i.MX Processors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Processors Knowledge Base

Discussions

Sort by:
The i.MX Android O8.0.0_1.0.0 GA release is now available from IMX_SW page. Overview -> BSP Updates and Releases -> Android 8.0.0 Oreo (O8.0.0_1.0.0, 4.9 kernel)   Files available: # Name Description 1 android_O8.0.0_1.0.0_docs.tar.gz i.MX Android O8.0.0_1.0.0 BSP Documentation 2 imx-o8.0.0_1.0.0_ga.tar.gz i.MX Android O8.0.0_1.0.0 proprietary surce code for i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo  i.MX 6Sololite, i.MX6SX and i.MX7D 3 android_O8.0.0_1.0.0_image_6dqpsabreauto.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE for Automotive Infotainment based on i.MX 6QuadPlus, i.MX 6Quad, and i.MX 6DualLite 4 android_O8.0.0_1.0.0_image_6dqpsabresd.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE Platform and SABRE Board based on i.MX 6QuadPlus, i.MX 6Quad and i.MX 6DualLite. 5 android_O8.0.0_1.0.0_image_6slevk.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - i.MX 6Sololite evaluation kit. 6 android_O8.0.0_1.0.0_image_6sxsabresd.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE Board based on i.MX 6SoloX 7 android_O8.0.0_1.0.0_image_6sxsabreauto.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE for Automotive infotainment based on i.MX 6SoloX 8 android_O8.0.0_1.0.0_image_7dsabresd.tar.gz Binary Demo Files of Android O8.0.0_1.0.0 BSP - SABRE Board based on i.MX 7Dual 9 fsl_aacp_dec_O8.0.0_1.0.0.tar.gz AAC Plus Codec for O8.0.0_1.0.0 10 android_O8.0.0_1.0.0_tools.tar.gz Manufacturing Toolkit and VivanteVTK for O8.0.0_1.0.0   Supported Hardware SoC/Boards: i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-SD board and platform i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-AI board and platform i.MX 6SoloLite EVK platform i.MX 6SoloX SABRE-SD board and platforms i.MX 6SoloX SABRE-AI board and platforms i.MX 7Dual SABRE-SD board and platform   Changes: Compared to the N7.1.2_2.0.0 release, this release has the following major changes: Upgraded the Android code base from android-7.1.2_r9 to android-8.0.0_r25. Removed the device partition and added the vendor partition. Enabled ION-based gralloc and EGL. Feature: For features please consult the release notes.   Known issues For known issues and more details please consult the Release Notes.
View full article
Hi All, The new Android JB4.3_1.1.0-GA release is now available on www.freescale.com ·         Files available           Name Description IMX6_JB43_110_ANDROID_DOCS i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite Android   jb4.3_1.1.0 BSP Documentation. Includes Release Notes, User's Guide, QSG and   FAQ Sheet. IMX6_JB43_110_ANDROID_SOURCE_BSP i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite Android   jb4.3_1.1.0 BSP, Documentation and Source Code for BSP and Codecs. IMX6_JB43_110_ANDROID_DEMO_BSP i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite Android   jb4.3_1.1.0  BSP Binary Demo Files IMX6_JB43_110_AACP_CODEC_CODA AAC   Plus Codec for i.MX 6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX   6Sololite Android jb4.3_1.1.0 ·         Target HW boards o   i.MX6DL  SABRE SD board o   i.MX6Q  SABRE SD board o   i.MX6DQ SABRE AI board o   i.MX6DL SABRE AI board o   i.MX6SL EVK board ·         Release Description i.MX Android jb4.3_1.1.0 release includes all necessary codes, documents and tools to assist users in building and running Android 4.3 on the i.MX 6Quad, i.MX 6DualLite and i.MX6SoloLite hardware board from the scratch. The prebuilt images are also included for a quick trial on Freescale i.MX 6Quad and i.MX 6DualLite SABRE-SD Board and Platform, i.MX 6Quad and i.MX 6DualLite SABRE-AI Board and Platforms and i.MX6SoloLite EVK Board and Platforms. This release includes all Freescale porting and enhancements based on Android open source code. Most of deliveries in this release are provided in source code with the exception of some proprietary modules/libraries from third parties. ·         What's in this release         Android Source Code Patch All   Freescale i.MX specific patches (apply to Google Android repo)   to enable Android on i.MX based boards. For example Hardware   Abstraction Layer implementation, hardware codec acceleration,   etc. Packed in   android_jb4.3_1.1.0-ga_source.tar.gz Documents The   following documents are included in android_jb4.3_1.1.0-ga_docs.tar.gz: ●   i.MX Android jb4.3_1.1.0-ga Quick Start: A   manual explains how to run android on i.MX board by using prebuilt images. ●   i.MX Android jb4.3_1.1.0-ga User Guide: A   detailed manual for this release package. ●   i.MX Android jb4.3_1.1.0-ga FAQ: A document lists   “Frequently Asked Questions”. ●   i.MX Android Codec Release Notes: A   document to describes the Freescale Codec Package ●   i.MX Android Wi-FI Display Sink API Introduction A   document to describes how to use i.MX Android Wi-Fi Display Sink API ●   i.MX6 G2D API User Guide