solution, either module or Arduino interface H/W design. Also PMIC is important in the headset side. NXP can provide MCU, BLE and PMIC for this application. Block Diagram Products Category MCU Product URL 1 KL2x: Kinetis® KL2x-72/96 MHz, USB Ultra-Low-Power Microcontrollers (MCUs) based on Arm® Cortex®-M0+ Core  Product Description 1 The Kinetis® KL2x is an ultra-low-power MCU family that adds a full-speed USB 2.0 On-the-Go (OTG) controller or a full-speed crystal-less USB 2.0 device controller in addition to the Kinetis KL1x series. Product URL 2 LPC552x/S2x: Mainstream Arm® Cortex®-M33-based Microcontroller Family  Product Description 2 The LPC552x/S2x MCU family further expands the world’s first general purpose Cortex-M33-based MCU series   Category Power Management Product URL PCA9420: PMIC for Low Power Applications  Product Description The PCA9420 is a highly integrated Power Management IC (PMIC), targeted to provide power management solution for low-power microcontroller applications or other similar applications powered by Li-ion battery.   Category Wireless Product URL NXH3670: Ultra-low Power, Low Latency Audio for Wireless Gaming Headphone  Product Description The NxH3670 constitutes a highly integrated, single-chip ultra-low-power 2.4 GHz wireless transceiver with embedded MCU (Integrated Arm® Cortex®-M0 processor), targeted at wireless audio streaming for gaming headphones, delivering low latency audio and ultra-low power consumption.
查看全文
Android Open Accessory support allows external USB hardware (an Android USB accessory) to interact with an Android-powered device in a special accessory mode. When an Android-powered powered device is in accessory mode, the connected accessory acts as the USB host (powers the bus and enumerates devices) and the Android-powered device acts in the USB accessory role. This ADK library is based on NXP Kinetis Microcontroller KL26, It implements some functions to communicate with android phone.  
查看全文
The purpose of this project is the control of a RGB LED panel using the FlexIO peripheral included in the Kinetis K82 microcontroller. The FlexIO peripheral offers a great advantage, unloading the CPU in the process of refreshing the LED color and brightness information, comparing with other control methods using GPIO bit-banging or PWM + DMA. I will use different method. The panel will use LED stripes with the WS2812B controller. We will also have a simulation platform for developing the applications. Hardware: 30 x16 LED WS2812B Panel Multiplexer board FRDM-K82 Uctronics QVGA display Software: IAR Workbench 7.50.1 SDK 1.3 for the Kinetis K82 FreeRTOS eGUI graphic library You can watch the video with the LED panel working: Video Link : 4707 Part 1: Building the LED Panel Part 2: LED control method using the FlexIO Part 3: Software for LED Panel emulation Part 4: Software for panel control
查看全文
Description   Sigfox is a French company founded in 2009 that builds wireless networks to connect IoT devices. Their original focus was on industrial/professional applications such as water meters. Sigfox has recently been applying their technology to consumer applications such as smart watches and home alarms. The key parameters for the application is the requirement to exchange continuously and securely small amounts of data. A wireless base station is a transceiver that connects other devices to one another and/or to a wider area. In this particular application we are implementing a Sigfox base station.   Features Low power Securely Small amounts of data Securely transmitting small amounts of data   Block Diagram     Products   Category Name 1: MCU Product URL 1 Layerscape LS1012A Communication Processor for the IoT | NXP  Product Description 1 The QorIQ® LS1012A processor, optimized for battery-backed or USB-powered, space-constrained networking and IoT applications.   