i.MX RT Crossover MCUs Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX RT Crossover MCUs Knowledge Base

Labels

Discussions

Sort by:
RT10xx image reserve the APP FCB methods 1. Abstract     Regarding RT10XX programming, it is mainly divided into two categories: 1) Serial download mode with blhost proramming     To this method, we can use the MCUBootUtility tool, or blhost+elftosb+sdphost cmd method, we also can use the NXP SPT(MCUXpresso secure provisional Tool). This programming need to enter the serial download mode, then use the flashloader supported UART or the USB HID interface. 2) Use Programmer or debugger with flashdriver programming This method is usually through the SWD/JTAG download interface combined with the debugger + IDE, or directly software burning, the chip mode can be in the internal boot, or in the serial download mode, with the help of the flashloader to generate the flash burning algorithm file. Method 2, The burning method using the debugger tool usually ensures that the burning code is consistent with the original APP.     Method 1, Uses the blhost method to download, usually blhost will regenerate an FCB with a full-featured LUT to burn to the external flash, and then burn the app code with IVT, that is, without the FCB header of the original APP, and re-assemble a blhost generated FCB header and burn it separately. However, for some customers who need to read out the flash image and compare with the original APP image to check the difference after burning, the commonly used blhost method will have the problem of inconsistent FCB area matching. If the customer needs to use the blhost burning method in serial download mode, how to ensure that the flash image after burning is consistent with the original burning file? This article will take the MIMXRT1060-EVK development board as an example, and give specific methods for the command mode and SPT tool mode. 2 Blhost programming reserve APP FCB     From the old RT1060 SDK FCB file (below SDK2.12.0), evkmimxrt1060_flexspi_nor_config.c, we can see:   const flexspi_nor_config_t qspiflash_config = { .memConfig = { .tag = FLEXSPI_CFG_BLK_TAG, .version = FLEXSPI_CFG_BLK_VERSION, .readSampleClksrc=kFlexSPIReadSampleClk_LoopbackFromDqsPad, .csHoldTime = 3u, .csSetupTime = 3u, .sflashPadType = kSerialFlash_4Pads, .serialClkFreq = kFlexSpiSerialClk_100MHz, .sflashA1Size = 8u * 1024u * 1024u, .lookupTable = { // Read LUTs FLEXSPI_LUT_SEQ(CMD_SDR, FLEXSPI_1PAD, 0xEB, RADDR_SDR, FLEXSPI_4PAD, 0x18), FLEXSPI_LUT_SEQ(DUMMY_SDR, FLEXSPI_4PAD, 0x06, READ_SDR, FLEXSPI_4PAD, 0x04), }, }, .pageSize = 256u, .sectorSize = 4u * 1024u, .blockSize = 64u * 1024u, .isUniformBlockSize = false, };   This FCB LUT just contains the basic read command, normally, to the app booting, the FCB just need to provide the read command to the ROM, then it can boot normally.     But what happens to the memory downloaded by blhost? Based on the MIMXRT1060-EVK development board, the following shows how to use the command line mode corresponding to blhost to burn the SDK led_blinky project app, and read out the corresponding flash burning code to analysis. 2.1 Normal blhost download command line    This command line also the same as MCUBootUtility download log, source code is attached rt1060 cmd.bat. elftosb.exe -f imx -V -c imx_application_gen.bd -o ivt_evkmimxrt1060_iled_blinky_FCB.bin evkmimxrt1060_iled_blinky.s19 sdphost.exe -t 50000 -u 0x1FC9,0x0135 -j -- write-file 0x20208200 ivt_flashloader.bin sdphost.exe -t 50000 -u 0x1FC9,0x0135 -j -- jump-address 0x20208200 blhost.exe -t 50000 -u 0x15A2,0x0073 -j -- get-property 1 0 blhost.exe -t 50000 -u 0x15A2,0x0073 -j -- get-property 24 0 blhost.exe -t 5242000 -u 0x15A2,0x0073 -j -- fill-memory 0x20202000 4 0xc0000007 word  //option 0 blhost.exe -t 5242000 -u 0x15A2,0x0073 -j -- fill-memory 0x20202004 4 0 word                 //option1 blhost.exe -t 50000 -u 0x15A2,0x0073 -j -- configure-memory 9 0x20202000                    blhost -t 2048000 -u 0x15A2,0x0073 -j -- flash-erase-region 0x60000000 0x8000 9 blhost -t 5242000 -u 0x15A2,0x0073 -j -- fill-memory 0x20203000 4 0XF000000F word  blhost -t 50000 -u 0x15A2,0x0073 -j -- configure-memory 9 0x20203000                    blhost -t 5242000 -u 0x15A2,0x0073 -j -- write-memory 0x60001000 ivt_evkmimxrt1060_iled_blinky_FCB_nopadding.bin 9 blhost -t 5242000 -u 0x15A2,0x0073 -j -- read-memory 0x60000000 0x8000 flexspiNorCfg.dat 9 The normal blhost programming is to use the cmd line method, and provide an app which is without the FCB header(Even app with the FCB, will exclude the FCB header at first), then use the elftosb.exe generate the app with IVT, eg ivt_evkmimxrt1060_iled_blinky_FCB_nopadding.bin, download the flashloader file ivt_flashloader to internal RAM, and jump to the flashloader, then use the fill-memory to fill option0, option1 to choose the proper external flash, and use the configure-memory to configure the flexSPI module, with the SFDP table which is got from get configure command, then fill the flexSPI LUT internal buffer. Next, fill-memory 0x20203000 4 0XF000000F associate with configure-memory will generate the full FCB header, burn it from flash address 0x60000000. At last, burn the app which contains IVT from flash address 0X60001000, until now, realize the whole app image programming. Pic 1 shows the comparison between the data read after programming and the original app data. It can be seen that the LUT of the FCB actually programmed on the left is not only contains read, but also contains read status, write enable, program and erase commands. The one on the right is the original app with FCB. The LUT of FCB only contains read commands for boot. So, if you want to keep the FCB header of the original APP instead of the header generated and burned by option0,1 configure-memory, how to do it? The method is that you can also use Option0, 1 to generate and fill in the LUT for flexSPI for communication use, but do not burn the corresponding generated FCB, just burn the FCB that comes with the original APP. pic1 2.2 Reuse option0 and option1 to program the original APP LUT The following command gives reuse option0 and option1, generates LUT and fills in flexSPI LUT for connection with external flash interface, but does not call:  fill-memory 0x20203000 4 0XF000000F and configure-memory 9 0x20203000, so that the generated FCB will not be burned to external memory.    Source file is attached rt1060 cmd_option01.bat. elftosb.exe -f imx -V -c imx_application_gen.bd -o ivt_evkmimxrt1060_iled_blinky_FCB.bin evkmimxrt1060_iled_blinky.s19 sdphost.exe -t 50000 -u 0x1FC9,0x0135 -j -- write-file 0x20208200 ivt_flashloader.bin sdphost.exe -t 50000 -u 0x1FC9,0x0135 -j -- jump-address 0x20208200 blhost.exe -t 50000 -u 0x15A2,0x0073 -j -- get-property 1 0 blhost.exe -t 50000 -u 0x15A2,0x0073 -j -- get-property 24 0 blhost.exe -t 5242000 -u 0x15A2,0x0073 -j -- fill-memory 0x20202000 4 0xc0000007 word blhost.exe -t 5242000 -u 0x15A2,0x0073 -j -- fill-memory 0x20202004 4 0 word blhost.exe -t 50000 -u 0x15A2,0x0073 -j -- configure-memory 9 0x20202000 blhost -t 5242000 -u 0x15A2,0x0073 -j -- read-memory 0x60000000 1024 flexspiNorCfg.dat 9 blhost -t 2048000 -u 0x15A2,0x0073 -j -- flash-erase-region 0x60000000 0x8000 9 blhost -t 5242000 -u 0x15A2,0x0073 -j -- read-memory 0x60000000 1024 flexspiNorCfg.dat 9 blhost -t 5242000 -u 0x15A2,0x0073 -j -- write-memory 0x60000000 evkmimxrt1060_iled_blinky_FCB.bin 9 blhost -t 5242000 -u 0x15A2,0x0073 -j -- read-memory 0x60000000 0x8000 flexspiNorCfg.dat 9 Pic 2 is the comparison between the read data after programming and the original programming data. It can be seen that the FCB programmed at this time is exactly the same as the original code FCB. Pic 2 2.3 use 1bit FCB file to configure LUT    The used file cfg_fdcb_RTxxx_1bit_sdr_flashA.bin is copied from MCUBOOTUtility: \NXP-MCUBootUtility-3.4.0\src\targets\fdcb_model . The configuration of Option0 and Option1 is usually for chips that can support SFDP table, but some flash chips cannot support SFDP table. At this time, you need to fill in the flexSPI LUT for the full LUT manually. The so-called full LUT command is not only read commands, but also supports erasing, program, etc. In this way, the flexSPI interface can be successfully connected to the external FLASH, and the corresponding functions of reading, erasing, and writing can be realized. Therefore, the method in this chapter is to use a single-line command, which is also a command supported by general chips, to enable the corresponding function of flexSPI, so it can complete the subsequent APP code programming.   Pic 3     We can see: 03H is read, 05H is read status register, 06H is write enable, D8H is the block 64K erase, 02H is the page program, 60H is the chip erase. This is the 1bit SPI method full function LUT command, which can realize the chip read, write and erase function.     The command line is, source file is attached rt1060 cmd_fdcb_1bit_sdr_flashA.bat: elftosb.exe -f imx -V -c imx_application_gen.bd -o ivt_evkmimxrt1060_iled_blinky_FCB.bin evkmimxrt1060_iled_blinky.s19 sdphost.exe -t 50000 -u 0x1FC9,0x0135 -j -- write-file 0x20208200 ivt_flashloader.bin sdphost.exe -t 50000 -u 0x1FC9,0x0135 -j -- jump-address 0x20208200 blhost.exe -t 50000 -u 0x15A2,0x0073 -j -- get-property 1 0 blhost.exe -t 50000 -u 0x15A2,0x0073 -j -- get-property 24 0 blhost -t 5242000 -u 0x15A2,0x0073 -j -- write-memory 0x20202000 cfg_fdcb_RTxxx_1bit_sdr_flashA.bin blhost.exe -t 50000 -u 0x15A2,0x0073 -j -- configure-memory 9 0x20202000 blhost -t 5242000 -u 0x15A2,0x0073 -j -- read-memory 0x60000000 1024 flexspiNorCfg.dat 9 blhost -t 2048000 -u 0x15A2,0x0073 -j -- flash-erase-region 0x60000000 0x8000 9 blhost -t 5242000 -u 0x15A2,0x0073 -j -- read-memory 0x60000000 1024 flexspiNorCfg.dat 9 blhost -t 5242000 -u 0x15A2,0x0073 -j -- write-memory 0x60000000 evkmimxrt1060_iled_blinky_FCB.bin 9 blhost -t 5242000 -u 0x15A2,0x0073 -j -- read-memory 0x60000000 0x8000 flexspiNorCfg.dat 9 In the command line, where option0,1 was previously filled in, instead of filling in the data of option0,1, the 512-byte Bin file of the complete FCB LUT command is directly given, and then the configure-memory command is used to configure the flashloader’s FlexSPI LUT with the FCB file. so that it can support read and write erase commands, etc. The comparison between the flash data and the original APP data when burning and reading is in the Pic 4, we can see, the readout data from the flash is totally the same as the original APP FCB. Pic 4 3,SPT program reserve APP FCB The NXP officially released MCUXPresso Secure Provisional Tool can support the function of retaining the customer's FCB, but the SPT tool currently uses the APP FCB to fill in the flashloader FlexSPI FCB. Therefore, if the customer directly uses the old SDK demo which just contains the read command in the LUT to generate an APP with FCB, then use the SPT tool to burn the flash, and choose to keep the customer FCB in the tool, you will encounter the problem of erasing failure. In this case, analyze the reason, we can know the FCB on the customer APP side needs to fill in the full FCB LUT command, that is, including reading, writing, erasing, etc. The following shows how the old original SDK led_blinky generates an image with an FCB header and writes it in the SPT tool. As you can see in Pic 5, the tool has information that if you use APP FCB, you need to ensure that the FCB LUT contains the read, erase, program commands. Pic 6 shows the programming situation of APP FCB LUT only including read. It has failed when doing erase. The reason is that there is no erase, program and other commands in the FlexSPI LUT command, so it will fail when doing the corresponding erasing or programming.   