document to introduce how to use i.MX6 G2D API for   2D BLT usage ●   i.MX Android jb4.3_1.1.0-ga Release Note A   document to introduce the key updates and known issues in this release. Tools Tools   in android_jb4.3_1.1.0-ga_tools.tar.gz ●  MFGTool. Manufacturing tools for i.MX platform ●  USB tethering windows .inf driver configure file.tool/tetherxp.inf Prebuilt Images You   can test Android on i.MX with prebuilt image on i.MX board before building   any code. ● android_jb4.3_1.1.0-ga_image_6qsabresd.tar.gz: Prebuilt   images for the SABRE-SD board. ●  android_jb4.3_1.1.0-ga_image_6qsabreauto.tar.gz: Prebuilt   images for the SABRE-AI board. ●  android_jb4.3_1.1.0-ga_image_6slevk.tar.gz: Prebuilt images for the 6SL   SABRE-AI board. All   prebuilt images are in another package. See "i.MX Android jb4.3_1.1.0-ga   Quick Start" and "i.MX Android jb4.3_1.1.0-ga User Guide" to   understand which image should be used in which case. ·         Known issues For known issues and limitations please consult the release notes
View full article
SABRE-AI Development Platform bulletin on Touch Interrupt
View full article
Product Family Features The i.MX6 series unleashes the industry’s first truly scalable multicore platform that includes single-, dual- and quad-core families based on the ARM® Cortex™-A9 architecture. Together with a robust ecosystem, i.MX6 series provides the ideal platform to develop a portfolio of end devices based on a single hardware design. With high-performance multimedia processing, pin*- and software- compatible product families and integrated power management, i.MX6 series is purpose built for the new era of smart devices. *4 of 5 families are pin-compatible The i.MX6 applications processor is a Energy-Efficient Solutions products. Automotive As drivers adopt personal and home-based smart devices, automotive manufacturers are bringing a similar experience in-vehicle. Able to meet demands of connectivity, real time data delivery, digital instrumentation, audio and multi-stream video, i.MX 6 series enables auto infotainment and instrument cluster designers to re-create today’s consumer technology experience in the car. Smart Devices The market for intelligent, multimedia centric, touch based devices is increasing exponentially. Not just for tablets or smartphones anymore, tomorrow's battery powered Smart Devices, Aero Infotainment systems, medical systems, enterprise-class intelligent control and data systems all must present data and user interface choices to the end user primarily through rich sound, video, voice, pictures and touch, rather than keyboards and mice. i.MX 6 series enables developers to deliver a more seamless natural user interface (NUI) experience, plus save time and costs by leveraging one design across a portfolio of devices. i.MX 6 Series Portfolio View the complete i.MX 6 Series; compare features and performance   Product Information i.MX6DL: i.MX 6DualLite Family of Applications Processors i.MX6S: i.MX 6Solo Family of Applications Processors i.MX6D: i.MX 6Dual Family of Applications Processors i.MX6Q: i.MX 6Quad Family of Applications Processors i.MX6SL: i.MX 6SoloLite Family of Applications Processors Design Resources i.MX 6 Series Software and Development Tools i.MX 6SoloLite Evaluation Kit SABRE Platform for Smart Devices SABRE Board for Smart Devices SABRE for Automotive Infotainment i.MX 6 Family Ecosystem Partners Partners / 3rd-Party Development Tools Development platform for i.MX 6Quad - Built to SABRE Lite design from Element 14 Element14's SabreLite Board Officially Supported by Adeneo Embedded's i.MX6 WEC7 BSP Emtrion's i.MX6 DIMM Modules and Kits i.Core M6 : i.Mx6 based SOM Industry-First Pico-ITX SBC based on i.MX6 from iWave Systems i.MX6 Q7 Development Kit by iWave Systems New PMIC to Support the i.MX6 Processor Family NovPek i.MX6Q/D by NovTech Video- iWave Launches Industry's first i.MX6 Solo/Dual Lite Based Pico-ITX Single Board Computer i.MX6 Q7 Development Kit by iWave Systems The Wandboard - ultra lowcost development board with i.MX6 Cortex-A9 processor SABRE Lite by Boundary Devices Nitrogen6X by Boundary Devices Additional Resources i.MX6 (All) Tips & Tricks Android data partition encryption on i.MX6 Android Graphic UI with GPU Hardware Acceleration Auto Insmod Kernel Modules Through Modprobe with Extra Parameter A Patch to Fix i.MX6 GPU Startup Issue Due to Memory Connection Qt Landing page De-interlace Capture Device Enabling MMU and Caches on i.MX6 Series Platform SDK Errata_ERR006282_Description_IMX_Community.pdf Fast GPU Image Processing in the i.MX 6x Freescale Yocto Project main page Gstreamer HW Design Checklist for i.MX6 How to Add Ethernet UI Support in ICS How to Support New WiFi Card in Android How to Support Recovery Mode for POR Reboot Based on i.MX6 Android R13.4.1 How to Trace the Low-Level Malloc i.MX6 Crystal Drive Level (24 MHz) EB830 i.MX6 Android 13.4.1.03 Patch Release i.MX6 Dual/6 Quad