Category Name 2: Wireless Product URL 1 Low-Power Multi-Channel UHF RF Wireless Platform | NXP  Product Description 1 The OL2385 device is a radio frequency transceiver with an embedded MCU designed for a wide range of industrial and home applications requiring a very high link budget for bi-directional RF communication.   Category Name 3: Power Management Product URL 1 VR5100 Multi-output DC-DC for COMM Processor | NXP  Product Description 1 The VR5100 is a high-performance, multi-output DC-DC regulator designed to power single or dual core LS1 processors like LS1012A and LS1024A.   Category Name 4: Peripherals Product URL 1 Logic controlled high-side power switch | NXP  Product Description 1 The NX5P2190 is an advanced power switch with adjustable current limit. It includes under-voltage and over-voltage lockout, over-current, over-temperature, reverse bias and in-rush current protection circuits. Product URL 2  TJA1101 | 2nd generation PHY Transceiver | NXP  Product Description 2 TJA1101  offers 100Mbit/s transmit and receive capability per port over up to at least 15m of unshielded twisted pair (UTP) cable.   Tools   Product Link OM2385/SF001 - OL2385 Wireless sub-GHz Transceiver SIGFOX Development Kit with KL43Z OM2385/SF001 - SIGFOX Development Kit | NXP  Layerscape FRWY-LS1012A board FRWY-LS1012A Development Platform | NXP  KITVR5100FRDMEVM: Evaluation Kit for VR5100 Power Management Integrated Circuit Evaluation Kit for VR5100 Power Management Integrated Circuit | NXP 
查看全文
Demo New S32V234 silicon demonstrating the MIPI CSI camera connection with execution of ISP algorithm and comparison with original camera image. New ADAS solution for vision, sensor fusion and surround view application Quad-core ARM® Cortex®-A53 processor, CogniVue APEX™, Vivante GC3000 GPU, and advanced memory bus system architecture Integrated ISP for camera video input and filtering Featured NXP Product S32V230 Family of Processors for Advanced Dri|NXP Other Advanced Driver Assistance Systems (ADAS)|NXP
查看全文
Description The user interface of a product is a key element that design engineers need to address to provide a compelling user experience. Touchpads, slides and rotaries offer a more intuitive and effective way of user interaction than traditional buttons. And, designing a touch-based user interface is simplified with this NXP touch solution. The touch function is more and more popular in the consumer market, especially in the white-good field. The KE15Z series of MCUs offers the Touch Sensing Interface (TSI) which recognizes finger touch by sensing capacitance changes. Features Advanced EMC robustness, pass IEC61000-4-6 standard test Supports both self-cap sensor and mutual-cap sensor, up to 36 touch keys Low BOM cost per touch key, no need for external devices Adjustable touch sensing resolution and sensitivity, high-performance for waterproof applications Low-power support Block Diagram Products Category Name 1: MCU Product URL 1 Arm Cortex-M0+|Kinetis KE1xZ 32-bit 5V MCUs with Touch Interface | NXP  Product Description 1 The KE1xZ includes a robust TSI module which provides a high level of stability and accuracy to any HMI system. These MCUs support up to 256 KB flash, 32 KB RAM, and a complete set of analog/digital features. Category Name 2: Wireless Product URL 1 Arm® Cortex®-M0+|Kinetis® KW41Z 2.4 GHz Bluetooth Low Energy Thread Zigbee Radio MCUs | NXP  Product Description 1 The KW41Z is an ideal solution for true single-chip designs that require concurrent communication on both a Bluetooth Low Energy network and an 802.15.4-based network such as Thread and Zigbee. Documentation KE15Z TSI Development for Low Power Applications:  https://www.nxp.com/docs/en/application-note/AN5420.pdf  Demos Touch Sense Interface for Kinetis KE15Z MCUs  Tools Product Link FRDM-KW41Z: Freedom Development Kit for Kinetis® KW41Z/31Z/21Z MCUs FRDM-KW41Z |Bluetooth Thread Zigbee enabled Freedom Development Kit | NXP  FRDM-TOUCH: Touch Module for Freedom Board FRDM-TOUCH|Touch Module for Freedom Board | NXP 
查看全文
