S32 デザインスタジオ・ナレッジベース

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

S32 Design Studio Knowledge Base

ディスカッション

ソート順:
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Power Architecture 2017.R1 Update 1          What is new? S32 SDK for Power Architecture 0.8.2 EAR (Early Access Release) for MPC574x-B-C-G and MPC574xP derivatives (see attached release notes for more details) MPC5744B, MPC5745B, MPC5746B MPC5744C, MPC5745C, MPC5746C - 1N84S (Cut 2.1), MPC5747C, MPC5748C MPC5746G, MPC5747G, MPC5748G - 0N78S (Cut 3.0) MPC5741P, MPC5742P, MPC5743P, MPC5744P - 1N15P (Cut 2.2B) S32 SDK  Power Architecture v0.8.2 Examples - "Create S32DS Project from Example" Installation instructions The update is available for online (via Eclipse Updater) or offline installation (direct download link) online installation:  go to menu "Help" -> "Install New Software..." dialog  select predefined update site "S32DesignStudio - http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_POWER_2017.R1/updatesite" select all available items and click "Next" button   offline installation:   go to S32 Design Studio for ARM product page -> Downloads section or use  direct link to download the update archive zip file Start S32DS and go to "Help" -> "Install New Software..." Add a new "Archive" repository and browse to select the downloaded update archive zip file you downloaded in the previous step Select all available items and click "Next" button.   This will starts the update installation process.
記事全体を表示
        Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio v3.1         Austin, Texas, USA April 4, 2019    The Automotive Microcontrollers and Processors' Embedded Tools Team at NXP Semiconductors is pleased to announce the release of the S32 Design Studio v3.1.  Here are some of its major features: NXP GCC toolchains for ARM32 and aarch64 bareboard and Linux targets (GCC version 6.3.1 20170509, build 1574 revision g924fb68) S32 Debug Probe support provided with S32 Debugger and S32 Trace tool for S32V234 S32 Trace tool is integrated to provide software analysis features (profiling, code coverage, and other) P&E Debugger support for S32V23x Lauterbach Trace32® support S32 Flash Tool is delivered to support Flash/SD/MMC memory programming for S32V234 S32 SDK for S32V23x 0.9.0 Beta is integrated. Release notes here. The S32DS Extensions and Updates S32 Configuration Tool framework (EAR7) with the Pin, Clock, Peripheral, DCD, IVT, and DDR Configuration tools S32 Design Studio Versions Versioning convention has changed. The version of this release identified in red box below: Complete S32 Design Studio v3.1 release notes are available here.   Installation To download the installer please visit the S32 Design Studio product page download section or click the direct here.     The installer requires the Activation ID to be entered. You should receive a notification email including the Activation ID after the download of the installation package starts. The installer installs just the base tools/package. In order to start development it is necessary to install at least one Development package. Currently the only application package available is Vision S32V2xx  (Other packages are coming soon). The application packages are managed by S32DS Extensions and Updates. Technical Support S32 Design Studio issues are tracked through the S32DS Public NXP Community space. https://community.nxp.com/community/s32/s32ds  
記事全体を表示
Requirements: PC machine with telnet client (for Windows you can use Putty - Download PuTTY - a free SSH and telnet client for Windows ) DHCP server running on your PC machine or network connection with DHCP server How to install DHCP server on Linux https://www.ostechnix.com/install-dhcp-server-in-ubuntu-16-04/  DHCP server for Windows - Open DHCP Server download | SourceForge.net      S32 debug probe connected to network (with DHCP server) and visible for your PC machine   separate network using static IP addresses (or direct connection between PC and S32 debug probe). The scenario is similar like on this picture:  Procedure:   Connect power to S32 debug probe with already connected ethernet cable and wait until green LED (RX/TX) starts blink.Connect to S32 debug probe by telnet client. You can use default domain name FSLXXYYZZ where XXYYZZ are last 6 digits from S32 debug probe MAC address or assigned IP address: Static IP address can be set by netparam static_ip_address ADDRESS:NETMASK command. Make sure that you are choosing IP address from range of your Embedded network. My network uses standard 192.168.1.xxx here is mt setings:  netparam static_ip_address 192.168.1.100:255.255.255.0 You also need to set boot config from DHCP to Static: netparam bootconfig static Turn OFF and ON again S32 debug probe and check the settings by telnet with static IP address - in my case 192.168.1.100: We are done. 
