i.MX RT Crossover MCUs Knowledge Base

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

i.MX RT Crossover MCUs Knowledge Base

标签

讨论

排序依据:
[中文翻译版] 见附件 原文链接: https://community.nxp.com/docs/DOC-341316
查看全文
Goal Our goal is to train a model that can take a value, x, and predict its sine, y. In a real-world application, if you needed the sine of x, you could just calculate it directly. However, by training a model to approximate the result, we can demonstrate the basics of machine learning. TensorFlow and Keras TensorFlow is a set of tools for building, training, evaluating, and deploying machine learning models. Originally developed at Google, TensorFlow is now an open-source project built and maintained by thousands of contributors across the world. It is the most popular and widely used framework for machine learning. Most developers interact with TensorFlow via its Python library. TensorFlow does many different things. In this post, we’ll use Keras, TensorFlow’s high-level API that makes it easy to build and train deep learning networks. To enable TensorFlow on mobile and embedded devices, Google developed the TensorFlow Lite framework. It gives these computationally restricted devices the ability to run inference on pre-trained TensorFlow models that were converted to TensorFlow Lite. These converted models cannot be trained any further but can be optimized through techniques like quantization and pruning. Building the Model To building the Model, we should follow the below steps. Obtain a simple dataset. Train a deep learning model. Evaluate the model’s performance. Convert the model to run on-device. Please navigate to the URL in your browser to open the notebook directly in Colab, this notebook is designed to demonstrate the process of creating a TensorFlow model and converting it to use with TensorFlow Lite. Deploy the mode to the RT MCU Hardware Board: MIMXRT1050 EVK Board Fig 1 MIMXRT1050 EVK Board Template demo code: evkbimxrt1050_tensorflow_lite_cifar10 Code /* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Copyright 2018 NXP. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "board.h" #include "pin_mux.h" #include "clock_config.h" #include "fsl_debug_console.h" #include <iostream> #include <string> #include <vector> #include "timer.h" #include "tensorflow/lite/kernels/register.h" #include "tensorflow/lite/model.h" #include "tensorflow/lite/optional_debug_tools.h" #include "tensorflow/lite/string_util.h" #include "Sine_mode.h" int inference_count = 0; // This is a small number so that it's easy to read the logs const int kInferencesPerCycle = 30; const float kXrange = 2.f * 3.14159265359f; #define LOG(x) std::cout void RunInference() { std::unique_ptr<tflite::FlatBufferModel> model; std::unique_ptr<tflite::Interpreter> interpreter; model = tflite::FlatBufferModel::BuildFromBuffer(sine_model_quantized_tflite, sine_model_quantized_tflite_len); if (!model) { LOG(FATAL) << "Failed to load model\r\n"; exit(-1); } model->error_reporter(); tflite::ops::builtin::BuiltinOpResolver resolver; tflite::InterpreterBuilder(*model, resolver)(&interpreter); if (!interpreter) { LOG(FATAL) << "Failed to construct interpreter\r\n"; exit(-1); } float input = interpreter->inputs()[0]; if (interpreter->AllocateTensors() != kTfLiteOk) { LOG(FATAL) << "Failed to allocate tensors!\r\n"; } while(true) { // Calculate an x value to feed into the model. We compare the current // inference_count to the number of inferences per cycle to determine // our position within the range of possible x values the model was // trained on, and use this to calculate a value. float position = static_cast<float>(inference_count) / static_cast<float>(kInferencesPerCycle); float x_val = position * kXrange; float* input_tensor_data = interpreter->typed_tensor<float>(input); *input_tensor_data = x_val; Delay_time(1000); // Run inference, and report any error TfLiteStatus invoke_status = interpreter->Invoke(); if (invoke_status != kTfLiteOk) { LOG(FATAL) << "Failed to invoke tflite!