Pic 5 Pic 6 Pic 7 If you look at the specific command, as shown in Pic 7, you can find that the SPT tool directly uses the FCB header extracted from the APP image to flash the LUT of the flashloader FlexSPI, so there will be no erase and write commands, and it will fail when erasing. The following is how to fill in the LUT in the FCB of the SDK, open evkmimxrt1060_flexspi_nor_config.c, and modify the FCB as follows: const flexspi_nor_config_t qspiflash_config = {     .memConfig =         {             .tag              = FLEXSPI_CFG_BLK_TAG,             .version          = FLEXSPI_CFG_BLK_VERSION,             .readSampleClksrc=kFlexSPIReadSampleClk_LoopbackFromDqsPad,             .csHoldTime       = 3u,             .csSetupTime      = 3u,             .sflashPadType    = kSerialFlash_4Pads,             .serialClkFreq    = kFlexSpiSerialClk_100MHz,             .sflashA1Size     = 8u * 1024u * 1024u,             .lookupTable =                 {                   // Read LUTs                   FLEXSPI_LUT_SEQ(CMD_SDR, FLEXSPI_1PAD, 0xEB, RADDR_SDR, FLEXSPI_4PAD, 0x18),                   FLEXSPI_LUT_SEQ(DUMMY_SDR, FLEXSPI_4PAD, 0x06, READ_SDR, FLEXSPI_4PAD, 0x04),                   // Read status                   [4*1] = FLEXSPI_LUT_SEQ(CMD_SDR, FLEXSPI_1PAD, 0x05, READ_SDR, FLEXSPI_1PAD, 0x04),                   //write Enable                   [4*3] = FLEXSPI_LUT_SEQ(CMD_SDR, FLEXSPI_1PAD, 0x06, STOP, FLEXSPI_1PAD, 0),                   // Sector Erase byte LUTs                   [4*5] = FLEXSPI_LUT_SEQ(CMD_SDR, FLEXSPI_1PAD, 0x20, RADDR_SDR, FLEXSPI_1PAD, 0x18),                   // Block Erase 64Kbyte LUTs                   [4*8] = FLEXSPI_LUT_SEQ(CMD_SDR, FLEXSPI_1PAD, 0xD8, RADDR_SDR, FLEXSPI_1PAD, 0x18),                    //Page Program - single mode                   [4*9] = FLEXSPI_LUT_SEQ(CMD_SDR, FLEXSPI_1PAD, 0x02, RADDR_SDR, FLEXSPI_1PAD, 0x18),                   [4*9+1] = FLEXSPI_LUT_SEQ(WRITE_SDR, FLEXSPI_1PAD, 0x04, STOP, FLEXSPI_1PAD, 0x0),                   //Erase whole chip                   [4*11] =FLEXSPI_LUT_SEQ(CMD_SDR, FLEXSPI_1PAD, 0x60, STOP, FLEXSPI_1PAD, 0),                                       },         },     .pageSize           = 256u,     .sectorSize         = 4u * 1024u,     .blockSize          = 64u * 1024u,     .isUniformBlockSize = false, }; Please note, after the internal SDK team modification, from SDK_2_12_0_EVK-MIMXRT1060, the evkmimxrt1060_flexspi_nor_config.c already add LUT cmd to the full FCB LUT function. Use the above FCB to generate the APP, then use the SPT tool to burn the app with customer FCB again, we can see, the programming is working now. Pic 8 In summary, if you need to reserve the customer FCB, you can use the above method, but if you use the SPT tool, you need to add read, write, and erase commands to the LUT of the code FCB to ensure that flexSPI successfully operates the external flash.
View full article
Issue: 802.11 IEEE station Power Save mode is not working as expected with the latest SDK 2.11.1, supporting NXP wireless solutions 88W8987/88W8977/IW416.   Solution: Modify the structure in file : middleware/wifi/wifidriver/incl/mlan_fw.h, Replace  “ENH_PS_MODES action” to “uint16_t action”.    Note: This fix will officially be part of SDK: 2.12.0
View full article
Obtaining the footprint for Kinetis/LPC/i.MXRT part numbers is very straightforward using the Microcontroller Symbols, Footprints and Models Library homepage, on the following link: https://www.nxp.com/design/software/models/microcontroller-symbols-footprints-and-models:MCUCAD?tid=vanMCUCAD What some users may not be aware of is that the BXL file available for NXP Kinetis/LPC/i.MXRT part numbers also contain the 3D model of the package, which is often needed when working on the industrial design of your application. You may follow the steps below to export the 3D model of the package in STEP (Standard for the Exchange of Product Data) format using the Ultra Librarian software, which can be downloaded from the link on the models library homepage. A STEP (.step,stp) file stores the model in ASCII format. This format can be imported into many CAD suites that allow to work with 3D solids. First, obtain the BXL file for the part number you are interested in. In this example the MIMXRT1052CVL5B.blx.   Then, open the Ultra Librarian project and load this file using the “Load Data” button, and select the “3D Step Model” checkbox from the Select Tools options. Finally, select the Export to Select Tools option. Once the exporting process is finished, the step file will be available on the path UltraLibrarian/Library/Exported.  The STEP (.stp) file can be opened in CAD suites that support solid 3D objects, like FreeCAD which is open source.
View full article
As we know, the RT series MCUs support the XIP (Execute in place) mode and benefit from saving the number of pins, serial NOR Flash is most commonly used, as the FlexSPI module can high efficient fetch the code and data from the Serial NOR flash for Cortex-M7 to execute. The fetch way is implementing via utilizing the Quad IO Fast Read command, meanwhile, the serail NOR flash works in the SDR (Single Data transfer Rate) mode, it receives data on SCLK rise edge and transmits data on SCLK fall edge. Comparing to the SDR mode, the DDR (Dual Data transfer Rate) mode has a higher throughput capacity, whether it can provide better performance of XIP mode, and how to do that if we want the Serial NOR Flash to work in DDR (Dual Data transfer Rate) mode? SDR & DDR mode SDR mode: In SDR (Single Data transfer Rate) mode, data is only clocked on one edge of the clock (either the rising or falling edge). This means that for SDR to have data being transmitted at X Mbps, the clock bit rate needs to be 2X Mbps. DDR mode: For DDR (Dual Data transfer Rate) mode, also known as DTR (Dual Transfer Rate) mode, data is transferred on both the rising and falling edge of the clock. This means data is transmitted at X Mbps only requires the clock bit rate to be X Mbps, hence doubling the bandwidth (as Fig 1 shows).   Fig 1 Enable DDR mode The below steps illustrate how to make the i.MX RT1060 boot from the QSPI with working in DDR mode. Note: The board is MIMXRT1060, IDE is MCUXpresso IDE Open a hello_world as the template Modify the FDCB(Flash Device Configuration Block) a)Set the controllerMiscOption parameter to supports DDR read command. b) Set Serial Flash frequency to 60 MHz. c)Parase the DDR read command into command sequence. The following table shows a template command sequence of DDR Quad IO FAST READ instruction and it's almost matching with the FRQDTR (Fast Read Quad IO DTR) Sequence of IS25WP064 (as Fig 2 shows).   Fig2 FRQDTR Sequence d)Adjust the dummy cycles. The dummy cycles should match with the specific serial clock frequency and the default dummy cycles of the FRQDTR sequence command is 6 (as the below table shows).   However, when the serial clock frequency is 60MHz, the dummy cycle should change to 4 (as the below table shows).   So it needs to configure [P6:P3] bits of the Read Register (as the below table shows) via adding the SET READ PARAMETERS command sequence(as Fig 3 shows) in FDCB manually. Fig 3 SET READ PARAMETERS command sequence In further, in DDR mode, the SCLK cycle is double the serial root clock cycle. The operand value should be set as 2N, 2N-1 or 2*N+1 depending on how the dummy cycles defined in the device datasheet. In the end, we can get an adjusted FCDB like below. // Set Dummy Cycles #define FLASH_DUMMY_CYCLES 8 // Set Read register command sequence's Index in LUT table #define CMD_LUT_SEQ_IDX_SET_READ_PARAM 7 // Read,Read Status,Write Enable command sequences' Index in LUT table #define CMD_LUT_SEQ_IDX_READ 0 #define CMD_LUT_SEQ_IDX_READSTATUS 1 #define CMD_LUT_SEQ_IDX_WRITEENABLE 3 const flexspi_nor_config_t qspiflash_config = { .memConfig = { .tag = FLEXSPI_CFG_BLK_TAG, .version = FLEXSPI_CFG_BLK_VERSION, .readSampleClksrc=kFlexSPIReadSampleClk_LoopbackFromDqsPad, .csHoldTime = 3u, .csSetupTime = 3u, // Enable DDR mode .controllerMiscOption = kFlexSpiMiscOffset_DdrModeEnable | kFlexSpiMiscOffset_SafeConfigFreqEnable, .sflashPadType = kSerialFlash_4Pads, //.serialClkFreq = kFlexSpiSerialClk_100MHz, .serialClkFreq = kFlexSpiSerialClk_60MHz, .sflashA1Size = 8u * 1024u * 1024u, // Enable Flash register configuration .configCmdEnable = 1u, .configModeType[0] = kDeviceConfigCmdType_Generic, .configCmdSeqs[0] = { .seqNum = 1, .seqId = CMD_LUT_SEQ_IDX_SET_READ_PARAM, .reserved = 0, }, .lookupTable = { // Read LUTs [4*CMD_LUT_SEQ_IDX_READ] = FLEXSPI_LUT_SEQ(CMD_SDR, FLEXSPI_1PAD, 0xED, RADDR_DDR, FLEXSPI_4PAD, 0x18), // The MODE8_DDR subsequence costs 2 cycles that is part of the whole dummy cycles [4*CMD_LUT_SEQ_IDX_READ + 1] = FLEXSPI_LUT_SEQ(MODE8_DDR, FLEXSPI_4PAD, 0x00, DUMMY_DDR, FLEXSPI_4PAD, FLASH_DUMMY_CYCLES-2), [4*CMD_LUT_SEQ_IDX_READ + 2] = FLEXSPI_LUT_SEQ(READ_DDR, FLEXSPI_4PAD, 0x04, STOP, FLEXSPI_1PAD, 0x00), // READ STATUS REGISTER [4*CMD_LUT_SEQ_IDX_READSTATUS] = FLEXSPI_LUT_SEQ(CMD_SDR, FLEXSPI_1PAD, 0x05, READ_SDR, FLEXSPI_1PAD, 0x01), [4*CMD_LUT_SEQ_IDX_READSTATUS + 1] = FLEXSPI_LUT_SEQ(STOP, FLEXSPI_1PAD, 0x00, 0, 0, 0), // WRTIE ENABLE [4*CMD_LUT_SEQ_IDX_WRITEENABLE] = FLEXSPI_LUT_SEQ(CMD_SDR,FLEXSPI_1PAD, 0x06, STOP, FLEXSPI_1PAD, 0x00), // Set Read register [4*CMD_LUT_SEQ_IDX_SET_READ_PARAM] = FLEXSPI_LUT_SEQ(CMD_SDR,FLEXSPI_1PAD, 0x63, WRITE_SDR, FLEXSPI_1PAD, 0x01), [4*CMD_LUT_SEQ_IDX_SET_READ_PARAM + 1] = FLEXSPI_LUT_SEQ(STOP,FLEXSPI_1PAD, 0x00, 0, 0, 0), }, }, .pageSize = 256u, .sectorSize = 4u * 1024u, .blockSize = 64u * 1024u, .isUniformBlockSize = false, }; Is DDR mode real better? According to the RT1060's datasheet, the below table illustrates the maximum frequency of FlexSPI operation, as the MIMXRT1060's onboard QSPI flash is IS25WP064AJBLE, it doesn't contain the MQS pin, it means set MCR0.RXCLKsrc=1 (Internal dummy read strobe and loopbacked from DQS) is the most optimized option. operation mode RXCLKsrc=0 RXCLKsrc=1 RXCLKsrc=3 SDR 60 MHz 133 MHz 166 MHz DDR 30 MHz 66 MHz 166 MHz In another word, QSPI can run up to 133 MHz in SDR mode versus 66 MHz in DDR mode. From the perspective of throughput capacity, they're almost the same. It seems like DDR mode is not a better option for IS25WP064AJBLE and the following experiment will validate the assumption. Experiment mbedtls_benchmark I use the mbedtls_benchmark as the first testing demo and I run the demo under the below conditions: 100MH, SDR mode; 133MHz, SDR mode; 66MHz, DDR mode; According to the corresponding printout information (as below shows), I make a table for comparison and I mark the worst performance of implementation items among the above three conditions, just as Fig 4 shows. SDR Mode run at 100 MHz. FlexSPI clock source is 3, FlexSPI Div is 6, PllPfd2Clk is 720000000 mbedTLS version 2.16.6 fsys=600000000 Using following implementations: SHA: DCP HW accelerated AES: DCP HW accelerated AES GCM: Software implementation DES: Software implementation Asymmetric cryptography: Software implementation MD5 : 18139.63 KB/s, 27.10 cycles/byte SHA-1 : 44495.64 KB/s, 12.52 cycles/byte SHA-256 : 47766.54 KB/s, 11.61 cycles/byte SHA-512 : 2190.11 KB/s, 267.88 cycles/byte 3DES : 1263.01 KB/s, 462.49 cycles/byte DES : 2962.18 KB/s, 196.33 cycles/byte AES-CBC-128 : 52883.94 KB/s, 10.45 cycles/byte AES-GCM-128 : 1755.38 KB/s, 329.33 cycles/byte AES-CCM-128 : 2081.99 KB/s, 279.72 cycles/byte CTR_DRBG (NOPR) : 5897.16 KB/s, 98.15 cycles/byte CTR_DRBG (PR) : 4489.58 KB/s, 129.72 cycles/byte HMAC_DRBG SHA-1 (NOPR) : 1297.53 KB/s, 448.03 cycles/byte HMAC_DRBG SHA-1 (PR) : 1205.51 KB/s, 486.04 cycles/byte HMAC_DRBG SHA-256 (NOPR) : 1786.18 KB/s, 327.70 cycles/byte HMAC_DRBG SHA-256 (PR) : 1779.52 KB/s, 328.93 cycles/byte RSA-1024 : 202.33 public/s RSA-1024 : 7.00 private/s DHE-2048 : 0.40 handshake/s DH-2048 : 0.40 handshake/s ECDSA-secp256r1 : 9.00 sign/s ECDSA-secp256r1 : 4.67 verify/s ECDHE-secp256r1 : 5.00 handshake/s ECDH-secp256r1 : 9.33 handshake/s   DDR Mode run at 66 MHz. FlexSPI clock source is 2, FlexSPI Div