記事全体を表示
Example shows how can be expanded default 512kB flash memory by 64 kB using FlexNVM as a program/data flash. In FlexNVM are stored two ASCII images and function PrintImage. FlexNVM is divided into 32kB data section and 32kB code section in the linker file. Output is printed on terminal. As a output device you can use putty or any other serial terminal. Terminal settings: 9600, 8N1 - no flow control. In debugger settings you have to Enable partitioning device with code 0F0C. This value is written into FCCOB4 and FCCOB5 registers before flashing. Putty settings: Test HW: S32K144EVB, MCU: S32K144 Debugger: OpenSDA Target: internal_FLASH (debug mode and release mode)
記事全体を表示
The S32 Debugger included within the S32 Design Studio for S32 Platform IDE provides the capability to access the flash programming capabilities of the S32 Debug Probe via GTA command line and the GDB. This instruction details the steps to perform flash programming of the S32G274A EVB via the JTAG interface with the S32 Debug Probe.   Note: currently only QSPI flashing is supported.   Preparation Install S32 Design Studio IDE  Install the Development Package for the device you are debugging. In this case, the S32G2xx development package. This is important as the S32 Debugger support within it contains the device-specific Python scripts required for initialization of the cores.  Setup the hardware Confirm the setup of the S32G274A evaluation board.  Configure the JTAG. The S32G274A evaluation board supports both 10- and 20- pin JTAG connections. The default board configuration is set to 20-pin, change the position of the jumper J59 from 2-3(default)  to 1-2, if you are using the 10 Pin JTAG interface. Both are supported by the S32 Debugger and S32 Debug Probe. Connect the power supply cable Setup the S32 Debug Probe Connect the S32 Debug Probe to the evaluation board via JTAG cable. Refer to the S32 Debug Probe User Manual for installation instructions. Use the JTAG connection as was confirmed in the previous step. Connect the S32 Debug Probe to the host PC via USB OR via Ethernet (via LAN or directly connected, and configured for static IP address) and power supply connected to USB port. Launch S32 Design Studio for S32 Platform Create new or open existing project and check that it successfully builds. If creating a new project, be sure the S32 Debugger is selected in the New Project Wizard.   Procedure Launch GTA server. From command prompt or Windows File Explorer run the command:  {S32DS Install Path}\S32DS\tools\S32Debugger\Debugger\Server\gta\gta.exe Should see a window appear like this:   Ensure Environment Variable for Python is set. From command prompt, run the command:  set PYTHONPATH={S32DS Install Path}\S32DS\build_tools\msys32\mingw32\lib\python2.7;{S32DS Install Path}\S32DS\build_tools\msys32\mingw32\lib\python2.7\site-packages   Start GDB. In a command window, run the command: Windows OS: {S32DS Install Path}\S32DS\tools\gdb-arm\arm32-eabi\bin\arm-none-eabi-gdb-py.exe (for arm32) OR {S32DS Install Path}\S32DS\tools\gdb-arm\arm64-eabi\bin\aarch64-none-elf-gdb-py.exe (for arm64) Linux OS: arm-none-eabi-gdb-py A (gdb) prompt should now be displayed in the command window.   Configure the EVB's Boot Mode switches for Serial Boot. Issue the following commands, replacing the PROBE_IP address and FLASH_NAME, as appropriate: source {S32DS Install Path}/S32DS/tools/S32Debugger/Debugger/scripts/gdb_extensions/flash/s32flash.py py _FLASH_TYPE = "qspi" py _PROBE_IP="10.81.64.66" py _JTAG_SPEED=20000 py _GDB_SERVER_PORT=45000 py _GDB_TIMEOUT=7200 py _REMOTE_TIMEOUT=30 py _RESET_DELAY=1 py _RESET_TYPE="default" py _INIT_SCRIPT="{S32DS Install Path}/S32DS/tools/S32Debugger/Debugger/scripts/s32g2xx/s32g274a_generic_bareboard.py" py _FLASH_NAME="MX25UM51245G" py _IS_LOGGING_ENABLED=False py flash()   Note: Replace the {S32DS Install Path} in the commands above with the actual path to your installation of S32 Design Studio. Now flash commands may be used. fl_blankcheck -- blank check fl_close -- close command fl_current -- current device command fl_dump -- dump command fl_erase -- erase section of memory command, will erase whole sectors starting from 'offset' through 'size' contiguously, so to erase only one sector, ensure that the 'offset' address is within the desired sector and 'size' does not extend into the following sector fl_erase_all -- erase all memory command fl_info -- info command, shows list of registered devices fl_protect -- protect section of memory command fl_unprotect -- unprotect section of memory command fl_write -- write memory command, hex or binary are supported, options to erase first and verify after write fl_write_elf -- write elf file to memory command, options to erase first, verify after, and rearrange flash base Type 'help fl_<command>' to print the help info on the specified command Type 'help support' to print a list of the fl_ commands For example, you may wish to write a binary file: fl_write -e 0x0 C:\\Users\\<userid_folder>\\workspaceS32DS\\hello_world\\Debug_RAM\\hello_world_blob.bin Happy flashing with S32DS Flash Programmer!
記事全体を表示
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio 3.1  Update 190508          What is new? S32 Design Studio Platform Package 3.1.1 S32 Design Studio Platform Tools Package 3.1.1 Updated S32 Debugger and S32 Flash tool to support S32S247TV S32S2xxTV Development Package 3.1.0 S32V2xx Development Package 3.1.0 Vision Extension Package for S32V2xx 1.0.0 This is a cumulative update - it is applicable to S32 Design Studio 3.1 Installation instructions The update is available for online (via Eclipse Updater) or offline installation (direct download link)  online installation:  go to menu "Help" -> "S32DS Extensions and Updates" dialog  select all available items and click "Install/Update" button   offline installation:   go to S32 Design Studio product page -> Downloads section or use direct link to download the update archive zip file Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates" Add a new "Add.." S32DS Software Site and browse to select the downloaded update archive .zip file you downloaded in the previous step          Select all available items and click "Install/Update" button.   This will start the update installation process.