Power Consumption Measurement Scripts i.MX6 IPU Output Timing Generation Counters and Interrupts i.MX6 Platform SDK 1.1 Release i.MX6 VDD_SNVS_CAP Component Recommendation Linux Fast Boot on i.MX6 Sabresd Board LMbench Benchmarks on i.MX New PMIC to Support the i.MX6 Processor Family Memory Management on i.MX6 Android Patch to Support BT656 and BT1120 Output For i.MX6 BSP Prevent PMIC PF0100 Backfeed on i.MX6 Designs Using a USB Camera with GStreamer VAR-SOM-MX6, $52 i.MX6 System on Module i.MX6D/6Q (Dual/Quad) Tips & Tricks De-interlace Capture Device Android Power Management on i.MX6DQ/DL Android Graphic UI with GPU Hardware Acceleration Memory Management on i.MX6 Android iMX6QD How to add 24-bit LVDS support in Android i.MX6 D/Q L3.035_1.0.2 Patch Release i.MX6 D/Q L3.0.35_1.0.3 patch release i.MX6 D/Q L3.035_1.1.3 patch release i.MX6Q Ubuntu Fluxbox Multimedia with VPU & IPU HW Acceleration in Android Let Ubuntu NetworkManager Recognize BCM4330 Wireless Interface Auto Insmod Kernel Modules Through Modprobe with Extra Parameter Video Playback Performance Evaluation on i.MX6DQ Board Linux Fast Boot on i.MX6 Sabresd Board Linux Fast Boot on i.MX6Q Board: Building Steps New Ubuntu SD Card Demo Image for the i.MX6Q SABRE AI SDMA ap_to_ap Fixed Scripts (i.MX6DQ) Surround View Demo With Linux Fast Boot Review Surround View (D1) Demo on i.MX6 Test Digital Zoom of Camera Preview Using i.MX6Q to Build a Palm-Sized Heterogeneous Mini-HPC i.MX6DL (DualLite)  Tips & Tricks Android Power Management on i.MX6DQ/DL i.MX6 DL/S L3.035_3.0.4 patch release i.MX6SL (SoloLite)  Tips & Tricks Dithering Implementation for Eink Display Panel
View full article
[中文翻译版] 见附件   原文链接: i.MX Create Android SDCard Mirror 
View full article
Design Check Lists: HW Design Checking List for i.MX6DQSDL HW Design Checking List for i.Mx53 Hardware Design Checklist for i.MX28 HW_Design_Checking_List_for_i.MX6SoloX i.MX6UL Hardware design checklist   DDR Design Tool: I.MX53 DDR3 Script Aid imx53 DDR stress tester V0.042 i.Mx6DQSDL DDR3 Script Aid MX6DQP DDR3 Script Aid i.Mx6DQSDL LPDDR2 Script Aid i.Mx6SL LPDDR2 Script Aid i.MX6SX DDR3 Script Aid I.MX6UL DDR3 Script Aid i.MX6UL_LPDDR2_Script_Aid i.MX6ULL_DDR3_Script_Aid  i.MX6ULL_LPDDR2_Script_Aid  MX6SLL_LPDDR2_Script_Aid  MX6SLL_LPDDR3_Script_Aid  i.MX6 DDR Stress Test Tool V1.0.3 i.MX6/7 DDR Stress Test Tool V3.00 i.MX8MSCALE DDR Tool Release  i.MX8M DDR3L register programming aid  i.MX 8/8X Family DDR Tools Release   Application Notes: MX_Design_Validation_Guide I.MX6 series USB Certification Guides
View full article
The i.MX Android N7.1.2_2.0.0 GA release is now available on IMX_SW page.   Files available: # Name Description 1 android_N7.1.2_2.0.0_docs.tar.gz i.MX Android N7.1.2_2.0.0 BSP Documentation 2 android_N7.1.2_2.0.0_source.tar.gz Source Code of Android N7.1.2_2.0.0 BSP (4.1 kernel) for i.MX 6QuadPlus, i.MX 6Quad, i.MX 6DualPlus, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo i.MX 6Sololite, i.MX6SX and i.MX7D 3 android_N7.1.2_2.0.0_image_6dqpsabreauto.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE for Automotive Infotainment based on i.MX 6QuadPlus, i.MX 6Quad, and i.MX 6DualLite 4 android_N7.1.2_2.0.0_image_6dqpsabresd.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE Platform and SABRE Board based on i.MX 6QuadPlus, i.MX 6Quad and i.MX 6DualLite. 5 android_N7.1.2_2.0.0_image_6slevk.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - i.MX 6Sololite evaluation kit. 6 android_N7.1.2_2.0.0_image_6sxsabresd.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE Board based on i.MX 6SoloX 7 android_N7.1.2_2.0.0_image_6sxsabreauto.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE for Automotive infotainment based on i.MX 6SoloX 8 android_N7.1.2_2.0.0_image_7dsabresd.tar.gz Binary Demo Files of Android N7.1.2_2.0.0 BSP - SABRE Board based on i.MX 7Dual 9 fsl_aacp_dec.tar.gz AAC Plus Codec for N7.1.2_2.0.0 10 android_N7.1.2_2.0.0_tools.tar.gz Manufacturing Toolkit and VivanteVTK for N7.1.2_2.0.0   Supported Hardware SoC/Boards: i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-SD board and platform i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite SABRE-AI board and platform i.MX 6SoloLite EVK platform i.MX 6SoloX SABRE-SD board and platforms i.MX 6SoloX SABRE-AI board and platforms i.MX 7Dual SABRE-SD board and platform   Changes: Compared to the N7.1.1_1.0.0 release, this release has the following major changes: Upgraded the Android code base from android-7.1.1_r13 to android-7.1.2_r9. Upgraded U-Boot from v2015.04 to v2017.03. Upgraded the kernel from v4.1.15 to v4.9.17. Upgraded the GPU driver from 6.2.0.p2 to 6.2.2.p1. Upgraded the Wi-Fi BCMDHD release version to 1.141.100.6. Refine the Gralloc and HWC HAL. Enable the GPT partition to replace the MBR partition.   Feature: For features please consult the release notes.   Known issues For known issues and more details please consult the Release Notes.
