S32 Design Studio Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

S32 Design Studio Knowledge Base

Discussions

Sort by:
The Port_Ci_Port_Ip_Example in S32K1 RTD 1.0.1 lacks GPIO interrupt function. Port_Ci is part of Icu(Input Capture Unit), the main function of the example should have been: use the Icu and Dio drivers to toggle a LED on a push button. But it doesn't. So this document will show the step-by-step process to add 'GPIO interrupt' function in Port_Ci_Port_Ip_Example using the S32K1xx RTD and the S32 Configuration Tools. This example is for the S32K144EVB-Q100 EVB, connected to a PC through USB (OpenSDA) connection. Preparation Setup the software tools Install S32 Design Studio for S32 Platform Install the S32K1xx development package and the S32K1 RTD AUTOSAR 4.4. Both of these are required for the S32 Configuration Tools.   Launch S32 Design Studio for S32 Platform   Procedure 1. Import Port_Ci_Port_Ip_Example_S32K144 example File->New->S32DS Project from Example Although the main function mentions the example use the Icu and Dio drivers to toggle a LED on a push button, it actually just waits in a loop for a delay to blink the LED. Not sure why the implementation of GPIO interrupts(Port_Ci_Icu) is missing.   2. Add push button and LED in Pins tool Add the pins for user buttons (SW2 PTC12 and SW3 PTC13) and LEDRGB_RED (RGB_RED PTD15) according to the S32K144EVB schematic RB1.   3. Add IntCtrl_Ip component Go to Peripherals tool. Here we can see that the ‘Gpio_Dio’ and ‘Port’ components are already added. From the Components view, click on ‘Add a new configuration component…’ button from the Drivers category. This will bring up a list of non-AUTOSAR components. Locate and then select the ‘IntCtrl_Ip’ component from the list and click OK. Keep the default setting after add ‘IntCtrl_Ip’ component, we will call IntCtrl_Ip_InstallHandler and IntCtrl_Ip_EnableIrq those two APIs to install and enable the PORTC IRQ separately. (Here we didn't change the settings of ‘IntCtrl_Ip’, nor use IntCtrl_Ip_Init and IntCtrl_Ip_ConfigIrqRouting API to enable interrupts and install handlers in IntCtrl_Ip.)   4. Add Port_Ci_Icu component Locate and then select the ‘Port_Ci_Icu’ component from the list and click OK. Follow the steps below to configure it. Selecting PORT_2 for ICU Peripheral ISR Name and select IcuIsrEnable at step 6 actually refers to PORT C used in this example. In order to use the GPIO interrupts of the onboard SW2 (PTC12) and SW3 (PTC13) buttons, you need to add one more channel in step 9, and select Port CI Hardware Module and Hardware channel in steps 8 and 10. The button circuit has a pull-down resistor, and it will be pulled high after being pressed, so the rising edge trigger is selected. In step 14, add IcuSignalNotification for PTC12 and PTC13 respectively, that is, the notification after the corresponding GPIO pin input captures the rising edge (there is no need to clear the interrupt flag here, the RTD driver has already done it).   5. Include the headers for the drivers used in the application   6. Add Port_Ci_Icu drivers Port_Ci_Icu_Ip_Init initialize the rising edge of PTC12 and PTC13 set by the S32 Configuration Tools. Port_Ci_Icu_Ip_EnableNotification enable the Callback of PTC12 and PTC13 respectively, and we toggle the blue and red LEDs in the corresponding Callback.   7. Add IntCtrl drivers IntCtrl_Ip_InstallHandler installs the PORT_CI_ICU_IP_C_EXT_IRQ_ISR interrupt handler generated by the S32 Configuration Tools.