is 5, PllPfd2Clk is 396000000 mbedTLS version 2.16.6 fsys=600000000 Using following implementations: SHA: DCP HW accelerated AES: DCP HW accelerated AES GCM: Software implementation DES: Software implementation Asymmetric cryptography: Software implementation MD5 : 16047.13 KB/s, 27.12 cycles/byte SHA-1 : 44504.08 KB/s, 12.54 cycles/byte SHA-256 : 47742.88 KB/s, 11.62 cycles/byte SHA-512 : 2187.57 KB/s, 267.18 cycles/byte 3DES : 1262.66 KB/s, 462.59 cycles/byte DES : 2786.81 KB/s, 196.44 cycles/byte AES-CBC-128 : 52807.92 KB/s, 10.47 cycles/byte AES-GCM-128 : 1311.15 KB/s, 446.53 cycles/byte AES-CCM-128 : 2088.84 KB/s, 281.08 cycles/byte CTR_DRBG (NOPR) : 5966.92 KB/s, 97.55 cycles/byte CTR_DRBG (PR) : 4413.15 KB/s, 130.42 cycles/byte HMAC_DRBG SHA-1 (NOPR) : 1291.64 KB/s, 449.47 cycles/byte HMAC_DRBG SHA-1 (PR) : 1202.41 KB/s, 487.05 cycles/byte HMAC_DRBG SHA-256 (NOPR) : 1748.38 KB/s, 328.16 cycles/byte HMAC_DRBG SHA-256 (PR) : 1691.74 KB/s, 329.78 cycles/byte RSA-1024 : 201.67 public/s RSA-1024 : 7.00 private/s DHE-2048 : 0.40 handshake/s DH-2048 : 0.40 handshake/s ECDSA-secp256r1 : 8.67 sign/s ECDSA-secp256r1 : 4.67 verify/s ECDHE-secp256r1 : 4.67 handshake/s ECDH-secp256r1 : 9.00 handshake/s   Fig 4 Performance comparison We can find that most of the implementation items are achieve the worst performance when QSPI works in DDR mode with 66 MHz. Coremark demo The second demo is running the Coremark demo under the above three conditions and the result is illustrated below. SDR Mode run at 100 MHz. FlexSPI clock source is 3, FlexSPI Div is 6, PLL3 PFD0 is 720000000 2K performance run parameters for coremark. CoreMark Size : 666 Total ticks : 391889200 Total time (secs): 16.328717 Iterations/Sec : 2449.671999 Iterations : 40000 Compiler version : MCUXpresso IDE v11.3.1 Compiler flags : Optimization most (-O3) Memory location : STACK seedcrc : 0xe9f5 [0]crclist : 0xe714 [0]crcmatrix : 0x1fd7 [0]crcstate : 0x8e3a [0]crcfinal : 0x25b5 Correct operation validated. See readme.txt for run and reporting rules. CoreMark 1.0 : 2449.671999 / MCUXpresso IDE v11.3.1 Optimization most (-O3) / STACK   SDR Mode run at 133 MHz. FlexSPI clock source is 3, FlexSPI Div is 4, PLL3 PFD0 is 664615368 2K performance run parameters for coremark. CoreMark Size : 666 Total ticks : 391888682 Total time (secs): 16.328695 Iterations/Sec : 2449.675237 Iterations : 40000 Compiler version : MCUXpresso IDE v11.3.1 Compiler flags : Optimization most (-O3) Memory location : STACK seedcrc : 0xe9f5 [0]crclist : 0xe714 [0]crcmatrix : 0x1fd7 [0]crcstate : 0x8e3a [0]crcfinal : 0x25b5 Correct operation validated. See readme.txt for run and reporting rules. CoreMark 1.0 : 2449.675237 / MCUXpresso IDE v11.3.1 Optimization most (-O3) / STACK   DDR Mode run at 66 MHz. FlexSPI clock source is 2, FlexSPI Div is 5, PLL3 PFD0 is 396000000 2K performance run parameters for coremark. CoreMark Size : 666 Total ticks : 391890772 Total time (secs): 16.328782 Iterations/Sec : 2449.662173 Iterations : 40000 Compiler version : MCUXpresso IDE v11.3.1 Compiler flags : Optimization most (-O3) Memory location : STACK seedcrc : 0xe9f5 [0]crclist : 0xe714 [0]crcmatrix : 0x1fd7 [0]crcstate : 0x8e3a [0]crcfinal : 0x25b5 Correct operation validated. See readme.txt for run and reporting rules. CoreMark 1.0 : 2449.662173 / MCUXpresso IDE v11.3.1 Optimization most (-O3) / STACK   After comparing the CoreMark scores, it gets the lowest CoreMark score when QSPI works in DDR mode with 66 MHz. However, they're actually pretty close. Through the above two testings, we can get the DDR mode maybe not a better option, at least for the i.MX RT10xx series MCU.
View full article
Created by:  jeremyzhou Introduction Normal Cortex-M core-based MCUs generally have built-in parallel NOR Flash. The parallel NOR Flash is directly hung on the Cortex-M core high-performance AHB bus. If a well-known IDE supports the MCU, it should integrate the corresponding Flash driver algorithm which enables the developer to program and debug the MCU in the IDE. However, the i.MX RT series MCU doesn't contain the internal flash, how do developers debug these MCUs with online XIP (eXecute-In-Place)? Take easy, i.MXRT can support external parallel NOR and serial NOR to run the XIP, benefit from saving the number of pins, serial NOR Flash is most commonly used and FlexSPI supports XIP feature which makes online debug available. The article introduces the mechanism of debugging the external serial NOR flash with the RT MCU and illustrates the steps of modifying the flash driver algorithm of MCUXpresso. CoreSight Technical The i.MX RT series MCU is based on the Cortex-M core and the CoreSight Technical is a new debugging architecture launched by ARM in 2004 and is also a part of the core authorization, supports the debug and trace feature for Cortex-M core-based MCU. CoreSight is very powerful. It contains many debugging components (ie various protocols). The following figure is from the CoreSight Technical Introduction Manual, which shows the connections between various debugging components under the CoreSight architecture. Fig 1 CoreSight Technical This article does not mainly aim to introduce CoreSight technical. Therefore, for CoreSight, we only need to know that it in charge of the main debugging work and the CoreSight can access the system memory and peripheral register from the AMBA bus through the DAP component in real-time, definitely, it includes the code in the external serial Flash. FlexSPI module To implement debugging in serial Flash, the code must be XIP in serial Flash, that is, the CPU must be able to fetch instructions and data from any address in serial Flash in real-time. The serial Flash mentioned in this article generally refers to the 4-wire SPI Interface NOR Flash and the SPI mode can be Single/Dual/Quad/Octal. No matter which SPI mode is, the Flash is essentially serial Flash, and the address lines and data lines are not only shared but also serial. According to conventional knowledge, to implement the XIP, Flash should be a parallel bus interface and hung on AMBA, further, this parallel bus should have independent address lines and data lines, and the width of the address lines correspond to the size of Flash. So why can run XIP in serial Flash with i.MXRT? The answer is the FlexSPI peripheral. Figure 2 is the FlexSPI module block diagram. On the right side of the block diagram is the signal connection between FlexSPI and external serial Flash. The left side is the connection between FlexSPI and the internal bus of the i.MXRT system. There are two types of bus interface: 32bit IPS BUS (manual manipulate the FlexSPI register sends Flash reading and writing commands) and 64bit AHB BUS (FlexSPI translates the AHB access address and automatically sends the corresponding Flash reading and writing commands) which is the key feature enables the XIP available. Fig 2 FlexSPI module In the Reference manual, it lists detailed information about the AHB bus: - AHB RX Buffer implemented to reduce read latency. Total AHB RX Buffer size: 128 * 64 Bits - 16 AHB masters supported with priority for reading access - 4 flexible and configurable buffers in AHB RX Buffer - AHB TX Buffer implemented to buffer all write data from one AHB burst. AHB TX Buffer size: 8 * 64 Bits - All AHB masters share this AHB TX Buffer. No AHB master number limitation for Write Access. In addition, the AHB bus includes the below-enhanced features to optimize the reading of Serial Flash memory. - Cachable and Non-Cachable access - Prefetch Enable/Disable - Burst size: 8/16/32/64 bits - All burst type: SINGLE/INCR/WRAP4/INCR4/WRAP8/INCR8/WRAP16/INCR16 Debugging process of serial Flash Fig 3 illustrates the debugging process of serial Flash with the RT series MCU and in basic, the overview of the debugging process is not complicated. When you click IDE debugging icon, the Flash driver algorithm (executable file) pre-installed in the IDE will be downloaded to the internal FlexRAM of i.MXRT via the debugger firstly. The Flash driver algorithm provides FlexSPI initialization, erase and programming APIs, etc. Next, the debugger caches the application code (binary machine code) in FlexRAM in segments prior to calling the Flash programming API to implement the program work. After completing programming application code (from FlexRAM to Flash), CoreSight will take over the debugging work. At this time, the CPU can access the serial Flash that connects the FlexSPI module through the AHB bus, in another word, CoreSight can control and track code in real-time, and single-step debugging is available too in the IDE. Fig 3 Flash Driver of MCUXpresso IDE The latest version (24.12) of MCUXpresso IDE supports all i.Mx RT series MCU (as the following figure shows).   Fig 4 MCUXpresso IDE supported Parts The  developer should select a suitable flash driver file to apply to his board (Fig 5). Fig 5 Flash driver files   For more details about the flashdrivers supported by the MCUXpresso IDE, please refer to the MCUXpresso IDE  User Guide. Specifically check the two following sections : Flash drivers using SFDP (LPC and i.MX RT) and i.MX RT QSPI and Hyper Flash frivers   As mentioned above, the RT series MCUs don't have an internal flash, so they must use an either external parallel or serial NOR. For IDE providers, it's too hard to provide enough flash drivers to fit all external NOR flashes, the workload is huge, so IDEs general provide the flash driver files for mainstream Serial NOR, especially, 4-wire SPI Interface NOR Flash, it means we need to modify or tune the flash driver to fit our specific application. Add new flash driver of MCUXpresso IDE Before start, we should realize that MCUXpresso IDE is different from MDK/IAR. The flash driver algorithms of MDK and IAR are independent of the specific debug tools and they are able to use with all supported debug tools (JLink/DAPLink, etc). For MCUXpresso IDE, the flash driver algorithms are only able to use with the CMSIS-DAP type debug tool. For instance, when you use JLink with MCUXPresso IDE, it will use the flash driver algorithm of Jlink instead of its own. There's a real case from a customer: He currently designs his new card reader module based on RT1024 and he plans to make a board without external RAM and Flash. In other words, he only utilizes the internal 4MB flash and 256KB FlexRAM which consist of SRAM_DTC(64KB), SRAM_ITC(64KB), SRAM_OC(128KB). So he wants to configure the 256KB RAM area as normal 256KB RAM without being allocated to ITCM and DTCM. He follows the thread to reconfigure the FlexRAM, but he still encounters the below problem (as Fig 6 shows ) when entering debug mode. Fig 6 According to the debug failure log, we can come to a conclusion that the flash drive file: MIMXRT1020.cfx needs to be updated, and the following steps illustrate how to do it. a) Select a source project Flashdriver projects  on latest versions of the MCUXpresso IDE are delivered in Linkserver package. You can install Linkersever independently or during the MCUXPresso IDE installation. Therefore If you already installed MCUXpresso IDE you do not need to manually install the Linkserver, unless you want the latest version of Linkserver. If you are using MCUXpresso IDEv24 or above flashdriver projects can be found at  C:\nxp\LinkServer_24.12.21\Examples\Flashdrivers\NXP subdirectory within the MCUXpresso's Linkserver installation directory (as Fig 7 shows) and iMXRT folder contains some flash driver projects for external flash parts that work with the RT series MCU (as Fig 8 shows).   