View full article
Using a RAW NAND is more difficult compared to eMMC, but for lower capacity it is still cheaper. Even with the ONFI (Open NAND Flash Interface) you can face initialization issue you can find by measure performance. I will take example of a non-well supported flash, I have installed on my evaluation board (SABRE AI). I wanted to do a simple performance test, to check roughly the MB/s I can expected with this NAND. One of a simplest test is to use the dd command: root@imx6qdlsolo:~# time dd if=/dev/mtd4 of=/dev/null 851968+0 records in 851968+0 records out 436207616 bytes (436 MB, 416 MiB) copied, 131.8884 s, 3.3 MB/s ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ As my RAW was supposed to work in EDO Mode 5, I could expect more than 20MB/s. To check what was wrong, read you kernel startup log: Booting Linux on physical CPU 0x0 Linux version 4.1.15-2.0.0+gb63f3f5 (bamboo@yb6) (gcc version 5.3.0 (GCC) ) #1 SMP PREEMPT Fri Sep 16 15:02:15 CDT 2016 CPU: ARMv7 Processor [412fc09a] revision 10 (ARMv7), cr=10c53c7d CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache Machine model: Freescale i.MX6 DualLite/Solo SABRE Automotive Board [...] Amd/Fujitsu Extended Query Table at 0x0040 Amd/Fujitsu Extended Query version 1.3. number of CFI chips: 1 nand: device found, Manufacturer ID: 0xc2, Chip ID: 0xdc nand: Macronix MX30LF4G18AC nand: 512 MiB, SLC, erase size: 128 KiB, page size: 2048, OOB size: 64 gpmi-nand 112000.gpmi-nand: mode:5 ,failed in set feature. Bad block table found at page 262080, version 0x01 Bad block table found at page 262016, version 0x01 nand_read_bbt: bad block at 0x00000a7e0000 nand_read_bbt: bad block at 0x00000dc80000 4 cmdlinepart partitions found on MTD device gpmi-nand Creating 4 MTD partitions on "gpmi-nand":‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ On line 13 you can read "mode:5, failed in set feature", meaning you are not in mode 5... so you have the "relaxed" timing you have at boot. After debuging your code (I have just remove the NAND back reading security check), you can redo the test: root@imx6qdlsolo:~# time dd if=/dev/mtd4 of=/dev/null 851968+0 records in 851968+0 records out 436207616 bytes (436 MB, 416 MiB) copied, 32.9721 s, 13.2 MB/s‍‍‍‍‍‍‍‍‍‍‍‍ So you multiplied the performances by 4! Anyway, you have a better tool to measure your NAND performance, it is mtd_speedtest, but you have to rebuild your kernel. In Yocto, reconfigure your kernel (on your PC of couse!): bitbake virtual/kernel -c menuconfig‍‍‍ Choose in the menu "Device Drivers" -> "Memory Technology Device (MTD) support" -> "MTD tests support", even it it not recommended! bitbake virtual/kernel -f -c compile bitbake virtual/kernel -f -c build bitbake virtual/kernel -f -c deploy‍‍‍‍‍‍‍‍‍ Then reflash you board (kernel + rootfs as tests are .ko files): Then you can do more accurate performance test: insmod /lib/modules/4.1.29-fslc+g59b38c3/kernel/drivers/mtd/tests/mtd_speedtest.ko dev=2 ================================================= mtd_speedtest: MTD device: 2 mtd_speedtest: MTD device size 16777216, eraseblock size 131072, page size 2048, count of eraseblocks 128, pages per eraseblock 64, OOB size 64 mtd_test: scanning for bad eraseblocks mtd_test: scanned 128 eraseblocks, 0 are bad mtd_speedtest: testing eraseblock write speed mtd_speedtest: eraseblock write speed is 4537 KiB/s mtd_speedtest: testing eraseblock read speed mtd_speedtest: eraseblock read speed is 16384 KiB/s mtd_speedtest: testing page write speed mtd_speedtest: page write speed is 4250 KiB/s mtd_speedtest: testing page read speed mtd_speedtest: page read speed is 15784 KiB/s mtd_speedtest: testing 2 page write speed mtd_speedtest: 2 page write speed is 4426 KiB/s mtd_speedtest: testing 2 page read speed mtd_speedtest: 2 page read speed is 16047 KiB/s mtd_speedtest: Testing erase speed mtd_speedtest: erase speed is 244537 KiB/s mtd_speedtest: Testing 2x multi-block erase speed mtd_speedtest: 2x multi-block erase speed is 252061 KiB/s mtd_speedtest: Testing 4x multi-block erase speed mtd_speedtest: 4x multi-block erase speed is 256000 KiB/s mtd_speedtest: Testing 8x multi-block erase speed mtd_speedtest: 8x multi-block erase speed is 260063 KiB/s mtd_speedtest: Testing 16x multi-block erase speed mtd_speedtest: 16x multi-block erase speed is 260063 KiB/s mtd_speedtest: Testing 32x multi-block erase speed mtd_speedtest: 32x multi-block erase speed is 256000 KiB/s mtd_speedtest: Testing 64x multi-block erase speed mtd_speedtest: 64x multi-block erase speed is 260063 KiB/s mtd_speedtest: finished =================================================‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ You can now achieve almost 16MB/s, better than the dd test. Of course you cannot achieve more than 20MB/s, but you are not that far, and the NAND driver need optimizations. To redo the test: rmmod /lib/modules/4.1.29-fslc+g59b38c3/kernel/drivers/mtd/tests/mtd_speedtest.ko insmod /lib/modules/4.1.29-fslc+g59b38c3/kernel/drivers/mtd/tests/mtd_speedtest.ko dev=2 To check your NAND is in EDO mode 5, you can check your clock tree: /unit_tests/dump-clocks.sh clock          parent   flags    en_cnt pre_cnt      rate [...] gpmi_bch_apb   ---      00000005   0       0       198000000 gpmi_bch       ---      00000005   0       0       198000000 gpmi_io        ---      00000005   0       0        99000000 gpmi_apb       ---      00000005   0       0       198000000‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ The IO are clocked now at 99MHz, thus you can read at 49.5MHz (20ns in EDO mode 5 definition).