View full article
S32 Design Studio is free-of-charge software that just requires to be activated. The activation process is incorporated into the S32DS installer. Before you proceed to the installation you always need to get an activation code. The activation code is typically sent automatically to your email registered on nxp.com account when you proceed to downloading of S32DS installer. The example of notification email is below:     There are two types of activation you can choose from - online and offline. If your machine is connected to the Internet then in most cases you just select online activation and S32DS gets activated automatically without any additional steps required.   Anyway if the computer that you are installing S32 Design Studio into has no internet access or there are some firewall/antivirus/infrastructure restrictions that voids the online activation you can select offline activation type instead. This document describes the offline activation process step-by-step:   Step 1. S32 Design studio for Arm/Power/Vision installer pops up the "S32DS Activation" dialog  where you first enter your activation ID and select activation type as offline Step 2. The Offline process will require to save an activation request file -"request.xml". Please save this file into a local folder or an USB drive. Step 3. Software will then require an activation response. To get this file move to a station with the Internet connection. We will get back here once we have activation response file ready. Step 4. Look for the Internet connection and take the "request.xml" file with you. Go to https://www.nxp.com/security/login  click on Apps and Services >  "Software Licensing and Support > Click on View Accounts Step 5. In product information page look for the "Offline Activation" option on the left menu. Step 6. Click on "Choose File" and select the "request.xml" file generated in Step 2.  Press "Process" button to get the "activation.xml" file. This file will be downloaded.   Step 7. Save "activation.xml" file and take it to the original offline station, go back to the Activation response dialog described by Step 3. Step 8.  Load file and installation will be finished. S32 design studio will be activated with your activation ID.
View full article
KEA64 RAppID Bootloader rbf file for KEA64    MPC57xx RAppID Bootloader rbf file for MPC5744P   RAppID Bootloader rbf file for MPC5746R  RAppID Bootloader rbf file for MPC5777C  RAppID Bootloader rbf file for MPC5777C - BookE (non-VLE)    S32Kxx RAppID Bootloader rbf file for S32K116 RAppID Bootloader rbf file for S32K144W  
View full article
This release of S32K116 Bootloader was compiled and tested with the following development tools: S32DS Rappid Bootloader  Tested on the hardware: Development Board S32K116EVB – Q048 Processor  PS32K116MLF- Q048   Supported communication: UART0 (Pin PTB0-PTB1) CAN0 (Pin PTE4-PTE5)
View full article
This release of S32K144W Bootloader was compiled and tested with the following development tools: S32DS Rappid Bootloader  Tested on the hardware: Development Board S32K14XCVD – 0064 Processor  PS32K144WAWLH 0P64A – CTZW2009B   Supported communication: UART1 (Speed:115200b/s): J16 on the S32K-MB Motherboard. CAN_A (Speed: 500Kb/s): J72 on the S32K-MB Motherboard.
View full article
After installation of S32 Flash Tool 2.1, try to start the GUI and get below error : We noticed this behavior on some PCs – either OS setup or security rules do not allow the installer to create a link to the JRE (Java 11) that is installed with Flash Tool. A quick fix is to set the path manually by adding the following lines to “S32FlashTool_2.1\GUI\ s32ft.ini”
View full article
Hi,     Hope this will be helpful and useful for you. Cheers! Oliver
View full article
This document shows the step-by-step process to create a simple 'Blinking_LED' application using the S32K1xx RTD and the S32 Configuration Tools. This example is for the S32K144EVB-Q100 EVB, connected to a PC through USB (OpenSDA) connection. Preparation Setup the software tools Install S32 Design Studio for S32 Platform Install the S32K1xx development package and the S32K1 RTD AUTOSAR 4.4. Both of these are required for the S32 Configuration Tools. Launch S32 Design Studio for S32 Platform Procedure New S32DS Project OR Provide a name for the project, for example 'Blinking_LED_RTD_AUTOSAR'. The name must be entered with no space characters. Expand Family S32K1xx, Select S32K144 Under Toolchain, select NXP GCC 9.2 Click Next Click '…' button next to SDKs Check box next to PlatformSDK_S32K1_2022_02_S32K144_M4F. Click OK Click Finish. Wait for project generation wizard to complete, then expand the project within the Project Explorer view to show the contents. To control the LED on the board, some configuration needs to be performed within the Pins Tool. There are several ways to do this. One simple way by double-click on the MEX file. By default, the Pins tool is then presented. Since the AUTOSAR drivers will be used, click the switch to disable this tool from the Overview tab. Once the Pins tool is disabled, the Config Tools Overview menu appears. Select the Peripherals tool. After the Peripherals tool opens, look to the Components tab. By default, new projects are created with the osif and Port_Ip drivers. Leave the osif driver, but remove the Port_Ip driver.  