記事全体を表示
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio 3.2  Update 191226          What is new? Vision Extension Package for S32V234 1.1.0 with VSDK 1.5.0 integrated.(VSDK Release Notes) This is a cumulative update (includes previous updates: Update 191219) Installation instructions The update is available for online (via Eclipse Updater) or offline installation (direct download link)  online installation:  go to menu "Help" -> "S32DS Extensions and Updates" dialog  select from available items and click "Install/Update" button   offline installation:   go to S32 Design Studio product page -> Downloads section or use direct link to download the update archive zip file Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates" Add a new "Add.." S32DS Software Site and browse to select the downloaded update archive .zip file you downloaded in the previous step         Select from available items and click "Install/Update" button. This will start the update installation process.
記事全体を表示
S32 Platform Download and Install S32 Design Studio for S32 Platform v3.4    S32K1 Migrating S32K1 projects from S32DS for ARM and SDK 3.0.x to S32DS 3.4 and SDK 4.0.2 A demonstration of the use of the Migration wizard in S32 Design Studio 3.4 to migrate S32K1 projects from S32 Design Studio for Arm and S32 SDK 3.0.x to S32 Design Studio 3.4 and S32 SDK 4.0.2   S32G2 Getting Started: Pins Tool Getting Started: DCD Tool Getting Started: IVT Tool Getting Started: DDR Tool   S32R45 Install S32R45 Development Package Install S32R45 Radar Extension Package Creating And Building A Project on the S32R45 for A53, LAX and SPT Cores in S32 Design Studio   S32V2 Create From Example 1 | Create an ISP project from example  A demonstration of how to load an example ISP image processing application project featuring RGB, YUV, and GS8 image formats, in the S32 Design Studio. 2 | Create an APEX2 project from example  A demonstration of how to load an example ORB-based APEX2 image processing application project in the S32 Design Studio. Create New Project 3 | Create a new ISP application  A demonstration of how to create a new Debayer-based ISP image processing application project in the S32 Design Studio. 4 | Create a new APEX2 application  A demonstration of how to create a new APEX2 image processing application project featuring upscaling and downscaling in the S32 Design Studio. Debug 5 | ISP Debugging w/S32 Debug Probe   A demonstration of how to setup and debug an ISP application project using S32 Design Studio, S32 Debugger, and S32 Debug Probe. 6 | APEX2 debugging w/S32 Debug Probe  A demonstration of how to setup and debug an APEX2 application project using S32 Design Studio, S32 Debugger, and S32 Debug Probe. 7 | APEX2 debugging with Emulator  A demonstration of how to debug an emulated-APEX2 image processing application project in the S32 Design Studio. 8 | Debug a Linux A53 project  A demonstration of how to debug a Linux A53 application project in the S32 Design Studio for Vision version 2.0. The example shown also includes code for APEX, but currently GDB Remote Linux only supports debug of the A53 code.
記事全体を表示
This document details how to create a new project in S32 Design Studio and build using the existing code and makefile provided within the NXP Vision SDK example projects. If you are creating a new makefile project with code from any other source, the procedure may be different. Before creating a new makefile project from existing code we need to add some paths to the environment variable PATH and a couple of new environment variables. There are 3 main methods for adding these paths and variables. Which method depends upon your needs. Method 1 The paths and variables can be added to each project individually. This is useful if you only want these changes to affect a small number of projects. Or if your projects require different paths and variables. Note: these changes would be made after the project is created (shown in steps 15 - 17 below) Method 2 The paths and variables can be added to the entire workspace within S32DS . These will not be visible outside of S32DS and therefore will not affect the entire Windows environment. This is useful if you have a large number of projects with common requirements for paths and variables and do not want them visible any tools outside of S32DS. Method 3 The paths and variables can be added globally to the Windows environment and will affect all installed tools. This method is not recommended. Once you have selected a method, add the following paths to the PATH variable (paths shown using the default installation settings for S32DS): C:\NXP\S32DS.3.1\S32DS\build_tools\gcc-6.3-arm32-eabi\bin C:\NXP\S32DS.3.1\S32DS\build_tools\gcc-6.3-arm64-eabi\bin C:\NXP\S32DS.3.1\S32DS\build_tools\gcc-6.3-arm64-linux\bin C:\NXP\S32DS.3.1\S32DS\build_tools\msys32\mingw32\bin or if within Eclipse (can use variables, which don't need to be updated should the layout of S32DS installation change in a future release) ${S32DS_ARM32_TOOLCHAIN_DIR} ${S32DS_ARM64_LINUX_TOOLCHAIN_DIR} ${S32DS_ARM64_TOOLCHAIN_DIR} ${S32DS_GCC_TOOCHAIN_DIR} It is also necessary to add the following Windows system variables: Variable Name: S32V234_SDK_ROOT Variable Value: C:\NXP\S32DS_Vision_v2018.R1\S32DS\s32v234_sdk Variable Name: APU_TOOLS Variable Value: C:\NXP\S32DS_Vision_v2018.R1\S32DS\APUC The following steps demonstrate the procedure based on Method 1 above. 