View full article
The vbs file is a script file in mfgtool. In fsl android lollipop consolidate and later MFGTOOL version, You just need add a new vbs item for new board and have not need to change the ucl2.xml. The below is the example struct. Set wshShell = CreateObject("WScript.shell") wshShell.run "mfgtool2.exe -c ""linux"" -l ""SDCard-Android"" -s ""board=sabresd"" -s ""folder=sabresd"" -s ""soc=6dl"" -s ""mmc=2"" -s ""data_type=-f2fs""" Set wshShell = Nothing Explain for each option: -l: storage type      There three type for android: Nand-Android\eMMC-Android\SDCard-Android -s: extend variable      board: It is used to download uboot and dts in init system.      folder: there are three type: sabresd sabreauto evk                the android image is located in: files/android/%folder%/      soc: Used to define android image name. types: 6q, 6dl, 6sx, 6sl.      mmc: define the storage idex.      data_type: if the type of data partition is f2fs, need define data_type=-f2fs      ldo: if the board is 1.2G, need to define it to -ldo      plus: if the board is 6qp, need too define it to p
View full article
Please make sure design is follow below checking list before checking this guide. HW Design Checking List for i.MX6DQSDL
View full article
Overview This document introduces how to setup i.MX6Dual/Quad and i.MX6Solo/DualLite Linux software for PCIe compliance test. Software Baselines i.MX6Dual/Quad: Linux BSP L2.6.35_1.0.0 i.MX6Solo/DualLite: Linux BSP L2.6.35_2.0.0 Software Changes To enable PCIe compliance test, PCIe software driver should not turn off PCIe clock and power in the tests. So the following changes are required: diff --git a/arch/arm/mach-mx6/pcie.c b/arch/arm/mach-mx6/pcie.c index 26d26f2..ad71085 100644 --- a/arch/arm/mach-mx6/pcie.c +++ b/arch/arm/mach-mx6/pcie.c @@ -801,6 +801,7 @@ static void __init add_pcie_port(void __iomem *base, void __iomem *dbi_base,      } else {          pr_info("IMX PCIe port: link down!\n"); +#if 0          /* Release the clocks, and disable the power */          pcie_clk = clk_get(NULL, "pcie_clk");          if (IS_ERR(pcie_clk)) @@ -820,6 +821,7 @@ static void __init add_pcie_port(void __iomem *base, void __iomem *dbi_base,          imx_pcie_clrset(IOMUXC_GPR1_TEST_POWERDOWN, 1 << 18,                  IOMUXC_GPR1); +#endif      } } Software Build Integrate the patch to the baseline code and recompile the kernel by following the instructions in Linux BSP user guide. Before recompile, please ensure the following configuration is enabled by selecting " System Type -> Freescale MXC Implementations -> PCI Express support" as "*": # MX6 Options: # CONFIG_IMX_PCIE=y
View full article
Here we show how to bootstrap the Debian Linux distribution from a PC to the i.MX6 sabre sd platform. While bootstrapping Debian on any architecture "natively" is pretty straightforward, "cross-bootstrapping" requires some techniques that we will explain. This document assumes you are able to boot a Linux kernel on your platform already. See this post for details on how to do it. Also, this document assumes you are using a Debian PC for preparing your SD card. You will require the following packages to be installed: binfmt-support qemu-user-static debootstrap Note: all the commands found in the following steps need to be run as root. Formatting the SD card We need to format the SD card with two partitions; one small FAT partition to contain the Linux kernel and its dtb, and one large ext4 partition, which will contain the root filesystem with the Debian userspace. Also, we need to make sure we leave some space for u-boot starting from offset 1024B. Here is an example SD card layout:   +-----+------+--------+-----+---------------+-----------------   | MBR |  ... | u-boot | ... | FAT partition | Linux partition ...   +-----+------+--------+-----+---------------+-----------------   0     512    1024           1M              ~257M (offsets in bytes) Here is an example SD card layout, as displayed by fdisk:   Device    Boot      Start         End      Blocks   Id  System   /dev/sdc1            2048      526335      262144    c  W95 FAT32 (LBA)   /dev/sdc2          526336     8054783     3764224   83  Linux (units: 512B sectors) You can format and mount the Linux partition with:   # mkfs.ext4 /dev/<your-sd-card-second-partition>   # mount /dev/<your-sd-card-second-partition> /mnt Your SD card second partition is typically something in /dev/sd<X>2 or /dev/mmcblk<X>p2. Do not forget to install u-boot and a Linux kernel as explained in those posts. Bootstrapping Debian First stage The first stage of Debian bootstrapping is done with:   # debootstrap --foreign --arch=armhf testing /mnt This will retrieve the base Debian packages from the internet, and perform a first stage of installation:   I: Retrieving Release   I: Retrieving Release.gpg   I: Checking Release signature   I: Valid Release signature (key id A1BD8E9D78F7FE5C3E65D8AF8B48AD6246925553)   I: Validating Packages   I: Resolving dependencies of required packages...   I: Resolving dependencies of base packages...   I: Found additional required dependencies: insserv libbz2-1.0 libcap2 libdb5.1 libsemanage-common libsemanage1 libslang2 libustr-1.0-1   I: Found additional base dependencies: libee0 libept1.4.12 libestr0 libgcrypt11 libgnutls-openssl27 libgnutls26 libgpg-error0 libidn11 libjson-c2 liblognorm0 libmnl0 libnetfilter-acct1 libnfnetlink0 libp11-kit0 libsqlite3-0 libtasn1-3 libxapian22   I: Checking component main on http://ftp.us.debian.org/debian...   (...)   I: Extracting util-linux...   I: Extracting liblzma5...   I: Extracting zlib1g... At this point, the necessary tools for second stage of installation are under /mnt/debootstrap/. Second stage The second stage needs to run natively; on an arm platform, that is. But we can use the combination of two techniques to perform this stage on the PC anyway:   # cp /usr/bin/qemu-arm-static /mnt/usr/bin/   # chroot /mnt /debootstrap/debootstrap --second-stage Those commands copy an arm emulator on the target filesystem, and use the chroot command to execute the second stage of the installation into the SD card, on the PC, with transparent emulation:   I: Installing core packages...   I: Unpacking required packages...   I: Unpacking libacl1:armhf...   I: Unpacking libattr1:armhf...   I: Unpacking base-files...   (...)   