\r\n"; return; } // Read the predicted y value from the model's output tensor float* y_val = interpreter->typed_output_tensor<float>(0); PRINTF("\r\n x_value: %f, y_value: %f \r\n", x_val, y_val[0]); // Increment the inference_counter, and reset it if we have reached // the total number per cycle inference_count += 1; if (inference_count >= kInferencesPerCycle) inference_count = 0; } } /* * @brief Application entry point. */ int main(void) { /* Init board hardware */ BOARD_ConfigMPU(); BOARD_InitPins(); BOARD_InitDEBUG_UARTPins(); BOARD_BootClockRUN(); BOARD_InitDebugConsole(); NVIC_SetPriorityGrouping(3); InitTimer(); std::cout << "The hello_world demo of TensorFlow Lite model\r\n"; RunInference(); std::flush(std::cout); for (;;) {} } ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Test result On the MIMXRT1050 EVK Board, we log the input data: x_value and the inferenced output data: y_value via the Serial Port. Fig2 Received data In a while loop function, It will run inference for a progression of x values in the range 0 to 2π and then repeat. Each time it runs, a new x value is calculated, the inference is run, and the data is output. Fig3 Test result In further, we use Excel to display the received data against our actual values as the below figure shows. Fig4 Dot Plot You can see that, for the most part, the dots representing predicted values form a smooth sine curve along the center of the distribution of actual values. In general, Our network has learned to approximate a sine curve.
查看全文
This application note describes how to develop an H.264 video decoding application with the NXP i.MX RT1050 processor. Click here to access the full application note. Click here to access the github repo of FFMPEG(code, no GPL). state: the code is for evaluation purpose only.
查看全文
MCUXPRESSO SECURE PROVISIONING TOOL是官方今年上半年推出的一个针对安全的软件工具,操作起来非常的简单便捷而且稳定可靠,对于安全功能不熟悉的用户十分友好。但就是目前功能还不是很完善,只能支持HAB的相关操作,后续像BEE之类的需等待更新。 详细的介绍信息以及用户手册请参考官方网址:MCUXpresso Secure Provisioning Tool | Software Development for NXP Microcontrollers (MCUs) | NXP | NXP  目前似乎知道这个工具的客户还不是很多,大部分用的更多的还是MCU BOOT UTILITY。那么如果已经用了MCU BOOT UTILITY烧录了FUSE,现在想用官方工具了怎么办了?其实对两者进行研究对比后,他们最原始的执行部分都是一样的,所以我们按照如下步骤进行相应的简单替换就能把新工具用起来: 首先是crts可keys的替换, MCU BOOT UTILITY的路径是在: ..\NXP-MCUBootUtility-2.2.0\NXP-MCUBootUtility-2.2.0\tools\cst MCUXPRESSO SECURE PROVISIONING的对应路径是在对应workspace的根目录: 另外还有一个就是encrypted模式会用到的hab_cert,需要将下面这两个文件对应替换,而且两个工具的命名不同,注意修改。 MCU BOOT UTILITY的路径是在: ..\NXP-MCUBootUtility-2.2.0\NXP-MCUBootUtility-2.2.0\gen\hab_cert MCUXPRESSO SECURE PROVISIONING的路径是workspace里: ..\secure_provisioning_RT1050\gen_hab_certs MCU BOOT UTILITY里命名为:SRK_1_2_3_4_table.bin; SRK_1_2_3_4_fuse.bin MCUXPRESSO SECURE PROVISIONING里命名为:SRK_fuses.bin; SRK_hash.bin 至此,就能够在新工具上用起来了 最后提一下,就是这个新工具是可以建不同的workspace来相应存储不同秘钥的项目,能够方便用户区分。在新工具下建的项目也是可以互相替换秘钥的,参考上术步骤中的secure provisioning部分即可。
查看全文
In the i.MXRT 1050 EVK web page, there is a very nice "Getting Started" page to show the videos and steps how to use the board. 1. Connect the board to your PC by a USB cable. 2. Build and download the SDK. a. In the SDK Builder web page, you can customize and download the specific SDK of your board. b. On the next page, you can select different OS and different IDE. Select "MCUpresso IDE" for Windows here. c. You can add the software component that you wanted. d. Request to build the SDK. e. When the build request has completed, the SDK is available for download under the SDK Dashboard page. - Download icon : Download the SDK - Rebuild icon : Rebuild the SDK with different setting - Share icon : Share the SDK to others - MCUConfigTool icon : Run the MCU Configuration Tool to configure the pinmux and clocks for your own design board. - Remove icon : Remove the SDK from the Dashboard. 3. Install the MCUXpresso IDE. a. Go to the MCUXpresso IDE weg page to download the IDE and then install it. 4. Build and run the example on EVK. a. Open the MCUXpresso IDE. Simply drag & drop the SDK zip file to "Installed SDKs" view. b. Import the SDK examples and then click "Next". c. Select the "hello_world" under the demo_apps. d. Click "Build" to build the demo. e. Execute the terminal software (e.g. PuTTY). The COM port of the console output can be found in "devices manager". The COM setting is 115200,8,N,1. f. Click the "bug" icon to start the debugging. g. Click "Resume All Debug Sessions" icon to run the demo. h. "hello world" print out in console. Reference: i.MXRT1050 web page ( Contain the datasheet, reference manual of the i.MXRT1050 processor) i.MXRT1050EVK web page ( Contain the user's guides of the i.MXRT1050 EVK) MCUXpresso IDE web page ( Contain the user's guides of the MCUXpresso IDE )
查看全文
[中文翻译版] 见附件 原文链接: https://community.nxp.com/docs/DOC-340813
查看全文
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-342717 
查看全文
[中文翻译版] 见附件 原文链接: https://community.nxp.com/docs/DOC-341985
查看全文