1) Launch S32DS for Vision 2) Click New 3) Select 'Makefile Project with Existing Code' 4) Select Next 5) Enter a name for the project. 6) For 'Existing Code Location',    a) Select 'Browse...' and then select the directory  C:\NXP\S32DS.3.1\S32DS\software\VSDK_S32V2_RTM_1_3_0\s32v234_sdk\demos\isp\isp_sonyimx224_rgb_yuv_gs8    b) Click OK 7) For 'Toolchain for Indexer Settings', select the option which matches your desired build configuration. For our example here, we will select 'ARM Linux 64-bit Target Binary Toolchain'. See the Vision Extension Package User Guide for more details on the toolchain options. This sets up some toolchain paths, but later we will set more for the specific needs of the VSDK examples. 😎 Click Finish 9) Right-click on the project from the Project Explorer. Select Properties 10) Go to section 'C/C++ Build' 11) Go to the 'Behavior' tab and in the field next to 'Build', enter:    ISP examples: 'allsub'    APEX examples: 'APU_COMP=nxp allsub' 12) Go to 'Builder Settings' tab, in 'Build location' section change the path for the 'Build directory'. Click on 'Workspace...' button 13) In the Folder selection menu, select the subfolder 'build-v234ce-gnu-linux-d' and click OK 14) Go to section 'Environment' 15) Select the environment variable 'PATH' and click 'Edit...' 16) Add the path variables to the value field, each separated by a comma ';' ${S32DS_ARM32_TOOLCHAIN_DIR} ${S32DS_ARM64_LINUX_TOOLCHAIN_DIR} ${S32DS_ARM64_TOOLCHAIN_DIR} ${S32DS_GCC_TOOCHAIN_DIR} Click OK 17) Click 'Add...' 18) Click 'Add...' and enter variable name 'APU_TOOLS' and value '${S32DS_APU_TOOLCHAIN_DIR}' Click OK 19) Click OK to close the Properties menu. 20) Click on 'Build' 21) Once the build is complete, the binary file (ELF) will be created
記事全体を表示
This document describes, how to add software site and how to install update from the 3rd party software site. 1) In S32DS, click Help->Install New Software 2) Click Available Software Sites. 3) Select required site, if available. 4) Select required site in Work with line: 5) Available updates will appear in the window below. Check GNU E200 PEMicro Interface Debugging Support 6) Click Next and new window will appear. Select required software and click Next. 7) Accept the license terms and click Finish. New software will be downloaded and installed. Hope it helps. Martin
記事全体を表示
This document shows the step-by-step process to create a simple project which recreates the included example 'hello_world_s32v234'. The purpose of this demo is to provide the user with an example application for S32V234 platform, using S32 SDK. The demo toggles two LEDs (PTA8 and PTA9). This HW used in this demo is the SBC-S32V234 EVB, connected to a PC through NXP's S32 Debug Probe or P&E Micro's debug probe. Setup S32 Design Studio 3.1 or later installed AND S32V2xx development package installed SBC-S32V234 EVB connected to power AND switched ON Either S32 Debug Probe OR P&E Micro debug probe connected to the SBC-S32V234 EVB through JTAG connection. S32 Debug Probe connected to PC via either USB cable OR Ethernet cable (also requires power via included power supply and connected to USB port). For more information on HW setup, see HOWTO: Start Debug on an ISP Application Project with S32 Debugger and S32 Debug Probe . P&E Micro debug probe connected to PC via USB cable Procedure Create a new application project for M4 core File -> New -> S32DS Application Project Enter project name, select processor S32V234 Cortex-M4, click Next. Click '...' to select the SDK Select S32V234 SDK v1.0.0 (or later version) Notice the box is now checked for S32 Configuration Tool. The S32 Configuration Tool is dependent upon the S32 SDK. Select either S32 Debugger (default) or PE Micro GDB server. Click Finish The new project appears in the Project Explorer, notice the S32V234_M4.mex file is there as well. This .mex file contains all of the configuration data for the S32 Configuration Tool for this project. After clicking on the project name, the toolbar icon for the S32 Configuration Tool is now active. Click the S32 Configuration Tool button or double-click on the .mex file to open the S32 Configuration Tool perspectives. Notice the new perspective buttons in the toolbar: Go to Pins tool perspective, this is the default perspective that opens when the S32 Configuration Tool is launched. Notice there are errors at the lower right. There is a dependency upon the PINS driver from the S32 SDK. This driver is not mandatory, and while there are some rare cases where the drivers would not be needed, in most cases the user should choose to include them.                                                                                                                            