I: Configuring tasksel...   I: Configuring tasksel-data...   I: Configuring libc-bin...   I: Base system installed successfully. You can now remove /mnt/usr/bin/qemu-arm-static, or keep it for later, subsequent chroot under emulation. Finetuning the root filesystem For development it is handy to remove the root password on the target by removing the '*' from /mnt/etc/shadow on the SD card:   root::15880:0:99999:7::: Also, we can add the following line in /mnt/etc/inittab to obtain a login prompt on the UART:   T0:23:respawn:/sbin/getty -L ttymxc0 115200 vt100 You can now unmount the filesystem with:   # umount /mnt Boot! Your SD card is ready for booting. Insert it in the SD card slot of your i.MX6 sabre sd platform, connect to the USB to UART port with a serial terminal set to 115200 baud, no parity, 8bit data and power up the platform. At the time of writing u-boot tells the kernel to boot from the wrong partition by default, so we need to interrupt by pressing enter at u-boot prompt for the first boot and setup u-boot environment to fix this:   U-Boot > setenv mmcroot /dev/mmcblk0p2 rootwait rw   U-Boot > saveenv   Saving Environment to MMC...   Writing to MMC(1)... done As this is saved in the SD card it need only to be done once at first boot. You can reboot your board or type boot; your Debian system should boot to a prompt:   (...)   [ ok ] Starting periodic command scheduler: cron.   [ ok ] Running local boot scripts (/etc/rc.local).   Debian GNU/Linux jessie/sid debian ttymxc0   debian login: From there you may login as root. It is recommended to setup the network connection and install an ssh server inside the target for further development. Enjoy! See also... With the amounts of memory we have today in the systems, it is even possible to boot Debian in a ramdisk. See this post about busybox for the ramdisk generation. Another way of generating a root filesystem is by building it with buildroot. See and this post for details.
View full article
Starting from $52, the VAR-SOM-MX6 sets the bar for unparalleled design flexibility. The VAR-SOM-MX6 ensures scalable and simplified development, while also extending the product lifecycle. Thanks to four CPU core assembly options, customers can apply a single System on Module in a broad range of applications to achieve short time-to-market for their current innovations, while still accommodating potential R&D directions and marketing opportunities.     VAR-SOM-MX6 CPU: Freescale iMX6 Key features include: Freescale i.MX6 1.2GHz Quad / Dual / Single core Cortex-A9       2GB DDR3, 1GB SLC NAND Flash       Full HD 1080p video encoding/decoding capability       Vivante GPU providing 2D/3D acceleration       Simultaneous multiple display support       Gigabit Ethernet       TI WiLink™ 6.0 single-chip connectivity solution (Wi-Fi, Bluetooth®)       PCI-Express 2.0, S-ATA 3.0       Camera interface       USB 2.0: Host, OTG       Audio In/Out       Dual CAN Bus This versatile solution's -40 to 85°C temperature range and Dual CAN support is ideal for industrial applications, while 1080p video and graphics accelerations make it equally suitable for intensive multimedia applications. The impressive scalability of the VAR-SOM-MX6 satisfies the needs of the most demanding future application requirements whether faster processing power, enhanced algorithms or improved graphics and video performance to name just a few. The VAR-SOM-MX6 is an all-round solution with broad connectivity and sophisticated video and acceleration graphic capabilities, delivering a range of middle to high end assembly options all from the same product. For more details, please see VAR-SOM-MX6 CPU: Freescale iMX6
View full article
Here is a quick summary at building a bootloader, a kernel and a root filesystem for the i.MX 6 sabre sd platform, using buildroot. This assumes you have a "working" Linux development environment at hand (e.g. Debian). Buildroot is a fine build system, which makes deploying Linux on embedded platforms really easy. It is comparable to Yocto in spirit, but much simpler. Thanks to my colleague gillestalis, buildroot now has builtin support for the i.MX6 sabre sd platform. Get buildroot sources We will use git to fetch buildroot sources: $ git clone git://git.busybox.net/buildroot This should create a buildroot directory with all the latest sources (after a while). Note that for more stability you might want to checkout a release instead of the latest version; to do so, list the available release tags with e.g. git tag -l '201*', and git checkout <the-desired-tag>. Compile The beauty of buildroot is that it will take care of everything for you, including preparing a cross compiler. You can download and build everything by doing: $ cd buildroot $ make freescale_imx6sabresd_defconfig $ make This should download and build everything, so it will take a while. buildroot detects the number of CPUs you have in your machine and builds with parallel jobs automatically; no need to specify any -j argument to make here. All build results fall under the output/images folder: output/images/ +- rootfs.ext2 +- rootfs.tar +- u-boot.bin `- uImage Format the SD card As for Debian, we need to format the SD card with two partitions; one small FAT partition to contain the Linux kernel, and one large ext4 partition, which will contain the root filesystem with the buildroot generated userspace. Also, we need to make sure we leave some space for u-boot starting from offset 1024B. Here is an example SD card layout: +-----+------+--------+-----+---------------+----------------- | MBR |  ... | u-boot | ... | FAT partition | Linux partition ... +-----+------+--------+-----+---------------+----------------- 0     512    1024           1M              ~257M (offsets in bytes) Here is an example SD card layout, as displayed by fdisk: Device    Boot      Start         End      Blocks   Id  System /dev/sdc1            2048      526335      262144    c  W95 FAT32 (LBA) /dev/sdc2          526336     8054783     3764224   83  Linux (units: 512B sectors) You can format the FAT boot partition with: # mkfs.vfat /dev/<your-sd-card-first-partition> Your SD card first partition is typically something in /dev/sd<X>1 or/dev/mmcblk<X>p1. You can format the Linux partition with: # mkfs.ext4 /dev/<your-sd-card-second-partition> Your SD card second partition is typically something