This will be replaced by AUTOSAR version. Right-click on the Port_Ip box and select Remove. Add the AUTOSAR version of the Port driver. Click on the ‘+’ next to the MCAL box. This will bring up a list of AUTOSAR components. Locate then select ‘Port’ and click OK. Do not worry about the warning message. It is only indicating that the driver is not already part of the current project. The associated driver package will be added automatically. There are a couple of other drivers needed. Click the ‘+’ next to MCAL again and this time select ‘Dio’. Once more, click the ‘+’ and select ‘Mcu’. Select the ‘Dio’ component. Now select the DioConfig tab. Under DioPort_0, change the Dio Port Id to 3. Click ‘+’ next to DioChannel to add a channel. Select the ‘Port’ component. Now select the PortConfigSet tabl. Under PortPin, change the setting for PortPin_0, PortPin Pcr from 0 to 96. Then change the setting PortPin Direction from PORT_PIN_IN to PORT_PIN_OUT. Change the setting PortPin Level Value from PORT_PIN_LEVEL_HIGH to PORT_PIN_LEVEL_LOW. Under UnTouchedPortPin, click ‘+’ and add the following 5 PortPin Pcr numbers: 4, 5, 10, 68, 69 Now select the PortGeneral tab, uncheck ‘Port Ci Port Ip Development Error Detect’. Now the device configurations are complete and the RTD configuration code can be generated. Click ‘Update Code’ from the menu bar. To control the output pin which was just configured, some application code will need to be written. Return to the ‘C/C++’ perspective. If not already open, in the project window click the ‘>’ next to the ‘src’ folder to show the contents, then double click ‘main.c’ file to open it. This is where the application code will be added. Before anything else is done, initialize the mcu driver, the clock tree, and apply PLL as system clock. Insert the following line into main, after the comment 'Write your code here': Mcu_Init(&Mcu_Config_BOARD_InitPeripherals); Mcu_InitClock(McuClockSettingConfig_0); while ( MCU_PLL_LOCKED != Mcu_GetPllStatus() )     {         /* Busy wait until the System PLL is locked */     } Mcu_DistributePllClock(); Mcu_SetMode(McuModeSettingConf_0); Before the pin can be controlled, it needs to be initialized using the configuration information that was generated from the S32 Configuration tools. Initialize all pins using the Port driver by adding the following line: Port_Init(NULL_PTR); Turn the pin on and off with some delays in-between to cause the LED to blink. Make the delays long enough to be perceptible. Within the provided for loop, add the following lines: Dio_WriteChannel(DioConf_DioChannel_DioChannel_0, STD_HIGH); TestDelay(2000000); Dio_WriteChannel(DioConf_DioChannel_DioChannel_0, STD_LOW); TestDelay(2000000); Before the 'main' function, add a delay function as follows: voidTestDelay(uint32 delay); voidTestDelay(uint32 delay) {     staticvolatile uint32 DelayTimer = 0;     while(DelayTimer<delay)     {         DelayTimer++;     }     DelayTimer=0; } Update the includes lines at the top of the main.c file to include the headers for the drivers used in the application: Remove #include "Mcal.h" Add #include "Mcu.h" #include "Port.h" #include "Dio.h" Build 'Blinking_LED_RTD_AUTOSAR'. Select the project name in 'C/C++ Projects' view and then press 'Build'. After the build completes, check that there are no errors. Open Debug Configurations and select 'Blinking_LED_RTD_AUTOSAR_Debug_FLASH'. Make sure to select the configuration which matches the build type performed, otherwise it may report an error if the build output doesn’t exist. Confirm the EVB is connected to the PC via USB cable, then check the Debugger tab settings and ensure that 'OpenSDA Embedded Debug - USB Port' is selected for interface. Click Debug To see the LED blink, click ‘Resume'
View full article
This document shows the step-by-step process to create a simple 'Blinking_LED' application using the S32K1xx RTD and the S32 Configuration Tools. This example is for the S32K144EVB-Q100 EVB, connected to a PC through USB (OpenSDA) connection.   