To resolve the error, right-click on the error message to bring up the context menu and then select the option Add SDK component 'PINS' into the project '<project_name>'. After selecting the context menu option, you are presented with a confirmation window to review the list of files which will be added to the project. In this case, the option did not result in any new files, so there is nothing to review. You can check a box to avoid seeing this confirmation window in the future. Click Yes to confirm the changes. Select the Peripheral Signals tab at the upper left of the Pins perspective Check box for SIUL2 In the popup window Peripheral SIUL2, scroll to find gpio, 8 >> [A11] PA8 and gpio, 9 >> [B11] PA9. Check the box next to each. For each pin that is selected, an additional popup menu appears. Set both pins as Output. Then click OK and then Done. Set Identifiers for each as follows Pin Identifier PTA8/A11 LED1 PTA9/B11 LED2 Go to Peripherals tool Select Peripherals tab at upper left, check box to enable MC_ME Click OK. Now the driver is installed. Go to Clocks tool Change the following settings. They are not Run Mode specific. Hovering the mouse pointer over the object in the diagram will produce a tooltip window with information about the object including the name, current setting, output value, etc. Change prescaler ENETPLL_PHI0 (.pll2Config/.phi0Divider) from 2 to 8 Change the setting by first clicking on the prescaler box in the diagram, then clicking on the value in the 'Details' panel to the right. This brings up a list of available values. Select the desired value from the list. Once successfully changed, the values will be highlighted. Alternatively, a double-click on the value inside the prescaler box will bring up a drop list of the values and the selection can be made. Change prescaler VIDEOPLL_PHI0 (.pll4Config/.phi0Divider) from 4 to 2 Change mux AUX0_MUX (CGM0_AUX0_MUX) from FIRC to DDRPLL_DFS1 Change mux AUX8_MUX (CGM0_AUX8_MUX) from FIRC to DDRPLL_PHI0 To locate the next two, it is necessary to scroll down on the Clocks Diagram: Change mux CGM0_AUX7_MUX (MC_CGM_0_AUX7_MUX) from FIRC_CLK to ENETPLL_PHI0 Change mux CGM2_AUX2_MUX (MC_CGM_2_AUX2_MUX) from FIRC_CLK to ENETPLL_PHI0 Click Update Code Click OK Switch to C/C++ perspective Insert pins init using the configuration from 'board\pin_mux.c' If not already open, double-click on the following files from Project Explorer: 'board\pin_mux.c' 'src\main.c' Use the SDK Explorer Go to Quick Access field and enter 'sdk' Select 'SDK Explorer' If needed, drag the new SDK Explorer tab to the pane you prefer. In general, for this tool, a taller tab window works better. Select the project name in the Project Explorer tab and then expand the list under the SDK until you can see the list of CLOCK_DRV function defines. Drag and drop the function 'CLOCK_DRV_Init()' into main() of 'main.c', after the comment '/* Write your code here */'. Now locate the PINS_DRV function defines. . Drag and drop the following functions into the main() function of 'main.c', after the function call CLOCK_DRV_Init(): PINS_DRV_Init() PINS_DRV_ClearPins() The function calls are not in the format we need so let's modify them: Drag and dropped from SDK Explorer Change to this for our application status_t = CLOCK_DRV_Init(const clock_user_config_t*); CLOCK_DRV_Init(&clock_InitConfig0); status_t = PINS_DRV_Init(uint32_t, const pin_settings_config_t[]); PINS_DRV_Init(NUM_OF_CONFIGURED_PINS, g_pin_mux_InitConfigArr); PINS_DRV_ClearPins(GPIO_Type* const, pins_channel_type_t); PINS_DRV_ClearPins(LED1_PORT, ((1<<LED1_PIN)|(1<<LED2_PIN))); clock_InitConfig0 is defined in 'board/clock_config.c' NUM_OF_CONFIGURED_PINS, LED1_PORT, LED1_PIN, LED2_PORT, LED2_PIN are defined in 'board/pin_mux.h' g_pin_mux_InitConfig_Arr is defined in 'board/pin_mux.h' LED1_PORT == LED2_PORT Replace the contents of the FOR loop to toggle the pins (PINS_DRV_TogglePins() comes from SDK Explorer) Original New for(;;) {      if(exit_code != 0)      {           break;      } } for (;;) {      /* Insert a small delay to make the blinking visible */      delay(720000);      /* Toggle output value LED1 & LED2 */      PINS_DRV_TogglePins(LED1_PORT, (1 << LED1_PIN)|(1 << LED2_PIN)); } Insert delay function code in main.c delay() void delay(volatile int cycles) {      /* Delay function - do nothing for a number of cycles */      while(cycles--); } Now main.c should look as follows Build the project Now we have the ELF file We are ready to run on the hardware. Open the Debug Configurations Select the debug configuration within the debugger grouping for the debugger that was chosen in the new project wizard (step 1f), and for build type Debug_TCM S32 Debugger/S32 Debug Probe Select the Debugger tab. Some setup is required to configure how we are connected to the S32 Debug Probe There are two options: Ethernet USB   If connecting the Probe via Ethernet, please refer to the Quick Start Guide or S32 Debug Probe User Guide provided with the S32 Debug Probe for instructions on how to connect it and determine the Hostname or IP address.     If connecting the Probe via USB, then the COM port will appear in the Port selection setting. If you have more than one S32 Debug Probe connected, you will need to determine which COM port is the correct one, otherwise, only the COM port for your S32 Debug Probe will appear.   PEMicro GDB Server When debug probe setup is done, then click Debug to run the code. Agree to launch the debug perspective Now the debugger starts and you can see it has stopped on the default breakpoint at the first line in main(). From here you can Resume, Step, set a breakpoint, set watch variables and monitor registers. If you Resume, then you will see the LEDs on the EVB blinking. You can set a breakpoint on the PINS_DRV_TogglePins() and use Resume to see the LEDs come on and off.