in /dev/sd<X>2 or/dev/mmcblk<X>p2. Put on SD As explained here, u-boot should reside at offset 1024B of your SD card. Also, as buildroot generates an u-boot.bin (and not an u-boot.imx) we should skip its first KB, too. In summary, to put u-boot on your SD, do:   # dd if=output/images/u-boot.bin of=/dev/<your-sd-card> bs=1k seek=1 skip=1   # sync Your SD card device is typically something in /dev/sd<X> or /dev/mmcblk<X>. Note that you need write permissions on the SD card for the command to succeed, so you might need to su - as root, or use sudo, or do a chmod a+w as root on the SD card device node to grant permissions to users. Similarly to what this post describes, you can copy the kernel to the FAT boot partition with: # mount /dev/<your-sd-card-second-partition> /mnt # cp output/images/uImage /mnt/ # umount /mnt Your SD card first partition is typically something in /dev/sd<X>1 or/dev/mmcblk<X>p1. And not unlike what is done in this post, You can install your generated root filesystem to the Linux partition with: # mount /dev/<your-sd-card-second-partition> /mnt # tar -C /mnt -xvf output/images/rootfs.tar # umount /mnt Your SD card second partition is typically something in /dev/sd<X>2 or/dev/mmcblk<X>p2. Boot! Your SD card is ready for booting. Insert it in the SD card slot of your i.MX6 sabre sd platform, connect to the USB to UART port with a serial terminal set to 115200 baud, no parity, 8bit data and power up the platform. Like with Debian, u-boot default settings will not allow it to boot from the SD card, so we need to interrupt it by pressing enter at u-boot prompt for the first boot and setup u-boot environment to fix this: MX6Q SABRESD U-Boot > setenv bootargs_mmc 'setenv bootargs ${bootargs} root=/dev/mmcblk1p2 rootwait' MX6Q SABRESD U-Boot > setenv bootcmd_mmc 'run bootargs_base bootargs_mmc; mmc dev 2; fatload mmc 2:1 ${loadaddr} ${kernel}; bootm' MX6Q SABRESD U-Boot > setenv bootcmd 'run bootcmd_mmc' MX6Q SABRESD U-Boot > saveenv Saving Environment to MMC... Writing to MMC(2)... done As this is saved in the SD card it need only to be done once at first boot. You can reboot your board or type boot; your buildroot system should boot to a prompt: (...) Welcome to Buildroot buildroot login: From there you may login as root. Enjoy! Tweak buildroot uses Linux kernel kconfig to handle its configuration. So, as for the Linux kernel, changes to the configuration can be done with e.g.: $ make menuconfig Most of the options can be tuned from there, including (most importantly) which packages get installed into the generated root filesystem. This is configuration section 'Filesystem images'. Further details are documented in buildroot manual. Tips ccache is natively supported by buildroot and can be easily enabled with configuration option BR2_CCACHE. If you only use the generated rootfs.tar as described in this post and do not care about the rootfs.ext2, you might as well save a few seconds of build by disabling its generation. This is done with configuration option BR2_TARGET_ROOTFS_EXT2. It is recommended to install an ssh server inside the target for further development. This is conveniently done with configuration option BR2_PACKAGE_OPENSSH. See also... Other root filesystems may make more sense for you; see this post for a Debian root filesystem, and this post for a minimal busybox filesystem. Freescale Yocto Project main page
View full article
Most common issues with bringup and memory stability come down to memory/system setup during startup phase of i.MX device.   This Python script allows you to dump IVT/DCD tables and data from a i.MX binary (either generated as result of build process or a simple dump of SD/NOR/NAND... content) and analyze them in an easier way. Should work with i.MX 6 and i.MX53 binaries.   Parser for i.MX 6 will also try to print out register values it recognizes, and also parse specific register fields, helping to analyze the data faster. This can be extended if needed to other registers/values.   imxbin.py works with Python3.x and imxbin_2x.py with Python 2.x, so choose appropriate version.   Vladan
View full article
Hi All, The new i.MX 6 Q/D/DL/S/SL L3.0.35_4.1.0 GA release is now available on the http://www.freescale.com/site. ·         Files available                                   # Name Description 1 L3.0.35_4.1.0_LINUX_DOCS i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite Linux BSP   Documentation. Includes Release Notes, Reference Manual, User guide. API   Documentation 2 L3.0.35_4.1.0_LINUX_MMDOCS i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite  Linux Multimedia Codecs Documentation.   Includes CODECs Release Notes and User's Guide 3 L3.0.35_4.1.0_SOURCE_BSP i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite Linux BSP   Source Code Files 4 L3.0.35_4.1.0_MM_CODECS i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite  Linux Multimedia Codecs Sources 5 L3.0.35_4.1.0_AACP_CODECS i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite  Linux AAC Plus Codec 6 L3.0.35_4.1.0_DEMO_IMAGE_BSP i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite  Linux Binary Demo Files 7 L3.0.35_4.1.0_UBUNTU_RFS_BSP i.MX   6Quad, i.MX 6Dual, i.MX 6DualLite, i.MX 6Solo and i.MX 6Sololite  Linux File System for the Ubuntu Images 8 i.MX_6D/Q_Vivante_VDK_146_Tools Set   of applications for the Linux L3.0.35_4.1.0 BSP, designed to be used by   graphics application developers to rapidly develop and port graphics   applications. Includes applications, GPU Driver with vprofiler enabled and   documentation. 9 IMX_6DL_6S_MFG_TOOL Tool   and documentation for downloading OS images to the i.MX 6DualLite and i.MX   6Solo. 10 IMX_6DQ_MFG_TOOL Tool   and documentation for downloading OS images to the i.MX 6Quad and i.MX 6Dual. 11 IMX_6SL_MFG_TOOL Tool   and documentation for downloading OS images to the i.MX 6Sololite. ·         Target HW boards o   i.MX 6Quad SABRE-SDP o   i.MX 6Quad SABRE-SDB o   i.MX 6Quad SABRE-AI o   i.MX 6DualLite SABRE-SDP o   i.MX 6DualLite SABRE-AI o   i.MX 6SL EVK ·         New features o   BSP New Features on i.MX 6D/Q, i.MX 6DL/S and MX 6SL: §  HDCP §  CEC §  GPU4.6.9p12 §  Audio playback IRAM/SDMA §  V4L capture resize on MX6SL §  MX6DQ disable the double line fill feature of PL310 ·         Known issues o   For known issues and limitations please consult the release notes.