Preparation Setup the software tools Install S32 Design Studio for S32 Platform Install the S32K1xx development package and the S32K1 RTD AUTOSAR 4.4. Both of these are required for the S32 Configuration Tools. Launch S32 Design Studio for S32 Platform Procedure New S32DS Project OR  Provide a name for the project, for example 'Blinking_LED_RTD_No_AUTOSAR'. The name must be entered with no space characters. Expand Family S32K1xx, Select S32K144 Under Toolchain, select NXP GCC 9.2 Click Next Click '…' button next to SDKs Check box next to PlatformSDK_S32K1_2022_02_S32K144_M4F. Click OK Click Finish. Wait for project generation wizard to complete, then expand the project within the Project Explorer view to show the contents. To control the LED on the board, some configuration needs to be performed within the Pins Tool. There are several ways to do this. One simple way by double-click on the MEX file. By default, the Pins tool is then presented. For the Blinking LED example, one pin must be configured as output. The S32K144 EVB has an RGB LED for which each color is connect to a separate pin on the S32K144 device. For the blue LED the desired pin is PTD0. From the Peripheral Signals tab in the view to the upper left in the standard Pins tool perspective layout, locate PORTD, then PTD0 and check the box next to it. The Direction required! menu will appear. Select Output then OK. In Routing Details view, notice a new line has been added and highlighted in yellow. Add ‘LED’ to the Label and Identifier columns for the PORTD 0 pin. Notice the changes which appear in the following views: Peripherals Signals Package Code Preview Go to Peripherals tool and add Gpio_Dio. Click on the Peripherals Tool icon from the Eclipse Perspective navigation bar. From the Components view, click on ‘Add a new configuration component…’ button from the Drivers category. This will bring up a list of non-AUTOSAR components. Locate and then select the ‘Gpio_Dio’ component from the list and click OK. Do not worry about the warning message. It is only indicating that the driver is not already part of the current project. The associated driver package will be added automatically. The Gpio_Dio driver requires no further configuration. Click Save to store all changes to the .MEX file. Now the device configurations are complete and the RTD configuration code can be generated. Click ‘Update Code’ from the menu bar. To control the output pin which was just configured, some application code will need to be written. Return to the ‘C/C++’ perspective. If not already open, in the project window click the ‘>’ next to the ‘src’ folder to show the contents, then double click ‘main.c’ file to open it. This is where the application code will be added. Before anything else is done, initialize the clock driver. Insert the following line into main, after the comment 'Write your code here': Clock_Ip_InitClock(Clock_Ip_aClockConfig); Before the pin can be controlled, it needs to be initialized using the configuration information that was generated from the S32 Configuration tools. Initialize all pins using the Port driver by adding the following line: Port_Ci_Port_Ip_Init(NUM_OF_CONFIGURED_PINS0, g_pin_mux_InitConfigArr0); Turn the pin on and off with some delays in-between to cause the LED to blink. Make the delays long enough to be perceptible. Within the provided for loop, add the following lines: Gpio_Dio_Ip_WritePin(LED_PORT, LED_PIN, 1U); delay(720000); Gpio_Dio_Ip_WritePin(LED_PORT, LED_PIN, 0U); delay(720000); Before the 'main' function, add a delay function as follows: voiddelay(volatileint cycles) {      /* Delay function - do nothing for a number of cycles */      while(cycles--); } Update the includes lines at the top of the main.c file to include the headers for the drivers used in the application: Remove #include "Mcal.h" Add #include "Port_Ci_Port_Ip.h" #include "Gpio_Dio_Ip.h" #include "Clock_Ip.h" Build 'Blinking_LED_RTD_No_AUTOSAR'. Select the project name in 'C/C++ Projects' view and then press 'Build'. After the build completes, check that there are no errors. Open Debug Configurations and select 'Blinking_LED_RTD_No_AUTOSAR_Debug_FLASH'. Make sure to select the configuration which matches the build type performed, otherwise it may report an error if the build output doesn’t exist. Confirm the EVB is connected to the PC via USB cable, then check the Debugger tab settings and ensure that 'OpenSDA Embedded Debug - USB Port' is selected for interface. Click Debug To see the LED blink, click ‘Resume'
View full article
A vulnerability in the Apache Log4j was identified in the articles posted: CVE-2021-44228 and CVE-2021-45046 NXP has performed an analysis of this vulnerability with regard to the S32 Design Studio. Our conclusion is that the S32 Design Studio (all versions) is NOT IMPACTED. Although the Log4j is used by S32 Design Studio, the version used is 1.x and the vulnerability was introduced in version 2.12 with a combination of Java versions 9/10/11 where LDAP policy is enabled by default (CVE-2021-45046). The S32Design Studio installation environment is independent and based on Java 8 version, which is common for all tools running under S32Design Studio IDE. In addition, the S32 Design Studio does not use JMSAppender, so it is not affected by the identified log4j 1.x usage concern (CVE-2021-44228). When we determine an upgrade of the Log4j and/or Java version is required for a future release of S32 Design Studio, then this vulnerability will be addressed. Please see the attached presentation for details on other tools owned by NXP Automotive Processing Software Tools.