記事全体を表示
        Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for ARM v2.0 Update 2          What is new? S32 SDK 0.8.5 EAR (S32K142, S32K144, S32K146, S32K148) - see attached release notes for more details   MXQ 4.2 for MAC47D54H - see attached MQX release notes for more details. Installation instructions The update is available for online (via Eclipse Updater) or offline (direct download link) installation   online installation: go to menu "Help" -> "Install New Software..." dialog select predefined NXP S32 Design Studio update repository  "S32 Design Studio for ARM v2.0 - http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_ARM_2_0/com.freescale.s32arm.updatesite" select all available items and click "Next" button.   offline installation:  go to S32 Design Studio product page -> Downloads section or use the direct download link to download the Update archive file. Start S32DS and go to "Help" -> "Install New Software..." Add a new "Archive" repository and browse to select the downloaded Update archive file you downloaded in the previous step: Select all available items and click "Next" button. This will starts the update installation.
記事全体を表示
On some versions of Windows 10, there is an issue which could impact your ability to open documents from the Getting Started page in S32 Design Studio. While we have resolved this issue in some of the newer releases, not all editions of S32 Design Studio have been updated since this issue was discovered. Also, you may required to use an older release. The problem occurs when a document linked within the Getting Started window of S32 Design Studio. The S32 Design Studio is configured to use the Windows default web browser to open the files. For some Windows 10 installations, Microsoft Edge is the default browser and it is unable to correctly open the requested file. The typical error message is as shown below: To resolve the issue, it is necessary to change the default browser within your Windows preferences. Here are some steps to do that: 1) Click on 'Settings' from the Windows Start Menu 2) Type 'browser' in the search bar, then select 'Choose a default web browser' 3) Click on the currently selected Web browser to bring up the selection menu and select 'Internet Explorer' or 'Google Chrome' 4) Relaunch S32 Design Studio and try again to open the document from the link in Getting Started page.
記事全体を表示
S32DS contains many example projects from which you can learn how S32DS can be used with the help of the Vision SDK to develop vision applications. The example projects contain generated and hand-written code, which utilize the Vision SDK to demonstrate a workflow using S32DS. In this document, the procedure for creating a project from one of the provided ISP examples through to execution on the EVB is detailed. This project was run using S32DS version 3.2 and VSDK version 1.5.0.   1) Launch S32DS 2) Select 'File -> New -> S32DS Project from Example' 3) Select 'isp_h264dec_single_stream' project    In this particular project, the ISP graph diagram is included. If you wish to view it, go to the Project Explorer panel and expand 'isp_h264dec_single_stream_graph'. Then double click on 'ISP data flow : h264dec_single_stream'. The ISP graph diagram will appear in the editor panel. 4) If not in the C/C++ Perspective, switch over by clicking on the icon showed below (Hovering over the correct icon should display 'C/C++'). The current perspective is displayed on the top bar. 5) Select isp_h264dec_single_stream: A53 in the Project Explorer panel 6) Build project for A53  7) Start a debug session using method as described in HOWTO Create A53 Linux Project in S32DS for Vision, beginning at step 9. 😎 Click Resume  The program takes the input H264 encoded image img_1280x960.h264 located in the /home/root/vsdk/data/common folder on the Linux BSP and outputs it on the display The output image should look like below.