Fig 7   Fig 8 Select the flash driver project which is the closest to the target as a prototype, in this case, we select the iMXRT1020_QSPI project, extract the project file and import them in the MCUXpresso IDE (as Fig 9). Fig 9 b) Modify pin assignment The RT1024 integrates a 4 MB QSPI flash as an "internal flash", it is connected to different FlexSPI pins versus to the default pins of the iMXRT1020_QSPI project just as the below table shows. FlexSPI pin RT1020 RT1024 FLEXSPI_A_DQS GPIO_SD_B1_05 GPIO_SD_B1_05 FLEXSPI_A_SS0_B GPIO_SD_B1_11 GPIO_AD_B1_05 FLEXSPI_A_SCLK GPIO_SD_B1_07 GPIO_AD_B1_01 FLEXSPI_A_DATA0 GPIO_SD_B1_08 GPIO_AD_B1_02 FLEXSPI_A_DATA1 GPIO_SD_B1_10 GPIO_AD_B1_04 FLEXSPI_A_DATA2 GPIO_SD_B1_09 GPIO_AD_B1_03 FLEXSPI_A_DATA3 GPIO_SD_B1_06 GPIO_AD_B1_00 So it needs to adjust the pin initialization in the BOARD_InitPins() function in pin_mux.c. /* FUNCTION ************************************************************************************************************ * * Function Name : BOARD_InitPins * Description : Configures pin routing and optionally pin electrical features. * * END ****************************************************************************************************************/ void BOARD_InitPins(void) { CLOCK_EnableClock(kCLOCK_Iomuxc); /* iomuxc clock (iomuxc_clk_enable): 0x03u */ IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B0_06_LPUART1_TX, /* GPIO_AD_B0_06 is configured as LPUART1_TX */ 0U); /* Software Input On Field: Input Path is determined by functionality */ IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B0_07_LPUART1_RX, /* GPIO_AD_B0_07 is configured as LPUART1_RX */ 0U); /* Software Input On Field: Input Path is determined by functionality */ IOMUXC_SetPinMux( IOMUXC_GPIO_SD_B1_05_FLEXSPI_A_DQS, /* GPIO_SD_B1_05 is configured as FLEXSPI_A_DQS */ 1U); /* Software Input On Field: Force input path of pad GPIO_SD_B1_05 */ // IOMUXC_SetPinMux( // IOMUXC_GPIO_SD_B1_06_FLEXSPI_A_DATA03, /* GPIO_SD_B1_06 is configured as FLEXSPI_A_DATA03 */ // 1U); /* Software Input On Field: Force input path of pad GPIO_SD_B1_06 */ // IOMUXC_SetPinMux( // IOMUXC_GPIO_SD_B1_07_FLEXSPI_A_SCLK, /* GPIO_SD_B1_07 is configured as FLEXSPI_A_SCLK */ // 1U); /* Software Input On Field: Force input path of pad GPIO_SD_B1_07 */ // IOMUXC_SetPinMux( // IOMUXC_GPIO_SD_B1_08_FLEXSPI_A_DATA00, /* GPIO_SD_B1_08 is configured as FLEXSPI_A_DATA00 */ // 1U); /* Software Input On Field: Force input path of pad GPIO_SD_B1_08 */ // IOMUXC_SetPinMux( // IOMUXC_GPIO_SD_B1_09_FLEXSPI_A_DATA02, /* GPIO_SD_B1_09 is configured as FLEXSPI_A_DATA02 */ // 1U); /* Software Input On Field: Force input path of pad GPIO_SD_B1_09 */ // IOMUXC_SetPinMux( // IOMUXC_GPIO_SD_B1_10_FLEXSPI_A_DATA01, /* GPIO_SD_B1_10 is configured as FLEXSPI_A_DATA01 */ // 1U); /* Software Input On Field: Force input path of pad GPIO_SD_B1_10 */ // IOMUXC_SetPinMux( // IOMUXC_GPIO_SD_B1_11_FLEXSPI_A_SS0_B, /* GPIO_SD_B1_11 is configured as FLEXSPI_A_SS0_B */ // 1U); /* Software Input On Field: Force input path of pad GPIO_SD_B1_11 */ IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B1_00_FLEXSPI_A_DATA03, /* GPIO_AD_B1_00 is configured as FLEXSPI_A_DATA03 */ 1U); /* Software Input On Field: Force input path of pad GPIO_AD_B1_00 */ IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B1_01_FLEXSPI_A_SCLK, /* GPIO_AD_B1_01 is configured as FLEXSPI_A_SCLK */ 1U); /* Software Input On Field: Force input path of pad GPIO_AD_B1_01 */ IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B1_02_FLEXSPI_A_DATA00, /* GPIO_AD_B1_02 is configured as FLEXSPI_A_DATA00 */ 1U); /* Software Input On Field: Force input path of pad GPIO_AD_B1_02 */ IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B1_03_FLEXSPI_A_DATA02, /* GPIO_AD_B1_03 is configured as FLEXSPI_A_DATA02 */ 1U); /* Software Input On Field: Force input path of pad GPIO_AD_B1_03 */ IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B1_04_FLEXSPI_A_DATA01, /* GPIO_AD_B1_04 is configured as FLEXSPI_A_DATA01 */ 1U); /* Software Input On Field: Force input path of pad GPIO_AD_B1_04 */ IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B1_05_FLEXSPI_A_SS0_B, /* GPIO_AD_B1_05 is configured as FLEXSPI_A_SS0_B */ 1U); /* Software Input On Field: Force input path of pad GPIO_AD_B1_05 */ IOMUXC_SetPinConfig( IOMUXC_GPIO_AD_B0_06_LPUART1_TX, /* GPIO_AD_B0_06 PAD functional properties : */ 0x10B0u); /* Slew Rate Field: Slow Slew Rate Drive Strength Field: R0/6 Speed Field: medium(100MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Keeper Pull Up / Down Config. Field: 100K Ohm Pull Down Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_AD_B0_07_LPUART1_RX, /* GPIO_AD_B0_07 PAD functional properties : */ 0x10B0u); /* Slew Rate Field: Slow Slew Rate Drive Strength Field: R0/6 Speed Field: medium(100MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Keeper Pull Up / Down Config. Field: 100K Ohm Pull Down Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_SD_B1_05_FLEXSPI_A_DQS, /* GPIO_SD_B1_05 PAD functional properties : */ 0x10F1u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/6 Speed Field: max(200MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Keeper Pull Up / Down Config. Field: 100K Ohm Pull Down Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_SD_B1_06_FLEXSPI_A_DATA03, /* GPIO_SD_B1_06 PAD functional properties : */ 0x10F1u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/6 Speed Field: max(200MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Keeper Pull Up / Down Config. Field: 100K Ohm Pull Down Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_SD_B1_07_FLEXSPI_A_SCLK, /* GPIO_SD_B1_07 PAD functional properties : */ 0x10F1u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/6 Speed Field: max(200MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Keeper Pull Up / Down Config. Field: 100K Ohm Pull Down Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_SD_B1_08_FLEXSPI_A_DATA00, /* GPIO_SD_B1_08 PAD functional properties : */ 0x10F1u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/6 Speed Field: max(200MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Keeper Pull Up / Down Config. Field: 100K Ohm Pull Down Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_SD_B1_09_FLEXSPI_A_DATA02, /* GPIO_SD_B1_09 PAD functional properties : */ 0x10F1u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/6 Speed Field: max(200MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Keeper Pull Up / Down Config. Field: 100K Ohm Pull Down Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_SD_B1_10_FLEXSPI_A_DATA01, /* GPIO_SD_B1_10 PAD functional properties : */ 0x10F1u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/6 Speed Field: max(200MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Keeper Pull Up / Down Config. Field: 100K Ohm Pull Down Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_SD_B1_11_FLEXSPI_A_SS0_B, /* GPIO_SD_B1_11 PAD functional properties : */ 0x10F1u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/6 Speed Field: max(200MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Keeper Pull Up / Down Config. Field: 100K Ohm Pull Down Hyst. Enable Field: Hysteresis Disabled */ } c) Modify linker file According to Fig 3, a flash driver should be downloaded into FlexRAM on the target MCU during the debuggingprocess, for the iMXRT1020_QSPI project, the flash driver needs to be downloaded to DTCM (0x2000_0000~0x2001_0000), however, to meet the customer's demand, the whole of FlexRAM is reconfigured to SRAM_OC in the ResetISR() function. In another word, there's no DTCM area to load the flash driver and it causes the above debug failure. So we need to use the SRAM_OC instead of DTCM to load the flash driver just like the below shows. In the FlashDriver_32Kbuffer.ld of iMXRT1020_QSPI project: /* * Linker script for NXP LPC546xx SPIFI Flash Driver (Messaged) */ MEMORY { /*SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = (64 * 1024)*/ SRAM (rwx) : ORIGIN = 0x20200000, LENGTH = (64 * 1024) } /* stack size : multiple of 8*/ __stack_size = (4 * 1024); /* flash image buffer size : multiple of page size*/ __cache_size = (32 * 1024); /* Supported operations bit map * 0x40 = New device info available after Init() call * This setting must match the actual target flash driver build! */ __opmap_val = 0x1000; /* Actual placement of flash driver code/data controlled via standard file */ INCLUDE "../../LPCXFlashDriverLib/linker/placement.ld" d) Recompile In the LPCXFlashDriverLib project, select the Release_SectorHashing option prior to clicking the Build icon to generate libLPCXFlashDriverLib.a file (as Fig 10 shows). Fig 10 Next, in the iMXRT1020_QSPI project, select the MIMXRT1020-EVK_IS25LP064 option (as Fig 11 shows), then click the Build icon to generate a new flash driver file that resides in ~\Examples\Flashdrivers\NXP\iMXRT\iMXRT1020_QSPI\iMXRT1020_QSPI\builds directory. Fig 11 Note: I've attached a test project which is based on the hello_world demo that comes from the RT1024's SDK library, in addition, the attachment also contains the new flash driver and corresponding debug script files, so please give it a try.   Debug the  flash driver of MCUXpresso IDE As mentioned on other parts of this document you could change the pin mux assignments and edit the flashdriver. However, before testing your custom flash driver you could do a simple debug. All the flashdriver projects come with a debug build configuration.  Make sure debug build configuration is enabled as shown in Fig 12 Fig 12  After enabling debug build you can simply trigger a standard debug operation, and the IDE will load into SRAM a simple test code. The test code will detect the flash and perform an erase procedure. See Fig 13 Fig 13 In the terminal you will see the output log from the test program.       Edit changes by @diego_charles : Update Fig 7, Fig 8 and a) Select source project , updated  Flash Driver of MCUXpresso IDE section, updated Flash Driver of MCUXpresso IDE section, fig 4, added  Debug the flash Driver of MCUXpresso IDE section    
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/t5/i-MX-RT-Knowledge-Base/Design-an-IoT-edge-node-for-CV-application-base-on-the-i/ta-p/1127423 
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/t5/i-MX-Community-Articles/Effortless-GUI-Development-with-NXP-Microcontrollers/ba-p/1131179  
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-345190  
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/t5/eIQ-Machine-Learning-Software/eIQ-on-i-MX-RT1064-EVK/ta-p/1123602 
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/t5/i-MX-RT-Knowledge-Base/RT1050-HAB-Encrypted-Image-Generation-and-Analysis/ta-p/1124877  
View full article