View full article
S32 Design Studio (S32DS) for ARM supports IAR Plugin, and the user can use IAR specific features in S32DS with IAR toolchain for ARM. This document describes the way to convert S32DS project to IAR EW based project using project exporting wizard in S32DS. This guidance is based on the NXP S32K144 microcontroller, and compatible with S32K14x / S32K11x family.   The version of each IDE which is used for this document is as follows: S32 Design Studio for Arm 2018.R1 IAR Embedded Workbench for ARM 8.32.1.18631     1. Install IAR Plugin using IAR Embedded Workbench plugin manager on S32DS Help - Install New Software   Put "IAR Embedded Workbench for Eclipse " as the repository for new installation of software.     Help - IAR Embedded Workbench Plugin Manager     Install IAR Plugin which is matched with your IAR version.         2. Create S32DS Project File - New - S32DS Application Project   The tool chain should be chosen as IAR Toolchain. Be noted that the IAR 7.x toolchain is different from the IAR 8.x.   The project is created as follows.     3. Export S32DS Application Project File - Export   Choose S32 Design Studio - Project Info Export Wizard   Now "ProjectInfo.xml" was created. "ProjectInfo.xml" should be used for creating a project in the IAR EW.   4. Create IAR EW Project The way to create IAR project as described below. The snapshots are based on IAR EW 8.32.1. Details may vary.   5. Connect the Project Use the menu - Project - Add Project Connection, and choose "Freescale Processor Expert".   Select the "ProjectInfo.xml" file which was created at step #3.    Now, the project which had been created in IAR was connected to the S32DS project.   The created IAR project should be modified if the user wants to use the project with S32DS SDK to build and debug under IAR EW environment as follows.   1. Modify the Linker configuration and remove ProjectInfo.xml Remove "ProjectInfo.xml"   Linker configuration from the project Options   Even though the user modified the linker configuration, a definition in IAR EW  for "device_registers.h" from SDK will cause build error when trying building the project.   This error will be eliminated by inserting Chip specific definition into IAR project. If you take a look into the "device_register.h", you can find the definition as follows.   2. Define symbols  Right mouse click on the Project name - Options   Write the symbols referred from "device_register.h". The symbols may vary (e.g., CPU_S32K146, CPU_S32K142, ...).   3. Build and Debugger configuration Options - Debugger   I used PE micro's OpenSDA on S32K144EVB for this document. After choosing debugger and clicking Download and Debug (Ctrl+D), you can see the P&E Configuration Manager as follows. Just choose appropriate configuration, and select the correct part number of S32K by clicking Select New Device.   Finally, you can download and debug the converted IAR EW project with S32DS SDK.
View full article
In embedded systems development, attention to memory utilization is universal. In S32 Design Studio, this information can easily be provided at the end of a successful build by invoking a linker option. Right-click on the project name in the Project Explorer panel and select 'Properties' from the menu. Navigate to the C/C++ Build -> Settings ->Standard S32DS C Linker -> Miscellaneous menu. From the Other options section, click Add. In the 'Enter Value' pop-up menu, enter: -print-memory-usage Click OK, then Apply and Close. Now build the project and see the memory usage information displayed in the Console window.