View full article
The i.MX 6 D/Q/DL/S/SL Linux 3.10.17_1.0.0 GA release is now available on www.freescale.com Files available Name Description L3.10.17_1.0.0_LINUX_DOCS i.MX 6 D/Q/DL/S/SL Linux 3.10.17_1.0.0 GA BSP documentation. y L3.10.17_1.0.0_iMX6QDLS_Bundle i.MX 6 D/Q/DL/S  Linux 3.10.17_1.0.0 GA BSP Binary Demo Files L3.10.17_1.0.0_iMX6SL_Bundle i.MX 6 SL  Linux 3.10.17_1.0.0 GA BSP Binary Demo Files i.MX_6_Vivante_VDK_150_Tools Vivante VTK 1.5 Codec for the i.MX 6 D/Q/DL/S/SL Linux 3.10.17_1.0.0 GA BSP    y L3.10.17_1.0.0_AACP_CODECS AAC Plus Codec for the i.MX 6 D/Q/DL/S/SL Linux 3.10.17_1.0.0 GA BSP y IMX_6_MFG_L3.10.17_1.0.0_TOOL Manufacturing Tool and Documentation for Linux 3.10.17_1.0.0 GA BSP y Target HW boards o   i.MX6DL  SABRE SD board o   i.MX6Q  SABRE SD board o   i.MX6DQ SABRE AI board o   i.MX6DL SABRE AI board o   i.MX6SL EVK board New  Features o   Main BSP New Features on MX6DQ, MX6DL and MX6SL from L3.10.9_1.0.0 GA: SD3.0 reset USB HSIC HWRNG security feature on MX6SL VIIM OTP Fuse in uboot Battery charge LED U-boot USB mass storage support USB Camera on host mode X backend: Adaptive HDMI display support backed by XRandR Main Codec New Features on MX6DQ, MX6DL and MX6SL from L3.10.17_1.0.0 Beta: Bug fix Main Codec New Features on MX6DQ, MX6DL and MX6SL from L3.10.17_1.0.0 Beta: Bug fix Other features not supported found during testing: UART: only support some baud rates like 9600, 115200, can't support high to 4000000 Known issues For known issues and limitations please consult the release notes located in the BSP documentation package.
View full article
The i.MX6 DL/S L3.035_3.0.4 patch release is now available onwww.freescale.com ·         Files available # Name Description 1 L3.0.35_3.0.4_TEMP_PATCH This patch release is based on the i.MX 6DualLite/6Solo   Linux L3.0.35_3.0.0 release. The purpose of this patch release is fix the   miscalibration issue for the thermal sensor.
View full article
Linphone is an internet phone or Voice Over IP phone (VoIP). With Linphone you can communicate freely with people over the internet, with voice, video, and text instant messaging. Linphone makes use of the SIP protocol, an open standard for internet telephony. You can use Linphone with any SIP VoIP operator, including our free SIP audio/video service. Linphone is free software (or open-source), you can download and redistribute it freely. Linphone is available for desktop computers: Linux, Windows, Mac OSX, and for mobile phones: Android, iPhone, Blackberry. Linphone-android is a good example to show the integration of Java code based on Android SDK with native CODEC, network protocols. Not like XBMC-Android that is almost total c++/c project. Perform the following steps to build a linphone-android project: 1. git clone git://git.linphone.org/linphone-android.git --recursive 2. sudo apt-get install autoconf automake libtool pkg-config 3. "cd" to the root of "git clone" : cd /home/user/linphne-android // wherver git'ed linphone-android is 4. export PATH=/home/user/android-ndk:$PATH //wherever your android-ndk, android-sdk tools, and platform-tools, and ANT are stored in.             For example on my PC.      export PATH=/home/alanz/android-ndk-r8d:/home/alanz/android-sdk-linux/tools:/home/alanz/android-sdk-linux/platform-     tools:/home/alanz/bin/apache-ant-1.8.4/bin:$PATH             Note: PATH contains the ndk, sdk, and ant. 5. Make sure the network is working, then execute "./prepare_sources.sh" at the linphone-android root 6. Then, execute "/home/alanz/android-ndk-r8d/ndk-build", it will take a while to be finished 7. Modify Makefile as following example, modify it accordingly.      NDK_PATH=/home/alanz/android-ndk-r8d      SDK_PATH=/home/alanz/android-sdk-linux/tools      SDK_PLATFORM_TOOLS_PATH=/home/alanz/android-sdk-linux/platform-tools      .....................      generate-libs:           $(NDK_PATH)/ndk-build ....... (remove -j$(NUMCPUS) by the end of this command line) 8. execute "make", after finish, the apk file can be found under bin/ subdirectory.
View full article