Introduction A common need for GUI applications is to implement a clock function.  Whether it be to create a clock interface for the end user's benefit, or just to time animations or other actions, implementing an accurate clock is a useful and important feature for GUI applications.  The aim of this document is to help you implement clock functions in your AppWizard project.   Methods When implementing a real-time clock, there are a couple of general methods to do so.   Use an independent timer in your MCU Using animation objects Each of these methods have their advantages and disadvantages.  If you just need a timer that doesn't require extra code and you don't require control or assurance of precision, or maybe you can't spare another timer, using an animation object (method #2) may be a good option in that application.  If your application requires an assurance of precision or requires other real-time actions to be performed that AppWizard can't control, it is best to implement an independent timer in your MCU (method #1).  Method 1:  Independent MCU Timer Implementing a timer via an independent MCU timer allows better control and guarantees the precision because it isn't a shared clock and the developer can adjust the interrupt priorities such that the timer interrupt has the highest priority.  AppWizard timing uses a common timer and then time slices activities similar to how an operating system works.  It is for this reason that implementing an independent MCU timer is best when you need control over the precision of the timer or you need other real-time actions to be triggered by this timer.  When implementing a timer using an independent MCU timer (like the RTC module), an understanding of how to interact with Text widgets is needed. Let's look at this first.   Interacting with Text Widgets Editing Text widgets occurs through the use of the emWin library API (the emWin library is the underlying code that AppWizard builds upon). The Text widget API functions are documented in the emWin Graphic Library User Guide and Reference Manual, UM3001.  Most of the Text widget API functions require a Text widget handle.  Be sure to not confuse this handle for the AppWizard ID.  Imagine a clock example where there are two Text widgets in the interface:  one for the minutes and one for the seconds.  The AppWizard IDs of these objects might be ID_TEXT_MINS and ID_TEXT_SECONDS respectively (again, these are not to be confused with the handle to the Text widget for use by emWin library functions).  The first action software should take is to obtain the handle for the Text widgets.   This can be done using the WM_GetDialogItem function.  The code to get the active window handle and the handle for the two Text widgets is shown below: activeWin = WM_GetActiveWindow(); textBoxMins = WM_GetDialogItem(activeWin, ID_TEXT_MINS); textBoxSecs = WM_GetDialogItem(activeWin, ID_TEXT_SECONDS);‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Note that this function requires the handle to the parent window of the Text widget.  If your application has multiple windows or screens, you may need to be creative in how you acquire this handle, but for this example, the software can simply call the WM_GetActiveWindow function (since there is only one screen).  When to call these functions can be a bit tricky as well.  They can be called before the MainTask() function of the application is called and the application will not crash.  However, the handles won't be correct and the Text widgets will not be updated as expected.  It's recommended that these handles be initialized when the screen is initialized.  An example of how this would be done is shown below: void cbID_SCREEN_CLOCK(WM_MESSAGE * pMsg) { extern WM_HWIN activeWin; extern WM_HWIN textBoxMins; extern WM_HWIN textBoxSecs; extern WM_HWIN textBoxDbg; if(pMsg->MsgId == WM_INIT_DIALOG) { activeWin = WM_GetActiveWindow(); textBoxMins = WM_GetDialogItem(activeWin, ID_TEXT_MINS); textBoxSecs = WM_GetDialogItem(activeWin, ID_TEXT_SECONDS); textBoxDbg = WM_GetDialogItem(activeWin, ID_TEXT_DBG); } GUI_USE_PARA(pMsg); }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Once the Text widget handles have been acquired, the text can be updated using the TEXT_SetText() function or the TEXT_SetDec() function in this case, because the Text widgets are configured for decimal mode, since we want to display numbers.  An example of the code to do this is shown below.  /* TEXT_SetDec(Text Widget Handle, Value as Int, Length, Shift, Sign, Leading Spaces) */ if(TEXT_SetDec(textBoxSecs, (int)gSecs, 2, 0, 0, 0)) { /* Perform action here if necessary */ } if(TEXT_SetDec(textBoxMins, (int)gMins, 2, 0, 0, 0)) { /* Perform action here if necessary */ } ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Method 2:  Animation Objects When implementing a real-time clock using animation objects, it is necessary to implement a loop.  This could be done outside of the AppWizard GUI (in your code) but because the timing precision can't be guaranteed, it's just as easy to implement a loop in the AppWizard GUI if you know how (it isn't very intuitive as to how to do this). Before examining the interactions to do this, let's look at the variables and objects needed to do this.  ID_VAR_SECS - This variable holds the current seconds value. ID_VAR_SECS_1 - This variable holds the next second value.  ID_TEXT_SECONDS - Text box that displays the current seconds value. ID_END_CNT - Variable that holds the value at which the seconds rolls over and increments the minute count ID_TEXT_MINS - Text box that holds the current minute count. ID_MIN_END_CNT - Variable that holds the value at which the minutes rolls over (which would also increment the hour count if the hours were implemented). ID_BUTTON_SECS - This is a hidden button that initiates actions when the seconds variable has reached the end count.  Now, here are the interactions used to implement the clock feature using animation interactions.  The heart of the loop are the interactions triggered by ID_VAR_SECS.  ID_VAR_SECS -> ID_VAR_SECS_1:  When ID_VAR_SECS changes, it needs to add one to ID_VAR_SECS_1 so that the animation will animate to one second from the current time. ID_VAR_SECS -> ID_TEXT_SECONDS:  When ID_VAR_SECS changes, it also needs to start the animation from the current value to the next second (ID_VAR_SECS_1). A very essential part of the loop is ensuring the animation restarts every time.  So ID_TEXT_SECONDS needs to change the value of ID_VAR_SECS when the animation ends. ID_VAR_SECS is changed to the current time value, ID_VAR_SECS_1. When the ID_TEXT_SECONDS animation ends, it must also decrement the ID_VAR_END_CNT variable.  This is analogous to the control variable of a "For" loop being updated. This is done using the ADDVALUE job, adding '-1' to the variable, ID_VAR_END_CNT. When ID_VAR_END_CNT changes, it updates the hidden button, ID_BUTTON_SECS, with the new value.  This is analogous to a "For" loop checking whether its control variable is still within its limits.   The interactions in group 5 are interactions that restart the loop when the seconds reach the count that we desire.  When the loop is restarted, the following actions must be taken: Set ID_VAR_SECS and ID_VAR_SECS_1 to the initial value for the next loop ('0' in this case).  Note that ID_VAR_SECS_1 MUST be set before ID_VAR_SECS.  Additionally, if the loop is to continue, ID_VAR_SECS and ID_VAR_SECS_1 must be set to the same value.   ID_TEXT_SECONDS is set to the initial value.  If this isn't done, then the text box will try to animate from the final value to the initial value and then will look "weird". ID_VAR_END_CNT is reset to its initial value (60 in this case).  ID_BUTTON_SECS is also responsible for updating the minutes values.  In this case, it's incrementing the ID_TEXT_MINS value (counting up in minutes) and decrementing the ID_VAR_MIN_END_CNT  Adjusting the time of an animation object The animation object (as well as other emWin objects) use the GUI_X_DELAY function for timing.  It is up to the host software to implement this function.  In the i.MX RT examples, the General Purpose Timer (GPT) is used for this timer.  So how the GPT is configured will affect the timing of the application and the how fast or slow the animations run. The GPT is configured in the function BOARD_InitGPT() which resides in the main source file.  The recommended way to adjust the speed of the timer is by changing the divider value to the GPT. Conclusion So we have seen two different methods of implementing a real-time clock in an AppWizard GUI application.  Those methods are: Use an independent timer in your MCU Using animation objects Using an independent timer in your MCU may be preferred as it allows for better control over the timing, can allow for real-time actions to be performed that AppWizard can't control, and provides some assurance of precision.  Using animation objects may be preferred if you just need a quick timer implementation that doesn't require you to manually add code to your project or use a second timer.  
View full article
Overview of i.MX RT1050         The i.MX RT1050 is the industry's first crossover processor and combines the high-performance and high level of integration on an applications processors with the ease of use and real-time functionality of a micro-controller. The i.MX RT1050 runs on the Arm Cortex-M7 core at 600 MHz, it means that it definitely has the ability to do some complicated computing, such as floating-point arithmetic, matrix operation, etc. For general MCU, they're hard to conquer these complicated operations.         It has a rich peripheral which makes it suit for a variety of applications, in this demo, the PXP (Pixel Pipeline), CSI (CMOS Sensor Interface), eLCDIF (Enhanced LCD Interface) allows me to build up camera display system easily Fig 1 i.MX RT series           It has a rich peripheral which makes it suit for a variety of applications, in this demo, the PXP (Pixel Pipeline), CSI (CMOS Sensor Interface), eLCDIF (Enhanced LCD Interface) allows me to build up camera display system easily Fig 2 i.MX RT1050 Block Diagram Basic concept of Compute Vision (CV)          Machine Learning (ML) is moving to the edge because of a variety of reasons, such as bandwidth constraint, latency, reliability, security, ect. People want to have edge computing capability on embedded devices to provide more advanced services, like voice recognition for smart speakers and face detection for surveillance cameras. Fig 3 Reason        Convolutional Neural Networks (CNNs) is one of the main ways to do image recognition and image classification. CNNs use a variation of multilayer perception that requires minimal pre-processing, based on their shared-weights architecture and translation invariance characteristics. Fig 4 Structure of a typical deep neural network         Above is an example that shows the original image input on the left-hand side and how it progresses through each layer to calculate the probability on the right-hand side. Hardware MIMXRT1050 EVK Board; RK043FN02H-CT(LCD Panel) Fig 5 MIMXRT1050 EVK board Reference demo code emwin_temperature_control: demonstrates graphical widgets of the emWin library. cmsis_nn_cifar10: demonstrates a convolutional neural network (CNN) example with the use of convolution, ReLU activation, pooling and fully-connected functions from the CMSIS-NN software library. The CNN used in this example is based on the CIFAR-10 example from Caffe. The neural network consists of 3 convolution layers interspersed by ReLU activation and max-pooling layers, followed by a fully-connected layer at the end. The input to the network is a 32x32 pixel color image, which is classified into one of the 10 output classes. Note: Both of these two demo projects are from the SDK library Deploy the neuro network mode Fig 6 illustrates the steps of deploying the neuro network mode on the embedded platform. In the cmsis_nn_cifar10 demo project, it has provided the quantized parameters for the 3 convolution layer, so in this implementation, I use these parameters directly, BTW, I choose 100 images randomly from the Test set as a round of input to evaluate the accuracy of this model. And through several rounds of testing, I get the model's accuracy is about 65% as the below figure shows. Fig 6 Deploy the neuro network mode Fig 7 cmsis_nn_cifar10 demo project test result The CIFAR-10 dataset is a collection of images that are commonly used to train ML and computer vision algorithms, it consists of 60000 32x32 color images in 10 classes, with 6000 images per class ("airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"). There are 50000 training images and 10000 test images. Embedded platform software structure         After POR, various components are initialized, like system clock, pin mux, camera, CSI, PXP, LCD and emWin, etc. Then control GUI will show up in the LCD, press the Play button will display the camera video in the LCD, once an object into the camera's window, you can press the Capture button to pause the display and run the model to identify the object. Fig8 presents the software structure of this demo. Fig 8 Embedded platform software structure Object identify Test The three figures present the testing result.   Fig 9 Fig 10 Fig 11 Furture work          Use the Pytorch framework to train a better and more complicated convolutional network for object recognition usage.