Demo Kinetis KW4x MCU is an ultra low power, highly integrated single-chip device that enables Bluetooth low energy (BLE) connectivity for portable, extremely low-power embedded systems.     Features iBeacon Location-based Messages The KW4x is an ultra low power, highly integrated single-chip device that enables Bluetooth low energy (BLE) or IEEE Std. 802.15.4/ZigBee RF connectivity for portable, extremely low-power embedded systems. Applications include portable health care devices, wearable sports and fitness devices, AV remote controls, computer keyboards and mice, gaming controllers, access control, security systems, smart energy and home area networks.  The KW4x SoC integrates a radio transceiver operating in the 2.36GHz to 2.48GHz range supporting a range of FSK/GFSK and O-QPSK modulations, an ARM Cortex-M0+ CPU, 160KB Flash and 20KB SRAM, BLE Link Layer hardware, 802.15.4 packet processor hardware and peripherals optimized to meet the requirements of the target applications.  The KW4x’s radio frequency transceiver is compliant with Bluetooth version 4.1 for Low Energy (aka Bluetooth Smart), and the IEEE 802.15.4-2011 standard using O-QPSK in the 2.4 GHz ISM band and the IEEE 802.15.4j MBAN frequency range spanning from 2.36 GHz to 2.40 GHz. In addition, the KW4x allows the Bluetooth Low Energy protocol to be used in the MBAN frequency range for proprietary applications. Enabled by Kinetis KW4x MCUs Discover location-based context A Bluetooth® Smart low-power application   Bluetooth Smart and 802.15.4 Dual Mode Communication BLE heart rate sensor on a KW40Z connecting, pairing and exchanging data with an iPod while the 802.15.4 end device (on the same KW40Z chip) associates and exchanges data with a coordinator. The OTA packets are displayed in sniffer applications on a Windows PC.  The KW4x is an ultra low power, highly integrated single-chip device that enables Bluetooth low energy (BLE) or IEEE Std. 802.15.4/ZigBee RF connectivity for portable, extremely low-power embedded systems. Applications include portable health care devices, wearable sports and fitness devices, AV remote controls, computer keyboards and mice, gaming controllers, access control, security systems, smart energy and home area networks.  The KW4x SoC integrates a radio transceiver operating in the 2.36GHz to 2.48GHz range supporting a range of FSK/GFSK and O-QPSK modulations, an ARM Cortex-M0+ CPU, 160KB Flash and 20KB SRAM, BLE Link Layer hardware, 802.15.4 packet processor hardware and peripherals optimized to meet the requirements of the target applications.  The KW4x’s radio frequency transceiver is compliant with Bluetooth version 4.1 for Low Energy (aka Bluetooth Smart), and the IEEE 802.15.4-2011 standard using O-QPSK in the 2.4 GHz ISM band and the IEEE 802.15.4j MBAN frequency range spanning from 2.36 GHz to 2.40 GHz. In addition, the KW4x allows the Bluetooth Low Energy protocol to be used in the MBAN frequency range for proprietary applications. Concurrent communication on BLE and 802.15.4 Suited for configuring 802.15.4 devices from your smart phone Automatic synchronization completely transparent to the application   BLE-enabled Smart Zumo Robot The Smart Zumo Robot is powered by the new Kinetis KW40X MCU and is enabled by Bluetooth Low Energy (BLE) technology. Low-power, Bluetooth Low Energy (BLE) application Running simple control implementation over BLE to interact and control with the robot Highly-integrated radio solution with scalable memory options   Featured NXP Products   Product Link Bluetooth Low Energy/IEEE® 802.15.4 Packet Sniffer USB Dongle for Kinetis® KW40Z/30Z/20Z MCUs Bluetooth Low Energy/IEEE® 802.15.4 Packet Sniffer USB Dongle for Kinetis® KW40Z/30Z/20Z MCUs | NXP      Development Hardware Used   Freedom Development Platform for Kit Bluetooth Low Energy/IEEE® 802.15.4 Pack
查看全文