View full article
Migrating an SDK project for S32K1xx devices between SDK v4.0.1 and v4.0.2 is not as simple as attach and detaching the SDKs. It is complicated by the fact that SDK v4.0.1 is supported by only S32DS v3.3 and SDK v4.0.2 is supported by only S32DS v3.4. So this means both SDKs will not be present at the same time in one version of S32DS. In addition, the method for attaching the SDKs changed between SDK v4.0.1 and v4.0.2. In v4.0.1, the SDKs were added to the S32DS project via a link. In v4.0.2, the SDK files are added to the S32DS project by copying the actual files into the project. To overcome this, it is necessary to perform some manual operations. The steps required are detailed in this document, along with the necessary steps to adapt the .mex file containing the S32 Configuration Tools settings. Due to differences in projects based on the method of creation, there are 3 scenarios to be covered here which are assumed to be the most common: Project was created by 'New Project from Example' wizard and one of the SDK example projects was selected. Project was created by 'New Application Project' wizard and the SDK was selected for attachment within the wizard. Project was existing one and SDK was attached using the SDK management tool. Due to enough similarities between the projects, the last two will be covered as one scenario, under the heading 'New Application Project'. The first one will be covered under the heading 'New Project from Example'. Prerequisites Install S32 Design Studio IDE 3.4 Install the S32K1xx development package and S32SDK S32K1XX RTM 4.0.2 package Procedure New Project from Example For this demonstration, the S32K1xx SDK v4.0.1 example project 'flexio_i2s_master_s32k144' will be used. Open or create the project within S32DS 3.3 Expand project directory in Project Explorer and look for .mex file If no .mex file is present, then right click on project name and select 'S32 Configuration Tool -> Open Pins' (could select any tool within S32 Configuration Tool). Even though the .mex file contains the settings for S32 Configuration Tools, the same settings are also preserved in YAML code placed into the headers of each of the .c files generated by the S32 Configuration Tools into the 'board' folder in the project. By opening the S32 Configuration Tools, it detects there is no .mex file and scans the generated files for the YAML code. If YAML code is found, then a new .mex file is produced and placed in the project. The perspective is changed to the Pins Tool, nothing more needs to be done, .mex file has been created from the YAML code. If no YAML code had been found, then the user would be presented with a menu to select target device and SDK. Switch back to C/C++ perspective to confirm. Open S32DS 3.4 and import the project. It is important to note that separate workspaces should be used for S32DS 3.3 and S32DS 3.4. The project should be imported into the S32DS 3.4 workspace so the checkbox 'Copy projects into workspace' should be ticked. Right-click on Project -> Properties -> C/C++ Build -> Settings -> Standard S32DS C Compiler -> Includes, then delete all paths which contain 'S32_SDK_PATH' Repeat for Standard S32DS Assembler -> General Apply and Close The files in the SDK folder were included in the project as links and not actual files, and since the SDK 4.0.1 is not installed to S32DS 3.4, the links point to non-existing files. This means the Attach function in the SDK manager will not be able to replace them with the corresponding files from SDK 4.0.2 because it doesn't know how to replace files which don't exist. From Project Explorer, delete folder ' SDK' from the project. Now the project is ready to use the SDK manager to detach the old SDK and attach the new SDK. In Project Explorer, right-click on Project -> SDKs. When the SDK manager launches, it scans the project for any attached SDKs. In the case of this example, an SDK is detected as attached, but since it does not match any installed SDKs, a message appears asking to detach SDK 4.0.1. Since this is a desired action, click OK. With SDK 4.0.1 already detached, select SDK 4.0.2, click 'Attach/Detach...' Click 'Select All' to attach the SDK to all build configurations. This sets up the include paths, and linker paths for the SDK for each build configuration. If desired, the build configurations could be selected individually. Click OK to complete the selections. To apply the changes and exit the SDK manager, click 'Apply and Close'. The SDK Manager detects that some of the files from the new SDK are replacing existing files in the project. By default, all conflicting files are set to replace the existing file. If desired, individual files can be deselected. Please note, with the checkbox for 'Backup project files' ticked, any files replaced will be preserved in a backup folder for future recovery, comparison, etc. In general, it may be wise to allow the file to be replaced and later merge with the customizations in the backup folder. For this example, no modifications were made, so default settings are kept. Click OK to complete the process. The new SDK is attached and the new SDK folder can be identified. The .mex file contains the settings for the S32 Configuration Tools, however, it is still set for the SDK 4.0.1. It must be manually updated