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-341317
View full article
RT1050 HAB Encrypted Image Generation and Analysis 1, Introduction      The NXP RT series can support multiple boot modes, it incluses: unsigned image mode, HAB signed image mode, HAB encryption image mode, and BEE encryption  image mode.       In order to understand the specific structure of the HAB encryption app, this article will generate a non-XIP app image, then generate the relevant burning file through the elftosb.exe tool in the flashloader i.MX-RT1050, and use MFGTOOL to enter the serial download mode to download the .sb file.       This article will focus on the download steps of RT1050 HAB encryption related operations, and analyze the structure of the HAB encrypted app image.     2, RT1050 HAB Encypted Operation Procedure At first, we analyze the steps of MFGtool burning, which files are needed, so as to give specific preparation, open the ucl2.xml file in the following path of the flashloader: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\mfgtools-rel\Profiles\MXRT105X\OS Firmware Because we need to use the HAB encrypated boot mode, then we will use MXRT105X-SecureBoot, from the ucl2.xml file, we will find the following related code: Fig 1. MXRT1050-SecureBoot structure As you can see from the above, to implement the secure boot of RT1050, you need to prepare these three files: ivt_flashlloader_signed.bin: it is the signed flashloader binary file enable_hab.sb: it is used to modify the SRK and HABmode in the fuse map boot_image.sb: HAB encrypted app program file       Here is a flow chart of the overall HAB encryption operation step, after checking this figure, then we will follow it step by step.     Fig 2. MXRT1050 HAB encrypted image flow chart     The app image we used in this article is the RAM app, so, at first, we need to prepare one RAM based app image. In this document, we are directly use the prepared  RAM based app image: evkbimxrt1050_led_softwarereset_0xa000.s19, this app code function is: After download the code to the MIMXRT1050-EVKB(qspi flash) board, the on board led D18 will blinky and printf the information, after pressing the WAKEUP button SW8, the code will implement software reset and printf the related information. The unsigned code test print result are as follows:      BOARD RESET start.  Helloworld. WAKEUP key pressed, will do software system reset.    BOARD RESET start.  Helloworld. 2.1 CST tool preparation      Because the contains a lot of steps, then customer can refer to the following document do the related configuration, this document, we won’t give the CST configuration detail steps. Please check these documents: https://www.cnblogs.com/henjay724/p/10219459.html https://community.nxp.com/docs/DOC-340904 Security Application Note AN12079 After the CST tool configuration, please copy the cst.exe, crts folder, key folder from cst folder to the same folder that holds elftosb executable files: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\elftosb\win Please also copy SRK_1_2_3_4_fuse.bin and SRK_1_2_3_4_table.bin to the above folder. 2.2  Sign flashloader    Please refer to application note AN12079 chapter 3.3.1, copy flashloader.elf from folder path: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Flashloader And the imx-flexspinor-normal-signed.bd  from folder path: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\bd_file\imx10xx to the folder: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\elftosb\win Please open commander window under the elftosb folder, then input this commander: elftosb.exe -f imx -V -c imx-flexspinor-flashloader-signed.bd -o ivt_flashloader_signed.bin flashloader.elf   Fig 3.  Sign flashloader  This steps will generate the  ivt_flashlaoder_signed.bin, which is needed to put under the MFGtool OS Firmware folder, just used for enter the signed flashloader mode. 2.3 SRK and HAB mode fuse modification files Please refer to AN12079 chapter 4.3, copy the enable_hab.bd file from folder path: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\bd_file\imx10xx to this folder path: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\elftosb\win Please refer to the chapter 2.1 generated SRK_1_2_3_4_fuse.bin, modify the enable_hab.bd like the following picture: Fig 4. enable_hab.bd SRK and HAB mode fuse modification Then,  in the elftosb window, please input the following command, just used to generate the enable_hab.sb program file: elftosb.exe -f kinetis -V -c enable_hab.bd -o enable_hab.sb   Fig 5. SRK and HAB mode program files generation 2.4 APP Encrypted Image      If you want to do the HAB encrypted image download, you need to prepare one non-XIP app image, here we prepared one RAM based APP srec files.      Because the app file is the RAM files, then we also need the related RAM encrypted .bd files, please copy imx-itcm-encrypted.bd from the folder path:      Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\bd_file\imx10xx to this folder path: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\elftosb\win Open imx-itcm-encrypted.bd, then modify the following content: options {     flags = 0x0c;     # Note: This is an example address, it can be any non-zero address in ITCM region     startAddress = 0x8000;     ivtOffset = 0x1000;     initialLoadSize = 0x2000;     # Note: This is required if the cst and elftsb are not in the same folder     # Note: This is required if the default entrypoint is not the Reset_Handler     #       Please set the entryPointAddress to Reset_Handler address   entryPointAddress = 0x0000a2dd; } Here, we need to note these two points: (1)    ivtOffset = 0x1000; If the external flash is flexspi flash, then we need to modify ivtOffset as 0X1000, if it is the nandflash, we need to use the 0X400. (2) entryPointAddress = 0x0000a2dd; The entryPointsAddress should be the app code reset handlder, it is the app start address+4 data, the entry address is also OK, but we suggest you to use the app Reset_Handler address. Fig 6. App reset handler address Then input the following commander in the elftosb windows: elftosb.exe -f imx -V -c imx-itcm-encrypted.bd -o ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted.bin evkbimxrt1050_led_softwarereset_0xa000.s19 Fig 7. App HAB Encrypted file generation Please note, we need to record the generated key blob offset address, it is 0XA00, just like the above data in the red frame, this address will be used in the next chapter’s .bd file. After this step, it will generate 7 files:          (1)  ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted.bin, this file includes the FDCB which is filled with 0, IVT, BD, DCD, APP HAB encrypted image data, CSF data (2)  ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted_nopadding.bin, compare with ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted.bin, this file deletes the 0s which is above IVT range. (3)  Csf.bin, it is the HAB data area, you can find the data contains the csf data, it is from 0X8000 to 0X8F80 in the generated ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted.bin. Fig 8. Csf data and the encrypted app relationship      (4) dek.bin Fig 9. Dek data DEK data is the AES-128 bits key, it is not defined by the customer, it is random generated automatically by the HAB encrypted tool. (5) input.csf Open it, you can find the following content: Fig10. Input csf file content (6) rawbytes.bin,  this is the app image plaintext data, it doesn’t contains the FDCB,IVT,BOOTDATA, DCD, csf etc.    (7) temp.bin, it is the temporary file, compare with ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted.bin, no csf files.   2.5 HAB Encrypted QSPI program file    Here we need to prepare one program_flexspinor_image_qspinor_keyblob.bd file, and put it under the same folder as elftosb, this file is used to generate the HAB encrypted program .sb file. Because the flashloader package didn’t contains it, then we paste all the related content, and I will also attach it in the attachment. # The source block assign file name to identifiers sources { myBinFile = extern (0); dekFile = extern (1); } constants { kAbsAddr_Start= 0x60000000; kAbsAddr_Ivt = 0x60001000; kAbsAddr_App = 0x60002000; } # The section block specifies the sequence of boot commands to be written to the SB file section (0) { #1. Prepare Flash option # 0xc0000006 is the tag for Serial NOR parameter selection # bit [31:28] Tag fixed to 0x0C # bit [27:24] Option size fixed to 0 # bit [23:20] Flash type option # 0 - QuadSPI SDR NOR # 1 - QUadSPI DDR NOR # 2 - HyperFLASH 1V8 # 3 - HyperFLASH 3V # 4 - Macronix Octal DDR # 6 - Micron Octal DDR # 8 - Adesto EcoXIP DDR # bit [19:16] Query pads (Pads used for query Flash Parameters) # 0 - 1 # 2 - 4 # 3 - 8 # bit [15:12] CMD pads (Pads used for query Flash Parameters) # 0 - 1 # 2 - 4 # 3 - 8 # bit [11: 08] Quad Mode Entry Setting # 0 - Not Configured, apply to devices: # - With Quad Mode enabled by default or # - Compliant with JESD216A/B or later revision # 1 - Set bit 6 in Status Register 1 # 2 - Set bit 1 in Status Register 2 # 3 - Set bit 7 in Status Register 2 # 4 - Set bit 1 in Status Register 2 by 0x31 command # bit [07: 04] Misc. control field # 3 - Data Order swapped, used for Macronix OctaFLASH devcies only (except MX25UM51345G) # 4 - Second QSPI NOR Pinmux # bit [03: 00] Flash Frequency, device specific load 0xc0000006 > 0x2000; # Configure QSPI NOR FLASH using option a address 0x2000 enable flexspinor 0x2000; #2 Erase flash as needed. erase 0x60000000..0x60020000; #3. Program config block # 0xf000000f is the tag to notify Flashloader to program FlexSPI NOR config block to the start of device load 0xf000000f > 0x3000; # Notify Flashloader to response the option at address 0x3000 enable flexspinor 0x3000; #5. Program image load myBinFile > kAbsAddr_Ivt; #6. Generate KeyBlob and program it to flexspinor # Load DEK to RAM load dekFile > 0x10100; # Construct KeyBlob Option #--------------------------------------------------------------------------- # bit [31:28] tag, fixed to 0x0b # bit [27:24] type, 0 - Update KeyBlob context, 1 Program Keyblob to flexspinor # bit [23:20] keyblob option block size, must equal to 3 if type =0, # reserved if type = 1 # bit [19:08] Reserved # bit [07:04] DEK size, 0-128bit 1-192bit 2-256 bit, only applicable if type=0 # bit [03:00] Firmware Index, only applicable if type = 1 # if type = 0, next words indicate the address that holds dek # the 3rd word #---------------------------------------------------------------------------- # tag = 0x0b, type=0, block size=3, DEK size=128bit load 0xb0300000 > 0x10200; # dek address = 0x10100 load 0x00010100 > 0x10204; # keyblob offset in boot image # Note: this is only an example bd file, the value must be replaced with actual # value in users project load 0x0000a000 > 0x10208; enable flexspinor 0x10200; #7. Program KeyBlob to firmware0 region load 0xb1000000 > 0x10300; enable flexspinor 0x10300; }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Please note, in the above chapter, fig 7, we mentioned the keyblob offset address, we need to modify it in the following code:     load 0x0000a000 > 0x10208; Now, combine program_flexspinor_image_qspinor_keyblob.bd, ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted_nopadding.bin and dek.bin file together, we use the following commander to generate the boot_image.sb: elftosb.exe -f kinetis -V -c program_flexspinor_image_qspinor_keyblob.bd -o boot_image.sb ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted_nopadding.bin dek.bin Fig 11. App HAB encrypted program file generation Until now, we will find, all the related HAB encrypted files is prepared. 