Smart Thermostat reference demo is based on Kinetis family MCU (K70F120M) and KW24D512 zigBee coordinator. The demo kit has an HVAC application which controls the heat/cool temperature, hvac mode etc of the remote temperature sensor via zigBee coordinator. The demo kit Connects to WAN via Ethernet or wifi. The wifi module used is a wifi module from Qualcomm.  The embedded DeviceCloud cloud agent provides firewall agnostic instant cloud connectivity. The device can be registered and authenticated with DCIO cloud platform and the remote temperature sensor can be monitored and controlled through DCIO Mobile Application.   The K70 application is built for MQX RTOS v4.0.2 and uses our PEG graphics library for the user interface displayed on an LCD. The K24 application is built on MQX-Lite RTOS, uses our BeeStack ZigBee stack. The demo will also connect with an off-the-shelf ZigBee light bulb and wirelessly controls it.   The reference design provides guidelines for building solutions using connected devices that can be managed, provisioned and monitored from Cloud and Mobile applications.   Features Kinetis Smart Thermostat Qualcomm-Atheros GT 202 Carrier board MQX Software Solutions RTOS 4.0.2 BeeStack ZigBee stack HVAC application deviceCloud.io's cloud agent deviceCloud.io's Mobile App deviceCloud.io's web based solution   NXP Products Product Link Kinetis® KW2x Tower System Modules TWR-KW2x|Tower System Board|Kinetis® MCUs | NXP  Kinetis K70 120 MHz Tower System Module TWR-K70F120M|Tower System Board|Kinetis MCUs | NXP  Links Connected HVAC Demo with deviceCloud.io Cloud Solution   System Diagram Hardware Diagram Software Diagram Connectivity Diagram  
查看全文
Demo FlexIO Demos below: Title Link Luminaire: A tale of woe https://www.hackster.io/0xtj/luminaire-a-tale-of-woe-263189 FlexIO Based Multi-Copter Rotor Control https://www.hackster.io/agent-titanium-c6063b/flexio-based-multi-copter-rotor-control-57d124 Automated water level https://www.hackster.io/andre-pereira-da-silva/automated-water-level-2fb900 IOT" Hydrometer E-mailer" https://www.hackster.io/benf2/iot-hydrometer-e-mailer-7a7ca5 FlexIO 3D Printer https://www.hackster.io/BigLazyPlayer/flexio-3d-printer-7e9d57 IoT with Kinetis FlexIO https://www.hackster.io/bltrobotics/iot-with-kinetis-flexio-0d4c3e Air Quality Control https://www.hackster.io/claude4/air-quality-control-2e7d65 Wireless Digital scale https://www.hackster.io/dhq/wireless-digital-scale-238e83 FRDMK82F Servo and Brushless Motor Control https://www.hackster.io/ElvisWolcott/frdmk82f-servo-and-brushless-motor-control-6461fb FRDM-K82F Camera Based Parking Assistant https://www.hackster.io/inakizi/frdm-k82f-camera-based-parking-assistant-9dfa6f KD2 Droid https://www.hackster.io/jreese/kd2-droid-7fbed1 NXP Kinetics Smart Web Multimedia IoT - Flexduino Platform https://www.hackster.io/mhanuel/nxp-kinetics-smart-web-multimedia-iot-flexduino-platform-1a76f7 Ultimate Hardware Expansion Board https://www.hackster.io/myriaddev/ultimate-hardware-expansion-board-494906 MIDI-USB Theremin https://www.hackster.io/razulued/midi-usb-theremin-65b521 Marveloucycle  https://www.hackster.io/skywalker-efe247/marveloucycle-4aafdb Port MySensors Library https://www.hackster.io/storycrafter/port-mysensors-library-1df3b6 Face match doorbell https://www.hackster.io/user015606/face-match-doorbell-db49bc Twitter Bot https://www.hackster.io/user1713477/twitter-bot-0687fe Agricultural flow estimator https://www.hackster.io/uLipe/agricultural-flow-estimator-1ad21d Directional Motion-Detecting USB Web Cam Using a FRDM-K82F https://www.hackster.io/stephanick/directional-motion-detecting-usb-web-cam-using-a-frdm-k82f-f81b81 How to build an Air Mouse with NXP K82F https://www.hackster.io/asadzia/how-to-build-an-air-mouse-with-nxp-k82f-56fb60 Intelligent Elbow Motion-Assistance Actuator https://www.hackster.io/hal-flynn-f79994/intelligent-elbow-motion-assistance-actuator-6a6c73 Water quality flow control https://www.hackster.io/mikey0000/water-quality-flow-control-030b2e Flex-WS2812B https://www.hackster.io/momososo/flex-ws2812b-a6beaf Freedom K82F Sport Kit Companion https://www.hackster.io/nghiajenius_iot/freedom-k82f-sport-kit-companion-319878 Freedom Maraca https://www.hackster.io/wesee/freedom-maraca-6f7bfc Twinkle Twinkle Little Star Musical Cup