記事全体を表示
PEmicro’s GDB Server can take advantage of four useful SWO debug tools: Power Measurement SWO ITM Console SWO Data capture Real-Time Expressions. This document describes how to enable and use these features. Note: To set up streaming for SWO debug features, the user should check the “Enable Streaming” checkbox in Debug Configurations during setup. Then the port should be specified in the Streaming Server Port text box. Hardware Requirements The following versions (or later) of PEmicro hardware interfaces are required to take advantage of SWO streaming functionality: Multilink FX Rev. C Multilink Universal Rev. D Multilink ACMP Rev. B Real-Time Power Measurement To enable Power Measurement capture, an active debug session must already be in process. Click the Gear Icon on the title bar of the PEmicro "Power Measurement” window. Select the frequency of data capture and check the Enable box. After clicking OK, Power Recording is now active. Note:    The Multilink FX debug probe is required for Real-Time Power Measurement Power Configuration Dialog The next time the target MCU is run, real-time power measurement readings will be shown. The user can start/stop power recording, zoom, export data, and more SWO Printf Console The SWO Printf Console will display messages which are streamed through the SWO pin and captured by the Multilink. There are two main configuration steps needed to leverage this feature. First, the project must be configured to re-direct the printf() statements to the SWO Printf peripheral. This is done at project creation time. Second, the green "Play" button on the SWO ITM Console needs to be clicked during an active debug session. This will cause data collection of SWO printf information to occur on the next Resume. Once data is streaming, the red “Stop” button will stop data streaming. Printf() Statements Displayed In SWO ITM Console The Multilink automatically measures the data communication rate on the SWO pin and adjusts to it automatically. This auto-detect sequence is done each time the processor is stopped in debug mode. If the running code changes the core frequency, a breakpoint should be set after the frequency change so the Multilink can adjust to the new SWO communications rate (which is a function of the core frequency). SWO Data capture The SWO Data view allows the user to configure variables to be tracked such that any reads and writes to these variables are captured and streamed to the Multilink via the SWO pin. This view shows all of the realtime access which have occurred along with the timing of the different accesses. For SWO data, there is a bit more setup.  The user needs to select the 'Eyeglasses+' symbol which will bring up a popup of Add datawatch items.  Simply enter the information of the different variables to be tracked. Up to four separate variables can be tracked simultaneously. In this example, we select that we wish to capture read and writes of the ledsOn and seconds variables. Once added, the user needs to select which watches data will be captured by checking the "Enable trace" boxes in the SWO Data window and then click the Green Arrow to set the program to start capture on Resume.Upon resuming the application, the right side of the window will show the access which are occurring. Note that this happens in real-time; the microcontroller is not stopped when accesses occur (i.e. the is separate from data breakpoints). Variable Read/Writes Displayed In Real Time The Multilink automatically measures the data communication rate on the SWO pin and adjusts to it automatically. This auto-detect sequence is done each time the processor is stopped in debug mode. If the running code changes the core frequency, a breakpoint should be set after the frequency change so the Multilink can adjust to the new SWO communications rate (which is a function of the core frequency). Real-Time Expressions This view is similar to the standard Eclipse "Expressions" window with the exception that its contents will update in real-time without the device being halted in debug mode. Just add the appropriate variables to the Real Time Expressions window and you will see them updating in real-time. Add Variables To Real-Time Expressions Windows
記事全体を表示
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio 3.1  Update 190708          What is new? S32 Design Studio Platform Package 3.1.2 S32 Design Studio Platform Tools Package 3.1.2 Updated S32 Debugger and S32 Flash tool to support S32S247TV NXP GCC for Arm Embedded Processor build 1620 S32S2xxTV Development Package 3.1.2 Integrated S32 SDK EAR 0.8.0 for S32S (Windows only), S32 Configuration Tool IVT and DCD tools S32V2xx Development Package 3.1.1 Integrated S32 SDK for S32V23x RTM 1.0.0 (Windows only) Vision Extension Package for S32V2xx 1.0.0 This is a cumulative update - it is applicable to S32 Design Studio 3.1 Installation instructions The update is available for online (via Eclipse Updater) or offline installation (direct download link)  online installation:  go to menu "Help" -> "S32DS Extensions and Updates" dialog  select from available items and click "Install/Update" button   offline installation:   go to S32 Design Studio product page -> Downloads section or use direct link to download the update archive zip file Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates" Add a new "Add.." S32DS Software Site and browse to select the downloaded update archive .zip file you downloaded in the previous step         Select from available items and click "Install/Update" button. This will start the update installation process.
記事全体を表示
S32DS contains many example projects from which you can learn how S32 can be used with the help of the Vision SDK to develop vision applications. The example projects contain generated and hand-written code, which utilize the Vision SDK to demonstrate a workflow using S32DS. In this document, the procedure for creating a project from one of the provided APEX2 examples through to execution on the EVB is detailed. This tutorial was made with S32DS Version 3.2 and VSDK Version 1.5.0. 1) Launch S32DS 2) Select 'File -> New -> S32DS Project from Example' 3) Select apex2_rotate_180 project 4) Click Finish 5) If not in the C/C++ Perspective, switch over by clicking on the icon showed below (Hovering over the correct icon should display 'C/C++'). The current perspective is displayed on the top bar. 6) Select apex2_rotate_180: A53 in the Project Explorer panel. Build the project using build config 'TEST_A53'. 7) Start a debug session using method as described in HOWTO: Create A53 Linux Project in S32DS for Vision, beginning at step 9. 😎 Click Resume  The program takes the input image  in_grey_256x256.png located in the /home/root/vsdk/data/common folder on the Linux BSP and rotates it 180 degrees The output image out.png is located inside the /home/root/vsdk folder 9) To see the output, access the device from the remote systems view. If this has not been set up, complete the steps described in HOWTO: Access Linux BSP file system on S32V234-EVB from S32DS for Vision.  10) Open both the input and output files from the remote systems view to verify that the program ran correctly.