so the S32 Configuration Tools can be used to generate the new code for the 'board' folder. Right-click on .mex file and select 'Open With -> Text Editor'. All that is required is to modify the mcu_data section containing the SDK name: 's32sdk_s32k1xx_rtm_401' -> 's32sdk_s32k1xx_rtm_402' Now save the change. Next, the files in the 'board' folder must be regenerated from the S32 Configuration Tools to reflect the new SDK. Right-click on the .mex file and select 'Open With -> S32 Configuration Tools'. A warning message appears indicating that it has detected the mex file was created in an older version of the tool and that once the mex file is saved in the current tool, it may no longer open in an older version of the tool. This is expected. Click OK. Notice the error symbol. Mouse-over to see the details. It is an error with Peripherals tool. Select Peripherals tool. The issue is with edma_config_1, because it is highlighted red. Click on it to see the interface. The interface changed from the previous version to allow for multiple configurations where previously it supported only one. To resolve the error a new configuration must be added to the list. Click on the '+' as shown to add the new configuration. This particular error will only appear for projects which include the EDMA module. The Problem Indicator is now green, this means there are no warnings or errors. It is now time to generate the code, click 'Update Code' A menu appears identifying new and/or updated files. If desired, selecting 'change' on a row will open a comparison tool showing the changes between the existing and the new versions of the associated file. Click OK to proceed. Switch to C/C++ perspective Errors on project are now gone. If the project successfully built before the conversion, then build again to confirm everything was converted properly.   New Application Project For this demonstration, a new project will be created in S32DS 3.3 using the New Application Project wizard and the S32K1xx SDK 4.0.1 will be selected during project creation. Import the project into S32DS 3.4 Use the SDK Manager to detach the old SDK and then attach the new SDK. In Project Explorer, right-click on Project -> SDKs. When the SDK manager launches, it scans the project for any attached SDKs. In the case of this example, an SDK is detected as attached, but since it does not match any installed SDKs, a message appears asking to detach SDK 4.0.1. Since this is a desired action, click OK With SDK 4.0.1 already detached, select SDK 4.0.2, click 'Attach/Detach...' Click 'Select All' to attach the SDK to all build configurations. This sets up the include paths, and linker paths for the SDK for each build configuration. If desired, the build configurations could be selected individually. Click OK to complete the selections. To apply the changes and exit the SDK manager, click 'Apply and Close'. The SDK Manager detects that some of the files from the new SDK are replacing existing files in the project. By default, all conflicting files are set to replace the existing file. If desired, individual files can be deselected. Please note, with the checkbox for 'Backup project files' ticked, any files replaced will be preserved in a backup folder for future recovery, comparison, etc. In general, it may be wise to allow the file to be replaced and later merge with the customizations in the backup folder. For this example, no modifications were made, so default settings are kept. Click OK to complete the process. The .mex file contains the settings for the S32 Configuration Tools, however, it is still set for the SDK 4.0.1. It must be manually updated so the S32 Configuration Tools can be used to generate the new code for the 'board' folder. Right-click on .mex file and select 'Open With -> Text Editor'. All that is required is to modify the mcu_data section containing the SDK name: 's32sdk_s32k1xx_rtm_401' -> 's32sdk_s32k1xx_rtm_402' Now save the change. Next, the files in the 'board' folder must be regenerated from the S32 Configuration Tools to reflect the new SDK. Right-click on the .mex file and select 'Open With -> S32 Configuration Tools'. A warning message appears indicating that it has detected the mex file was created in an older version of the tool and that once the mex file is saved in the current tool, it may no longer open in an older version of the tool. This is expected. Click OK. Check for any errors or warnings by looking for the yield sign. It will change color based on the conditions: Green = No Problems, Yellow = Warnings, Red = Errors. Mouse-over the icon for more information on the location of the error. Aside from resolving warnings and errors, there should be no changes required as the settings have been preserved from the original project. In this example, there are no warnings or errors, so it is possible to proceed with updating the generated files. Click 'Update Code' A menu appears identifying new and/or updated files. If desired, selecting 'change' on a row will open a comparison tool showing the changes between the existing and the new versions of the associated file. Click OK to proceed. Change back to C/C++ perspective. Errors on project are now gone. If the project successfully built before the conversion, then build again to confirm everything was converted properly.