https://www.hackster.io/wesee/twinkle-twinkle-little-star-musical-cup-45a584 Smart DICE: The Physical + Digital RNG https://www.hackster.io/whatnick/smart-dice-the-physical-digital-rng-18ee03 Navisys https://www.hackster.io/YasithLokuge/navisys-03aa5f Flash! https://www.hackster.io/acylbotr/flash-6c1959 Freedom Flight Controller for Autonomus Drones https://www.hackster.io/bluetiger9/freedom-flight-controller-for-autonomus-drones-9efba4 Camera modules for Self-Driving Car. https://www.hackster.io/gawad/camera-modules-for-self-driving-car-fb37fb The Freedom Infinity Mirror https://www.hackster.io/MarcelK/the-freedom-infinity-mirror-9a2c13 Kinetis FlexIO Ultrasonic Radar https://www.hackster.io/mirkix/kinetis-flexio-ultrasonic-radar-573b40 Self-powered weather station https://www.hackster.io/user52242/self-powered-weather-station-b4252d Android Guided Vehicle https://www.hackster.io/11bharath11/android-guided-vehicle-6892d3 PHYSICALLY REGULATED OPERATING SUITE LIMB https://www.hackster.io/20321/physically-regulated-operating-suite-limb-89a61e Energy Efficient Cooler for home https://www.hackster.io/20986/energy-efficient-cooler-for-home-de0dc5 FRDM K82F-Play X-0 Game https://www.hackster.io/akashchandran30/frdm-k82f-play-x-0-game-0ebccb Working With FRDM-K82F https://www.hackster.io/akashchandran30/working-with-frdm-k82f-9459cd The Portable All Season Clothes Dryer https://www.hackster.io/alz190/the-portable-all-season-clothes-dryer-76626a NXP Scarab Robot https://www.hackster.io/asokfair/nxp-scarab-robot-eb6c6d Tip Tap Game https://www.hackster.io/bharathegr/tip-tap-game-e700e1 Read accelerometer x and y axis readings from the FRDM K82F https://www.hackster.io/gauravmishra/read-accelerometer-x-and-y-axis-readings-from-the-frdm-k82f-b47cc6 VIRTUAL SPEECH FOR VOCALLY CHALLENGED https://www.hackster.io/JagadeeshKumar/virtual-speech-for-vocally-challenged-5233cb Alexa Intelligent Personal Assistant / Home Automation Usi https://www.hackster.io/lalitnandandiwakar/alexa-intelligent-personal-assistant-home-automation-usi-862ea8 Musical Alarm Clock https://www.hackster.io/LiLShReDdeR/musical-alarm-clock-83edfc Eternal Pose to Antarctica: South Pointing Smart LED Compass https://www.hackster.io/PSoC_Rocks/eternal-pose-to-antarctica-south-pointing-smart-led-compass-5fb86f Gesture Drive: Accelerate with Freedom  https://www.hackster.io/PSoC_Rocks/gesture-drive-accelerate-with-freedom-e9dde1 Setting Up GPIO, PWM, I2C for K82 Freedom Board in KDS https://www.hackster.io/PSoC_Rocks/setting-up-gpio-pwm-i2c-for-k82-freedom-board-in-kds-e5b73d Accident Alert system https://www.hackster.io/ROBINTHOMAS/accident-alert-system-e97f34 NeerAssure: Water Usage Statistics https://www.hackster.io/Shachindra/neerassure-water-usage-statistics-03268b Getting Started with FRDM-K82F https://www.hackster.io/sowmith/getting-started-with-frdm-k82f-05b3ed FlexIO Car https://www.hackster.io/SURESH_V_S/flexio-car-13a692 FlexIO Based Smart Helmet https://www.hackster.io/taifur/flexio-based-smart-helmet-82efe9 SMART BAND https://www.hackster.io/user355388807/smart-band-6d3d31 Theft Alarm K82F TSI_LAUNCHPAD https://www.hackster.io/Vignesh_Jaishankar/theft-alarm-k82f-tsi-launchpad-2ff06c FlexIO security keypad https://www.hackster.io/nxp/flexio-security-keypad-15d9fd NXP Recommends http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/kinetis-cortex-m-mcus/k-series/k8x-scalable-secure-mcus:K8X-SCALABLE-SECURE-MCU?cof=0&am=0 AN5275: Using FlexIO for parallel Camera Interfacehttp://cache.nxp.com/files/microcontrollers/doc/app_note/AN5275.pdf?fsrch=1&sr=1&pageNum=1 AN5280: Using Kinetis FlexIO to drive a Graphical LCD Training
查看全文