記事全体を表示
Trace functionality is supported in the S32 Debugger for A53 cores on the S32V, RAM-target builds. With Trace, you can record some execution data on an application project and then review it to determine the actions and data surrounding an event of interest.   This document outlines the method to begin using Trace on the S32V234 device. We start by creating a project on which to execute the trace, however, you may start at step 2, if you are starting with an existing project. Please note, you will need to have debug configurations for the S32 Debugger setup for each core which you intend to capture trace. If you do not already have such configurations, you may copy them from another project and adapt them to the new project as shown in HOWTO: Add a new debugger configuration to an existing project.   Create a new application project, selecting the 'S32V234 Cortex-A53' processor and 'S32 Debugger' options.  There should now be 4 new application projects in your workspace. One for each A53 core. The first core of the S32V234, A53_0_0, is also a possible boot core, so this project will have build configurations for RAM and FLASH. The other A53 cores (0_1, 1_0, 1_1) will not. Build all projects for Debug_RAM and check that they build clean before proceeding. Open 'Debug Configurations...' and select the 'Debug_RAM' configuration for the first core (A53_0_0_Debug_RAM_S32Debug). Select the 'Debugger' tab. Enter the Debug Probe Connection settings as appropriate for your hardware setup. Now select the Launch Group configuration for 'Debug_RAM'. It is important to use the launch group to start the debug for each core, not just because it makes it easier, but also because it is necessary to allow for some delay after the first A53 core is started before bringing the other A53 cores from reset to debug state. Press Debug Once the code is loaded to the target and the debugger has started each core and executed to the first line within main(), then it is ready to perform any of the standard debug functions including Trace. Trace does not start automatically, it must be turned on before it will start logging data. To do this, it is necessary to add the view 'Trace Commander'. It can be found by either Window -> Show View -> Other, then search for 'Trace Commander' or enter 'Trace Commander' in the Quick Access field of the toolbar and select Trace Commander from the list. The Trace Commander view will show in the panel with the Console, Problems, etc. Double-click on the tab to enlarge it. Click on the configure button to change settings. Click on the Advanced Trace Generators configuration button For each core to be logged, set the associated ELF file. Select the core, click Add, then '...', and select the elf file for that core. Select Data Streams. Now it is possible to change how the data is captured. Since the buffers have finite memory, they can be set to collect data until full, or to overwrite. If set to One buffer, the data will be collected until the buffer is full, then data collection stops. It is useful to gather data when starting logging from a breakpoint to gather data during execution of a specific section of code. If set to Overwrite, the data collection continues and starts overwriting itself once the buffer is full. This is useful when trying to gather data prior to a breakpoint triggered by a condition.  To turn on the Trace logging, click on the 'Close this trace stream' button. The Trace is now enabled. To collect trace data, the cores must be executing. First double-click the Trace Commander tab to return to the normal Debug Perspective view. Then, one by one, select the main() thread on each core and press Resume to start them all. If collecting from a breakpoint, start the code first with Trace disabled, wait for the breakpoint to be reached, then enable the Trace. Allow the cores to run for a period of time to gather the data, then press Suspend on each one until they are all suspended. Look to the Trace Commander tab to see that the data icon is no longer shaded and click on it to upload the trace data. A new tab, Analysis Results, has appeared. Double-click this tab to see it better. Click on the arrow next to ETF 0 to show the data collected in the trace buffer. Notice there are 5 separate views on the captured data: Trace (raw data), Timeline, Code Coverage, Performance, and Call Tree. Trace - this is the fully decoded trace data log Timeline - displays the functions that are executed in the application and the number of cycles each function takes, separate tabs for each core Code Coverage - displays the summarized data of a function in a tabular form, separate tabs for each core Performance - displays the function performance data in the upper summary table and the call pair data for the selected function and it's calling function Call Tree - shows the call tree for identification of the depth of stack utilization See the S32DS Software Analysis Documentation for more details on settings, ways to store the logged data, etc.
記事全体を表示
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Power Architecture v2.1 Update 2          What is new? Integrated S32 SDK RTM-SR 3.0.1 (see the S32 SDK release notes) This is a cumulative update - it includes all the content of previous updates (Update 1 ) Installation instructions The update is available for online installation (via S32DS Extensions and Updates) or offline installation (direct download link)  installation:  go to menu "Help" -> "S32DS Extensions and Updates" dialog  select from available items and click "Install/Update" button offline installation:   go to S32 Design Studio for Power product page -> Downloads section or use direct link to download the update archive zip file  Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates", then click 'Go to Preferences' link And add a new site "Add..." repository and browse to select the downloaded update archive zip file you downloaded in the previous step Select the 'RSDK 1.3.0 for S32R274 and S32R372' package and click "Install/Update" button.   This will start the update installation process.
記事全体を表示
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio 3.2  Update 191219          What is new? S32 SDK for S32V234 RTM 1.0.1 package (Windows only) Installation instructions The update is available for online (via Eclipse Updater) or offline installation (direct download link)  online installation:  go to menu "Help" -> "S32DS Extensions and Updates" dialog  select from available items and click "Install/Update" button   offline installation:   go to S32 Design Studio product page -> Downloads section or use direct link to download the update archive zip file Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates" Add a new "Add.." S32DS Software Site and browse to select the downloaded update archive .zip file you downloaded in the previous step         Select from available items and click "Install/Update" button. This will start the update installation process.
記事全体を表示