View full article
      Product Release Announcement Automotive Processing S32 Design Studio v3.4 Update 1 for S32G2         Austin, Texas, USA Apr 30, 2021 The Automotive Processing' Software Development Tools Engineering Team at NXP Semiconductors is pleased to announce the release of the  S32 Design Studio v3.4 Update 1 for S32G2 Here are some of major features:​ S32 Configuration Tool framework 1.4 with the Pin, Clock, Peripheral, DCD, IVT, DDR and QuadSPI Configuration tools (SDK/RTD packages required to get support for particular device)  Updates S32 Debugger  Updated S32 Flash Tool Update is available for online install on update site and for download on flexera  S32G2 support: (SW32G2_S32DS_3.4.1_D2104.zip) updated version of header files in accordance with RM Rev 3 Update is available for online install on update site and for download on flexera. Note that Update 1 (S32DS Platform Package version 3.4.1 and S32DS Platform Tools package version 3.4.1) is required for the S32G2 support package. It is included into archive for download. Installation instructions The update is available for online (via Eclipse Updater) or offline installation   online installation:  go to menu "Help" -> "S32DS Extensions and Updates" dialog  select from available items and click "Install/Update" button   offline installation:   go to S32 Design Studio product download page: S32 Design Studio for S32 Platform -> Downloads, click 'Download' button next to S32 Design Studio 3.4 -- Windows/Linux from the Product Information page, select S32 Design Studio 3.4 Update 1, support for S32G2 family then select 'SW32G2_S32DS_3.4.1_D2104.zip' to download the update archive zip file Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates" Add the downloaded archive as a software site. Click "Add Software Site" and browse to select the archive file downloaded in the prior step        Select from available items and click "Install/Update" button. This will start the update installation process.   Technical Support please use public community for questions https://community.nxp.com/community/s32/s32ds  
View full article
S32DS ARM2.2 K144xx fPic Example description. Provided example demonstrate possibility of creation Position Independent Code using  standard  S32DS ARM 2.2 tools.  Example code blink RGB LED using svc interrupt handler. Output  picExample.bin should be loaded via restore gdb command only into existing K144 RAM area(0x1fff8000 – 20007000 for EVB board), then pc set to startup value.(see picExample_Debug_RAM_PNE_fpic  Debug configuration). Note: restore gdb command needs absolute path to *.bin file. Example is based on standard K144 application. Changes: -fPIC option should be set(Project->Properties->C/C++ Build ->Settings->Standard S32DS Compiler->Miscalenous->Position Independent Code). Create flash image checkbox should bes set.( Project->Properties->Cross Settings -> Create flash image). Flash Image output file format  should be set to Raw binary(Project->Properties->C/C++ Build ->Settings->Standard S32DS Create Flash Image ) Add -nostdlib linker option(Project->Properties->C/C++ Build ->Settings->Standard S32DS Linker->General ->No startup or default libs). Existing S was modified(stack pointer was corrected, bl instead of blx for function calls was used. Standard linker script was modified(see example) Interrupts vector table was moved to data area. Due to this vector addresses are corrected on startup by FixGot routine(see SystemInit()c) Common RAM area was declared starting from 0. __got_start and __got_end were declared in Global Offset Table   For an in-depth analysis and step-by-step guide on the topic of implementing position-independent code, please see the following blog at mcuoneclipse.com: Position-Independent Code With GCC for arm Cortex M 
View full article
Hi,     With S32DS and multilink, you can try the follow steps to dump flash or RAM data into file.  1. Attach    (https://community.nxp.com/t5/S32-Design-Studio/How-attach-to-running-program/m-p/1030375) 2. Export the data which you need    (https://community.nxp.com/t5/S32-Design-Studio/S32DS-how-to-properly-dump-RAM-in-debug-session/m-p/649974#M1089) Cheers! Oliver
View full article