Demo Owner Mike Stanley     Features Measuring the output from sensors, then computing the orientation of the device with the KL25 Kinetis Microcontrollers using advanced filtering techniques such as: Kalman filtering, Indirect Kalman filtering Built a representation of the current orientation of the device, linear acceleration Fusion software incorporated in standard OS systems Windows, iOS, Android Software library, visualization tools and full development suite are available for customers Featured NXP Products FXOS8700CQ (6- Axis Accelerometer + Magnetometer) FXAS21002 (3-Axis Gyroscope) Development Hardware Used FRDM- KL25Zhttps://community.nxp.com/external-link.jspa?url=http%3A%2F%2Fwww.nxp.com%2Fproducts%2Fsoftware-and-tools%2Fhardware-development-tools%2Ffreedom-development-boards%2Ffreedom-development-platform-for-kinetis-kl14-kl15-kl24-kl25-mcus%3AFRDM-KL25Z FRDM-FXS-MULTI Design Resources Sensor Fusion Library for Kinetis MCUs Sensor Fusion Toolbox for Android Sensor Fusion Toolbox for Windows Training Hands on Workshop: Sensor Fusion Library for Kinetis MCUs Links Sensor Fusion NXP Community: Sensors Best of Sensors Expo (2014 Sensor's Expo)  
查看全文
Classic board games with a touch of magic. NFC adds extra functionality to familiar fun. Interact more intuitively, speed up gameplay, and easily pick up where you left off. Experience board game immersions like you never have before. NFC helps bringing the 2-D board game experience to life. Players move their NFC-equipped pieces across the board as usual, but they can now be electronically tracked. The game processor uses this tracking data - coupled with information about the piece itself that can also be stored in the tag, creating an exciting gaming environment that's alive with action. It also enables new gameplay dimensions like on-line and interactive play scenarios.   Features enabled by NXP •Detection of up to 40 RFID Objects on large surface powered by single RFID reader •Direction detection of the game pieces •Connectivity to host system via USB or BLE   Recommended Products SLRC 610 – High perfromance RFIDreader Icode SLIx – Ultra low power RFID tag LPC11uxx – Microcontroler with embeded FS USB 74HCxxx – Ultra thin Analog Switches   Resources More information about NFC gaming: http://www.nxp.com/solutions/portable-wearable/gaming.html
查看全文
Description A gamepad is a device used to interact with a videogame through a PC or console.  This gamepad in particular, includes an LCD display and touch panel for a better gaming experience. In addition, as the play environment becomes more mobile and a game can easily be connected to any network (at a friend’s house, an Internet café, a community gaming center or even an amusement park) NXP offers secure, connected devices and technologies. Add in our sensing solutions with high-performance sensing capability, processing capacity and customizable software, power management ICs and wireless charging solutions to get a complete system solution.   Features   LCD Display Touch Panel NFC Pair BLE connectivity USB Type C LED driver Smart amplifier for speaker     Block Diagram       Products   Category Name 1: MCU Product URL 1 LPC546XX Microcontroller (MCU) Family | NXP  Product Description 1 Offering the ultimate in flexibility and performance scalability, the LPC546xx MCU family provides up to 220 MHz performance while retaining power-efficiency as low as 100 uA / MHz. Its 21 communication interfaces makes it ideal for the HMI and connectivity needs of next-generation IoT applications.   Category Name 2: Drivers Product URL 1 PCA9955BTW | NXP  Product Description 1 The PCA9955B is an I2C-bus controlled 16-channel constant current LED driver optimized for dimming and blinking 57 mA Red/Green/Blue/Amber (RGBA) LEDs in amusement products. Product link 2 9.5 V boosted audio system with adaptive sound maximizer and speaker protection | NXP  Product Description 2 The TFA9890A is a high efficiency class-D audio amplifier with a sophisticated speaker boost and protection algorithm. Product link 3 TEA172x | NXP  Product Description 3 These highly integrated devices enable low no-load power consumption below 10 mW, reduce component count for a cost-effective application design, and provide advanced control modes that deliver exceptional efficiency. Product link 4 Logic controlled high-side power switch | NXP  Product Description 4 The NX5P2190 is an advanced power switch with adjustable current limit. It includes under-voltage and over-voltage lockout, over-current, over-temperature, reverse bias and in-rush current protection circuits.   