The path of SDRAM Clock in Clock Tree                 According CCM clock tree in i.MXRT1050 reference manual, we can abstract part of SDRAM clock, and draw it’s diagram below.   Descriptions for Diagram 1 (1) PLL2 PFD2                 ① Registers related to PLL2 PFD2 ---CCM_ANALOG_PLL_SYSn (page 767, in reference manual) Address: 0x400D_8030h important bits: bit[15:14]---- select clock source. Bit[13] ----- Enable PLL output Bit[0]------- This field controls the PLL loop divider. 0 - Fout=Fref*20; 1 - Fout=Fref*22. ---CCM_ANALOG_PLL_SYS_NUM(page 768, in reference manual) Address: 0x400D_8050h important bits: bit[29:0]--- 30 bit numerator (A) of fractional loop divider (signed integer) ---CCM_ANALOG_PLL_SYS_DENOM (page 769, in reference manual) Address: 0x400D_8060h important bits: bit[29:0]---- 30 bit Denominator (B) of fractional loop divider (unsigned integer).   ---CCM_ANALOG_PFD_528n (page 769, in reference manual) Address: 0x400D_8100h important bits: bit[21:16]----- This field controls the fractional divide value. The resulting frequency shall be 528*18/PFD2_FRAC where PFD2_FRAC is in the range 12-35.   ② Computational formula PLL2_PFD2_OUT=(External 24MHz)*(Fout + A/B) * 18/ PFD2_FRAC   ③ Example for PLL2_PFD2_OUT computation CCM_ANALOG_PLL_SYSn[0] = 1  // Fout=Fref*22 CCM_ANALOG_PLL_SYS_NUM[29:0] = 56  // A = 56 CCM_ANALOG_PLL_SYS_DENOM[29:0] = 256  // B=256 CCM_ANALOG_PFD_528n[21:16] = 29                       // PFD2_FRAC=29   PLL2_PFD2_OUT = 24 * (22 + 56/256)*18/29 = 331MHz (330.98MHz)   (2) Clock Select Register : CCM_CBCDR Address: 0x 400F_C014h important bits: SEMC_ALT_CLK_SEL & SEMC_CLK_SEL & SEMC_PODF bit[7] --- bit[SEMC_ALT_CLK_SEL] 0---PLL2 PFD2 will be selected as alternative clock for SEMC root clock 1---PLL3 PFD1 will be selected as alternative clock for SEMC root clock Bit[6] --- bit[SEMC_CLK_SEL] 0----Periph_clk output will be used as SEMC clock root 1----SEMC alternative clock will be used as SEMC clock root Bit[18:16] --- bit[SEMC_PODF] Post divider for SEMC clock. NOTE: Any change of this divider might involve handshake with EMI. See CDHIPR register for the handshake busy bits. 000 divide by 1 001 divide by 2 010 divide by 3 011 divide by 4 100 divide by 5 101 divide by 6 110 divide by 7 111 divide by 8 Example for configuration of SDRAM Clock   Example : 166MHz SDRAM Clock   ---- 0x400D8030 = 0x00002001 // wirte  0x00002001 to CCM_ANALOG_PLL_SYSn ---- 0x400D8050 = 0x00000038 // write 0x00000038 to CCM_ANALOG_PLL_SYS_NUM ---- 0x400D8060 = 0x00000100 // write 0x00000100 to CCM_ANALOG_PLL_SYS_DENOM ---- 0x400D8100 = 0x001d0000 // write 0x001d0000 to CCM_ANALOG_PFD_528n ---- 0x400FC014 = 0x00010D40 // write 0x00010D40 to CCM_CBCDR, divided by 2         NXP TIC team Weidong Sun 2018-06-01
查看全文
Overview ======== The LPUART example for FreeRTOS demonstrates the possibility to use the LPUART driver in the RTOS with hardware flow control. The example uses two instances of LPUART IP and sends data between them. The UART signals must be jumpered together on the board. Toolchain supported =================== - MCUXpresso 11.0.0 Hardware requirements ===================== - Mini/micro USB cable - MIMXRT1050-EVKB board - Personal Computer Board settings ============== R278 and R279 must be populated, or have pads shorted. These resistors are under the display opposite side of board from uSD connector. The following pins need to be jumpered together: --------------------------------------------------------------------------------- | | UART3 (UARTA) | UART8 (UARTB) | |---|-------------------------------------|-------------------------------------| | # | Signal | Function | Jumper | Jumper | Function | Signal | |---|---------------|----------|----------|----------|----------|---------------| | 1 | GPIO_AD_B1_07 | RX | J22-pin1 | J23-pin1 | TX | GPIO_AD_B1_10 | | 2 | GPIO_AD_B1_06 | TX | J22-pin2 | J23-pin2 | RX | GPIO_AD_B1_11 | | 3 | GPIO_AD_B1_04 | CTS | J23-pin3 | J24-pin5 | RTS | GPIO_SD_B0_03 | | 4 | GPIO_AD_B1_05 | RTS | J23-pin4 | J24-pin4 | CTS | GPIO_SD_B0_02 | --------------------------------------------------------------------------------- Prepare the Demo ================ 1. Connect a USB cable between the host PC and the OpenSDA USB port on the target board. 2. Open a serial terminal with the following settings: - 115200 baud rate - 8 data bits - No parity - One stop bit - No flow control 3. Download the program to the target board. 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo. Running the demo ================ You will see status of the example printed to the console. Customization options =====================
查看全文