2.6 MFG Tool program HAB Encrypted files to RT1050-EVKB        Before we program it, please copy the following 3 files which is in the elftosb folder: ivt_flashloader_signed.bin enable_hab.sb boot_image.sb to this folder: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\mfgtools-rel\Profiles\MXRT105X\OS Firmware Please modify cfg.ini, the file path is: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\mfgtools-rel Modify the content as: [profiles] chip = MXRT105X [platform] board = [LIST] name = MXRT105X-SecureBoot Choose MXRT105X-SecureBoot program mode. Then open the tool MfgTool2.exe, the board MIMXRT1050-EVKB(need to modify the on board resistor, use the qspi flash) mode should be serial download mode, just modify SW7:1-OFF,2-OFF,3-OFF, 4-ON, connect two usb cable between PC and the board J28 and J9. After the connection, you will find the MfgTool2.exe can detect the HID device: Fig 12. MFG tool program After the program is finished, power off the board, modify the boot mode to internal boot, it is SW7:1-OFF,2-OFF,3-ON, 4-OFF,connect the COM terminal, power on the EVKB board, after reset, you will find the D18 led is blinking, after you press the SW8, you will find the following printf information: BOARD RESET start. Helloworld. WAKEUP key pressed, will do software system reset. ? BOARD RESET start. Helloworld.‍‍‍‍‍‍‍‍‍‍‍‍‍ So, the HAB encrypted image works OK now. 3. App HAB encrypted image structure analysis 3.1 MCUBootUtility Configuration to check the RT Encrypted image      Here, we can also use  MCUBootUtility tool to check the RT chip encrypted image and the fuse data.      If the cst is your own configured, please do the following configuration at first:     (1)Copy the configured cst folder to folder: NXP-MCUBootUtility-2.0.0\tools Delete the original cst folder. (2)Copy SRK_1_2_3_4_fuse.bin and SRK_1_2_3_4_table.bin to folder:  NXP-MCUBootUtility-2.0.0\gen\hab_cert Now, you can use the new MCUBootutility to connect your board which already done the HAB encrypted method. 3.1 RT1050 fuse map comparation Before do the HAB encrypted image program, I have read out the whole fuse map as follows: Fig 13. MIMXRT1050-EVKB fuse map before HAB encrypted image Fig 14. MIMXRT1050-EVKB fuse map after HAB encrypted image Compare the fuse map between do the HAB encrypted image and no HAB encrypted image, we can find two difference: HAB mode, 0X460 bit1:0 open, 1 close SRK area We can find, after program the HAB encrypted image, the SRK fuse data is the same as the SRK data which is defined in the enable_hab.bd. 3.2  Readout HAB encrypted QSPI APP image structure analysis From MCUBootUtility tool, we can find the HAB Encypted image structure should be like this: Fig 15. HAB Encrypted image structure What about the real example image case? Now, we use the MCUbootUtility tool to read out our HAB encrypted image, from address 0X60000000, the readout size is 0XB000. The detail image structure is like following:   Fig 16. HAB Encypted image example structure   1): IVT:  hdr,  IVT header, more details, check hab_hdr 2):    IVT: entry, the app entrypointAddress, it should be the reset_handler address, in this document example, it is the address 0xa004 data, the plaintext is 0X00A2DD, but after the HAB encrypted, we can find the address -x60002004 data is the encrypted data 3):  IVT: reserved 4):  IVT: DCD, it is used for the DRAM SEMC configuration, in this example, we didn’t use the SDDRAM, so the data is 0. 5):  IVT: BOOT_DATA, used to indicate the BOOT_DATA  RAM start address 0X9020. 6):  IVT: self, ivt self RAM start address is 0X9000 7):  IVT:CSF, it is used to indicate the CST start address, this example csf ram address is 0X00010000. 8):  IVT:reserved 9): BOOT_DATA:  RAM image start,  the whole image RAM start address, this RAM example BOOT_DATA is 0X8000,0XA000-0X2000=0X8000 10): BOOT_DATA: size, APP file size, it is 0X0000A200, after checking the file generated HAB encrypted app image size, you can find the image end size is really 0XA200, just like the fig 16. 11):  HAB  Encypted app data,  please check ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted.bin file, the address 0X2000-0X7250 data, you will find it is the same.   12): HAB data, it incluses the csf, certificate etc data, you can compare the file ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted.bin address 0X8000-0x8f70 data, it is the same. 13):DEK blob, it is the DEK key blob related data, the offset address is 0XA000, the same as fig 7. FDCB,IVT,BOOT DATA are all plaintext, but app image area is the HAB encrypted data, HAB and the DEK blob is the generated data put in the related memory. Conclusion     This document we mainly use the elftosb and the MFGTool to generate the HAB encrypted image, and download it to the RT1050 EVKB board, document give the whole detail steps, and us ethe MCUBootutility tool to read out the HAB encrypted image, and analysis the HAB encrypted image structure with the examples.  After compare with the generated mid files, we can find all the data is consist, and all the encrypted data range is the same. The test result also demonstrate the HAB encrypted code function works, the HAB encrypted boot has no problems. All the related files is in the attachment.      
View full article
When design a project, sometimes CCM_CLKO1 needs to output different clocks to meet customer needs. This customer does not need to buy a separate crystal, which can reduce costs。The document describe how to make CCM_CLKO1 output different clock on I.MXRT1050. According to  selection of the clock to be generated on CCM_CLKO1(CLKO1_SEL) and setting the divider of CCM_CLKO1(CLKO1_DIV) in I.MXRT1050reference manual. CCM_CLKO1 can output different clock. If CCM_CLKO1 output different clock via SYS PLL clock. We can get the different clock for the application. CLKO1_DIV 000 001 010 011 100 101 110 111 Freq(MHz) 264 132 88 66 52.8 44 37.714 33 For example we want to get 88Mhz output via SYS PLL clock. We can follow the steps as the below(led_blinky project in SDK 😞       1. PINMUX GPIO_SD_B0_04 as CCM_CLKO1 signal.       IOMUXC_SetPinConfig(       IOMUXC_GPIO_SD_B0_04_CCM_CLKO1,              0x10B0u; 2.Enable CCM_CLKO1 signal. CCM->CCOSR |= CCM_CCOSR_CLKO1_EN_MASK; 3.Set CLKO1_DIV to get 88MHZ the clock for the application. CCM->CCOSR = (CCM->CCOSR & (~CCM_CCOSR_CLKO1_DIV_MASK)) | CCM_CCOSR_CLKO1_DIV(2); CCM->CCOSR = (CCM->CCOSR & (~CCM_CCOSR_CLKO1_SEL_MASK)) | CCM_CCOSR_CLKO1_SEL(1); 4 We will get the clock as the below. Note: In principle, it is not recommended to output CLOCK in CCM_CLKO1, if necessary, Please connect an 8-10pf capacitor to GPIO_SD_B0_04, and connect a 22 ohm resistor in series to prevent interference.
View full article
Using a different Flash with the RT1050 In IAR/Keil environment , when you change to other flash(not default flash on EVK board), please refer to below AN to modify the code for it. https://www.nxp.com/docs/en/nxp/application-notes/AN12183.pdf
View full article
Source code: https://github.com/JayHeng/NXP-MCUBootUtility   【v2.0.0】 Features: > 1. Support i.MXRT5xx A0, i.MXRT6xx A0 >    支持i.MXRT5xx A0, i.MXRT6xx A0 > 2. Support i.MXRT1011, i.MXRT117x A0 >    支持i.MXRT1011, i.MXRT117x A0 > 3. [RTyyyy] Support OTFAD encryption secure boot case (SNVS Key, User Key) >     [RTyyyy] 支持基于OTFAD实现的安全加密启动(唯一SNVS key,用户自定义key) > 4. [RTxxx] Support both UART and USB-HID ISP modes >     [RTxxx] 支持UART和USB-HID两种串行编程方式(COM端口/USB设备自动识别) > 5. [RTxxx] Support for converting bare image into bootable image >     [RTxxx] 支持将裸源image文件自动转换成i.MXRT能启动的Bootable image > 6. [RTxxx] Original image can be a bootable image (with FDCB) >     [RTxxx] 用户输入的源程序文件可以包含i.MXRT启动头 (FDCB) > 7. [RTxxx] Support for loading bootable image into FlexSPI/QuadSPI NOR boot device >     [RTxxx] 支持下载Bootable image进主动启动设备 - FlexSPI/QuadSPI NOR接口Flash > 8. [RTxxx] Support development boot case (Unsigned, CRC) >     [RTxxx] 支持用于开发阶段的非安全加密启动(未签名,CRC校验) > 9. Add Execute action support for Flash Programmer >     在通用Flash编程器模式下增加执行(跳转)操作 > 10. [RTyyyy] Can show FlexRAM info in device status >       [RTyyyy] 支持在device status里显示当前FlexRAM配置情况 Improvements: > 1. [RTyyyy] Improve stability of USB connection of i.MXRT105x board >     [RTyyyy] 提高i.MXRT105x目标板USB连接稳定性 > 2. Can write/read RAM via Flash Programmer >    通用Flash编程器里也支持读写RAM > 3. [RTyyyy] Provide Flashloader resident option to adapt to different FlexRAM configurations >     [RTyyyy] 提供Flashloader执行空间选项以适应不同的FlexRAM配置 Bugfixes: > 1. [RTyyyy] Sometimes tool will report error "xx.bat file cannot be found" >     [RTyyyy] 有时候生成证书时会提示bat文件无法找到,导致证书无法生成 > 2. [RTyyyy] Editing mixed eFuse fields is not working as expected >     [RTyyyy] 可视化方式去编辑混合eFuse区域并没有生效 > 3. [RTyyyy] Cannot support 32MB or larger LPSPI NOR/EEPROM device >     [RTyyyy] 无法支持32MB及以上容量的LPSPI NOR/EEPROM设备 > 4. Cannot erase/read the last two pages of boot device via Flash Programmer >    在通用Flash编程器模式下无法擦除/读取外部启动设备的最后两个Page
View full article
[中文翻译版] 见附件 原文链接: https://community.nxp.com/docs/DOC-342297
View full article
Introduction  This document is an extension of section 3.1.3, “Software implementation” from the application note AN12077, using the i.MX RT FlexRAM. It's important that before continue reading this document, you read this application note carefully.  Link to the application note.  Section 3.1.3 of the application note explains how to reallocate the FlexRAM through software within the startup code of your application. This document will go into further detail on all the implications of making these modifications and what is the best way to do it.  Prerequisites RT10xx-EVK  The latest SDK which you can download from the following link: Welcome | MCUXpresso SDK Builder MCUXpresso IDE Internal SRAM  The amount of internal SRAM varies depending on the RT. In some cases, not all the internal SRAM can be reallocated with the FlexRAM.  RT  Internal SRAM FlexRAM RT1010 Up to 128 KB Up to 128 KB RT1015 Up to 128 KB Up to 128 KB RT1020 Up to 256 KB Up to 256 KB RT1050 Up to 512 KB Up to 512 KB RT1060 Up to 1MB  Up to 512 KB RT1064 Up to 1MB Up to 512 KB   In the case of the RT106x, only 512 KB out of the 1MB of internal SRAM can be reallocated through the FlexRAM as DTCM, ITCM, and OCRAM. The remaining 512 KB are from OCRAM and cannot be reallocated. For all the other RT10xx you can reallocate the whole internal SRAM either as DTCM, ITCM, and OCRAM. Section 3.1.3.1 of the application note explains the limitations of the size when reallocating the FlexRAM. One thing that's important to mention is that the ROM bootloader in all the RT10xx parts uses the OCRAM, hence you should keep some  OCRAM when reallocating the FlexRAM, this doesn't apply to the RT106x since you will always have the 512 KB of OCRAM that cannot be reallocated. To know more about how many OCRAM each RT family needs please refer to section 2.1.1.1 of the application note. Implementation in MCUXpresso IDE First, you need to import any of the SDK examples into your MCUXpresso IDE workspace. In my case, I imported the igpio_led_output example for the RT1050-EVKB. If you compile this project, you will see that the default configuration for the FlexRAM on the RT1050-EVKB is the following:  SRAM_DTC 128 KB SRAM_ITC 128 KB SRAM_OC 256 KB   Now we need to go to the Reset handler located in the file startup_mimxrt1052.c. Reallocating the FlexRAM has to be done before the FlexRAM is configured, this is why it's done inside the Reset Handler.  The registers that we need to modify to reallocate the FlexRAM are IOMUXC_GPR_GPR16, and IOMUXC_GPR_GPR17. So first we need to have in hand the addresses of these three registers. Register Address IOMUXC_GPR_GPR16 0x400AC040 IOMUXC_GPR_GPR17 0x400AC044   Now, we need to determine how we want to reallocate the FlexRAM to see the value that we need to load into register IOMUXC_GPR_GPR17. In my case, I want to have the following configuration:  SRAM_DTC 256 KB SRAM_ITC 128 KB SRAM_OC 128 KB   When choosing the new sizes of the FlexRAM be sure that you choose a configuration that you can also apply through the FlexRAM fuses, I will explain the reason for this later. The configurations that you can achieve through the fuses are shown in the Fusemap chapter of the reference manual in the table named "Fusemap Descriptions", the fuse name is "Default_FlexRAM_Part".  