Category Name 3: USB Product URL 1 USB PD and type C current-limited power switch | NXP  Product Description 1 The NX5P3290 is a precision adjustable current-limited power switch for USB PD application. The device includes under voltage lockout, over-temperature protection, and reverse current protection circuits to automatically isolate the switch terminals when a fault condition occurs. Product link 2 PTN5150 | NXP  Product Description 2 The PTN5150 enables USB Type-C connector to be used in both host and device ends of the Type-C cable. It can support Type-C to USB legacy cables and adapters defined in USB Type-C Spec.   Category Name 4: Wireless Product URL 1 PN7150 | High performance NFC controller for smart devices | NXP  Product Description 1 PN7150 is the the plug andn play NFC solution for easy integration into any OS environment, reducing Bill of Material (BOM) size and cost. Product link 2  NTAG213F, NTAG216F | NFC Forum Type 2 Tag compliant IC with field detection | NXP  Product Description 2 The NTAG213F offers innovative functionalities such as: the configuration of a field detection, the SLEEP mode, the FAST_READ command, and a configurable password protection. These capabilities fit perfectly for applications in electronics that require the following features: connection handover, Bluetooth® simple pairing, Wi-Fi protected set-ups, device authentication or gaming. Product link 3 QN908x: Ultra-Low-Power Bluetooth Low Energy System on Chip (SoC) Solution | NXP  Product Description 3 QN908x is an ultra-low-power, high-performance and highly integrated Bluetooth® Low Energy (BLE) solution for Bluetooth Smart applications such as human interface devices, and app-enabled smart accessories.   Documentation Connecting TFT LCD with LCD controller of LPC MCU:  https://www.nxp.com/docs/en/nxp/application-notes/AN12027.zip    Tools Product Link OM13098: LPCXpresso54628 Development Board OM13098 | LPCXpresso Development Board | LPC Microntrollers (MCUs) | NXP 
查看全文
This demo shows a demonstration of NXP's wireless charging reference design for a tablet computer.       Features Consumer and Automotive Applications Compliance with wireless power consortium QI standard Transfer efficiency Touch sensing Featured NXP Products WCT1000 Links Link to Wireless Charging Links to document page Block Diagram  
查看全文
Demo This demo showcases the Bluetooth Low Energy Mesh solution on Kinetis KW41Z devices, leveraging the Kinetis Bluetooth LE v4.2 stack. The audience will be able to interact with remote nodes of the mesh via a single laptop console. The remote nodes offer feedback via a RGB LED array.     Features: Bluetooth® LE Mesh software implementation over the Kinetis BLE stack v4.2 Mesh nodes made up of FRDM-KW41Z evaluation boards with Adafruit NeoPixel LED shields Interactive configuration and control of the mesh nodes with feedback on the LED arrays Sensor data sent via the Mesh to the cloud _______________________________________________________________________________________________________   Featured NXP Products: KW41ZlKinetis BLE & 802.15.4 Wireless MCU|NXP _______________________________________________________________________________________________________    
查看全文
Demo Owner michaelestanley By monitoring the vibration signature of a rotating machinery we can predict the remaining useful life of that machine. Features Condition monitoring Visual characterization of the fundamental frequency of a  motor along with its harmonics Features that can be observed: wavelength, transfer coefficients, statistical measures, standard deviations, variances Preparing work flows where users can use machine learning algorithms to to figure out what feature sets are important, focusing only on the features that are needed to predict the remaining useful life of the machine Links Sensors
查看全文