Based on the following explanation of the IOMUXC_GPR_GPR17 register: The value that I need to load to the register is 0xAAAAFF55. Where the first  4 banks correspond to the 128KB of SRAM_OC, the next 4 banks correspond to the 128KB of SRAM_ITC and the last 8 banks are the 256KB of SRAM_DTC.  Now, that we have all the addresses and the values that we need we can start writing the code in the Reset handler. The first thing to do is load the new value into the register IOMUXC_GPR_GPR17. After, we need to configure register IOMUXC_GPR_GPR16 to specify that the FlexRAM bank configuration should be taken from register IOMUXC_GPR_GPR17 instead of the fuses. Then if in your new configuration of the FlexRAM either the SRAM_DTC or SRAM_ITC are of size 0, you need to disable these memories in the register IOMUXC_GPR_GPR16. At the end your code should look like the following:    void ResetISR(void) { // Disable interrupts __asm volatile ("cpsid i"); /* Reallocating the FlexRAM */ __asm (".syntax unified\n" "LDR R0, =0x400ac044\n"//Address of register IOMUXC_GPR_GPR17 "LDR R1, =0xaaaaff55\n"//FlexRAM configuration DTC = 265KB, ITC = 128KB, OC = 128KB "STR R1,[R0]\n" "LDR R0,=0x400ac040\n"//Address of register IOMUXC_GPR_GPR16 "LDR R1,[R0]\n" "ORR R1,R1,#4\n"//The 4 corresponds to setting the FLEXRAM_BANK_CFG_SEL bit in register IOMUXC_GPR_GPR16 "STR R1,[R0]\n" #ifdef FLEXRAM_ITCM_ZERO_SIZE "LDR R0,=0x400ac040\n"//Address of register IOMUXC_GPR_GPR16 "LDR R1,[R0]\n" "AND R1,R1,#0xfffffffe\n"//Disabling SRAM_ITC in register IOMUXC_GPR_GPR16 "STR R1,[R0]\n" #endif #ifdef FLEXRAM_DTCM_ZERO_SIZE "LDR R0,=0x400ac040\n"//Address of register IOMUXC_GPR_GPR16 "LDR R1,[R0]\n" "AND R1,R1,#0xfffffffd\n"//Disabling SRAM_DTC in register IOMUXC_GPR_GPR16 "STR R1,[R0]\n" #endif ".syntax divided\n"); #if defined (__USE_CMSIS) // If __USE_CMSIS defined, then call CMSIS SystemInit code SystemInit(); ...‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   If you compile your project you will see the memory distribution that appears on the console is still the default configuration.  This is because we did modify the Reset handler to reallocate the FlexRAM but we haven't modified the linker file to match these new sizes. To do this you need to go to the properties of your project. Once in the properties, you need to go to C/C++ Build -> MCU settings. Once you are in the MCU settings you need to modify the sizes of the SRAM memories to match the new configuration.  When you make these changes click Apply and Close. After making these changes if you compile the project you will see the memory distribution that appears in the console is now matching the new sizes.  Now we need to modify the Memory Protection Unit (MPU) to match these new sizes of the memories. To do this you need to go to the function BOARD_ConfigMPU inside the file board.c. Inside this function, you need to locate regions 5, 6, and 7 which correspond to SRAM_ITC, SRAM_DTC, and SRAM_OC respectively. Same as for register IOMUXC_GPR_GPR14, if the new size of your memory is not 32, 64, 128, 256, or 512 you need to choose the next greater number. Your configuration should look like the following:    /* Region 5 setting: Memory with Normal type, not shareable, outer/inner write back */ MPU->RBAR = ARM_MPU_RBAR(5, 0x00000000U); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 0, 0, 1, 1, 0, ARM_MPU_REGION_SIZE_128KB); /* Region 6 setting: Memory with Normal type, not shareable, outer/inner write back */ MPU->RBAR = ARM_MPU_RBAR(6, 0x20000000U); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 0, 0, 1, 1, 0, ARM_MPU_REGION_SIZE_256KB); /* Region 7 setting: Memory with Normal type, not shareable, outer/inner write back */ MPU->RBAR = ARM_MPU_RBAR(7, 0x20200000U); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 0, 0, 1, 1, 0, ARM_MPU_REGION_SIZE_128KB);‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   We need to change the image entry address to the Reset handler. To do this, you need to go to the file fsl_flexspi_nor_boot.c inside the xip folder. You need to declare the ResetISR and change the entry address in the image vector table.  Finally, we need to place the stack at the start of the DTCM memory. To do this, we need to go to the properties of your project. From there, we have to C/C++ Build and Manage Linker Script.  From there, we will need to add two more assembly instructions in our ResetISR function. We have to add these two instructions at the beginning of our assembly code:  In the attached c file, you'll find all the assembly instructions mentioned above.  That's it, these are all the changes that you need to make to reallocate the FlexRAM during the startup.  Debug Session  To verify that all the modifications that we just did were correct we will launch the debug session. As soon as we reach the main, before running the application, we will go to the peripheral view to see registers IOMUXC_GPR_GPR16, and IOMUXC_GPR_GPR17 and verify that the values are the correct ones. In register IOMUXC_GPR_GPR16 as shown in the image below we configure the FLEXRAM_BANK_CFG_SEL as 1 to use the use register IOMUXC_GPR_GPR17 to configure the FlexRAM.  Finally, in register IOMUXC_GPR_GPR17 we can see the value 0xAAAAFF55 that corresponds to the new configuration.  Reallocating the FlexRAM through the Fuses  We just saw how to reallocate the FlexRAM through software by writing some code in the Reset Handler. This procedure works fine, however, it's recommended that you use this approach to test the different sizes that you can configure but once you find the correct configuration for your application we highly recommend that you configure these new sizes through the fuses instead of using the register IOMUXC_GPR_GPR17. There are lots of dangerous areas in reconfiguring the FlexRAM in code. It pretty much all boils down to the fact that any code/data/stack information written to the RAM can end up changing location during the reallocation.  This is the reason why once you find the correct configuration, you should apply it through the fuses. If you use the fuses to configure the FlexRAM, then you don't have the same concerns about moving around code and data, as the fuse settings are applied as a hardware default.  Keep in mind that once you burn the fuses there's no way back! This is why it's important that you first try the configuration through the software method. Once you burn the fuses you won't need to modify the Reset handler, you only need to modify the MPU to change the size of regions as we saw before and the MCU settings of your project to match the new memory sizes that you configured through the fuses.  The fuse in charge of the FlexRAM configuration is Default_FlexRAM_Part, the address of this fuse is 0x6D0[15:13]. You can find more information about this fuse and the different configurations in the Fusemap chapter of the reference manual.  To burn the fuses I recommend using either the blhost or the MCUBootUtility.  Link to download the blhost.  Link to the MCUBootUtility webpage.    I hope you find this document helpful!  Víctor Jiménez 
View full article
A small project I worked on was to understand how RT1050 boot-up performs from different memory types. I used the LED_blinky code from the SDK as a baseline, and ran some tests on the EVKB board. The data I gathered is described below, as well as more detailed testing procedures. Testing Procedure The boot-up time will be defined as the time from which the processor first receives power, to when it executes the first line of code from the main() function. Time was measured using an oscilloscope (Tektronix TDS 2014) between the rising edge of the POR_B* signal to the following two points: FlexSPI_CS asserted (first read of the FlexSPI by the ROM)** GPIO Toggle in application code (signals beginning of code execution).*** *The POR_B signal was available to scope through header J26-1 **The FlexSPI_CS signal is available through a small pull-up resistor on the board, R356. A small wire was soldered alongside this resistor, and was probed on the oscilloscope. ***The GPIO pin that was used was the same one that connected to USER_LED (Active low). This pin could be scoped through header J22-5. TP 2, 3, 4, and 5 are used to ground the probe of the oscilloscope. This was all done in the EVKB evaluation board. Here are a couple of noteworthy points about the test ran: This report mostly emphasizes the time between the rise of the POR_B signal, and the first line of execution of code. However, there is a time between when power is first provided to the board and the POR_B system goes up. This is a matter of power electronics and can vary depending on the user application and design. Because of this, this report will not place a huge emphasis on this. The first actual lines of code of the application is actually configuring several pins of the processor. Only after these pins are executed, does the GPIO toggle low and the time is taken on the oscilloscope. However, these lines of configuration code are executed so rapidly, that the time is ignored for the test.   Clock Configurations The bootable image was flashed to the RT1050 in all three cases. Afterwards, in MCUXpresso, the debugger was configured with “Attach Only” set to true. A debug session was then launched, and after the processor finished executing code, it was paused and the register values were read according to the RT1050 Reference Manual, chapter 18, CCM Block Diagram.  Boot Configuration: Core Clock (MHz) * FlexSPI Clock (MHz) SEMC Clock (MHz) FlexSPI 130 99 SDRAM 396 130 99 SRAM 396 130 99 *The Core Clock speed was also verified by configuring clko1 as an output with the clock speed divided by 8. This frequency was measured using an oscilloscope and verified to be 396 MHz. Results The time to chip select pin represents the moment when the first flash read happens from the RT1050 processor. The time to GPIO output represents the boot-up time.   As expected, XiP Hyperflash boots faster than other memories. SRAM and SDRAM memories must copy to executable memory before executing which will take more time and therefore boot slower. In the sections below, a more thorough explanation is provided of how these tests were ran and why Hyperflash XiP is expected to be the fastest. Hyperflash XiP Boot Up Below is an outline of the steps of what we expect the Hyperflash XiP boot-up process to look like: Power On Reset (J26-1) Begin access to Flash memory (FlexSPI_SS0) Execute in place in flash (XiP) First line of code is exectuted (USER_LED) In MCUXpresso, the map file showed the following: The oscilloscope image is below:   SDRAM Boot Up The processor will bootup from ROM, which will be told to copy an application image from the serial NOR flash memory to SDRAM (serial NOR flash uses Hyperflash communication). The RT flashloader tool will let me load up the application to the flash to be configured to copy over memory to the SDRAM and execute to it.   It is expected that copying to SDRAM will be slower than executing in place from Hyperflash since an entire copying action must take place.   The SDRAM boot-up process looks like the following: Power On Reset (J26-1) Begin access to Flash memory (FlexSPI_SS0) Copy code to SDRAM Execute in place in SDRAM (FlexSPI_SS0) First line of code is executed (USER_LED)   In MCUXpresso, the map file showed the following:   In order to run this test, I followed these instructions: https://community.nxp.com/docs/DOC-340655. SRAM Boot Up For SRAM, a similar process to that of SDRAM is expected. The processor will first boot from internal ROM, and then go to Hyperflash. It will then copy over everything from Hyperflash to internal SRAM DTC memory and then execute from there.  The SRAM Boot Up Process follows as such: Power On Reset (J26-1) Begin access to Flash memory (FlexSPI_SS0) Copy code to SRAM Execute in place in SRAM (FlexSPI_SS0) First line of code is executed (USER_LED)   In MCUXpresso, the map file showed the following:   This document was generated from the following discussion: javascript:;
View full article