恩智浦设计知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

NXP Designs Knowledge Base

讨论

排序依据:
Smart Sensor Demo Kit Highlighted Features Multi-protocol bi-directional data stream support from/to any IP-enabled remote system Data parsing and abstraction mapping layer for normalizing data from heterogeneous devices Drag-and-drop business and analytics processing logic (akin to using Visio and Excel fused together) Report and web page builder that assembles Table reports (including data for exposure to the secure API) Time-series graphs Pie, line, spark and other chart types Uploaded visuals such as photos, CAD/CAM drawings, diagrams, schematics, etc. Full location-based services incorporating Google Maps, NOKIA here, CloudMade and Open Street Maps Business Forms assembly system so you can deploy workflow for Firmware push Remote command and control (on/off, settings, reboot, etc.) Device inventory tracking and control Asset management Financial transactions from machines Many other possibilities   Description The SeeControl Cloud Service allows embedded systems engineers to quickly assemble scalable 3-tier web applications that collect, analyze and display systems data. The service is drag and drop so you don't have to script or code to create a web app. The Service natively supports the following IoT/M2M communication protocols: UDP TCP MQTT HTTP MODBUS CoAP There is additional support for vendor-specific communication stacks such as GE, CalAmp, Sierra Wireless, etc. Customers can also create their own device adapter using protocol and language of choice. You can stream data to these data adapters at http://com2.seecontrol.com. We will give you a specific port range for each protocol/device type. You can also send your data through a device API. Guidance is here. Once the data has been received by our system. You will use a data abstraction tool to define fields that are in the packets you are sending. For example, if you send a variable field called tmp_123 from a temperature sensor you will tell the SeeControl service that tmp_123 is a a number and specifically a unit of measure called "Temperature" and then select whether Celsius or Fahrenheit. Once that is done, you can use the rest of the system to build a scalable web app, typically in 1-2 days depending on how complex our solution needs to be. To see the full range of interfaces available for visualizaing IoT data and managing devices/process, you can log in to: http://cloudx.seecontrol.com user:                fslcommunity1 password:        fslcomms1 This account only shows the visualization output, not the tools used to collect and process data. To try out the whole toolset, please acquire a full demo kit. The demo kit includes a cloud account that you can connect to the sample connectivity and sensor items listed below (or any hardware/system you would like to try out). Full Bill of Materials See bottom of this page for BOM Table Basic Data (To be filled out by FSL) Demo Number: Current Version: Current Demo Reproducibility: Intended to be Modified By: Current Demo Operation: BOM: See bottom of this page Demo Video   Freescale IoT Cloud Demo Kit     System Block Diagram   Hardware Kit & Data Flow Diagram     IoT Physical Components Gateways SOC's: i.MX6 Dual Boards/Modules: Utilite Standard Box Software: https://community.nxp.com/docs/DOC-103268 Utilite Linux BSP Connectivity Software: USB Local TCP/IP over Ethernet HTTP to Cloud Sensors End User Products: Commercial Temperature and Electric Current Sensors (See below for list) Cloud Infrastructure/Services https://community.nxp.com/docs/DOC-103268 IoT System Capabilities Device Management Add Device Remove Device Device Inventory Management Check Online/Offline Status View real time and historical messages Communications/Interworking HTTP (other protocols such as CoAP, MQTT, etc. optional) Security HTTPs (secured HTTP) Middleware / Analytics / Data SeeControl Cloud Communications & Data Mapping Tool SeeControl No Coding Analytic Engine SeeControl No Coding Visualizer Note: For additional Products/Components used in this demo see bottom of this page. IoT Product Type Product/Component Vendor Research or Procure This Product/Component Gateway NXP Utilite Standard Box NXP Contact NXP IoT Center Temperature Sensor Lascar USB Temperature Logger MicroDAQ Visit MicroDAQ Website Electrical Meter eGauge eg3000 Electric Meter eGauge Visit eGauge Website In online or phone order, please ask for SeeControl Turnkey Part Number Current Transformer(s) eGauge Current Transformers eGauge Visit eGauge Website Connectivity / Messaging Middleware SeeControl No Coding IoT Cloud Service    SeeControl Get a live demo Analytics SeeControl No Coding IoT Cloud Service SeeControl Get a live demo Data Visualization SeeControl No Coding IoT Cloud Service SeeControl Get a live demo
查看全文
Demo Owner: Neil Krohn NXP's MM9Z1_638 is a fully integrated battery monitoring device for mission critical automotive and industrial applications. An S12Z microcontroller, SMARTMOS analog control IC, CAN protocol module and LIN interface for communications functions are embedded into this single-package soltuion. The MM9Z1_^38 battery sensor measures key battery parameters for monitoring state of health, state of charge and state of function for early batteries as well as emerging battery applications, such as 14 V stacked cell Li-Ion, high voltage junction boxes, and 24 V truck batteries.     Features The MM9Z1_638 is a fully integrated battery monitoring device for mission critical automotive and industrial applications. An S12Z microcontroller, SMARTMOS analog control IC, CAN protocol module and LIN interface for communications functions are embedded into this single-package solution. The MM9Z1_38 battery sensor measures key battery parameters for monitoring state of health, state of charge and state of function for early batteries as well as emerging battery applications, such as 14 V stacked cell Li-Ion, high voltage junction boxes, and 24 V truck batteries. Featured NXP Products MM9Z1_638: Battery Sensor with CAN and LIN Product Features: Wide range battery current measurement; on-chip temperature measurement Four battery voltage measurements with internal resistor dividers, and up to five direct voltage measurements for use with an external resistor divider Measurement synchronization between voltage channels and current channels Five external temperature sensor inputs with internal supply for external sensors Low-power modes with low-current operation Links Freescale Concept Car  
查看全文
Overview This reference design describes the design of a 3-phase BLDC (Brushless DC) motor drive, which supports the NXP® 56F80X and 56F83XX Digital Signal Controllers (DSCs). The speed-closed loop BLDC drive using an encoder sensor is implemented The system is targeted for applications in both industrial and appliance fields (e.g. washing machines, compressors, air conditioning units, pumps or simple industrial drives required high reliability and efficiency) Features Voltage control of BLDC motor using Encoder sensor Targeted for 56F80X, 56F83XX, and 56F81XX Digital Signal Controllers Running on 3-phase Motor Board Control technique incorporates: Voltage BLDC motor control with speed-closed loop Current feedback loop Both directions of rotation Motoring mode Minimal speed 500 RPM Maximal speed 1000 RPM (limited by power supply) Manual interface (Start/Stop switch, Up/Down push button control, LED indication) FreeMASTER software control interface (motor start/stop, speed set-up) FreeMASTER software monitor Block Diagram Board Design Resources
查看全文
Demo This demo consists of a Kinetis KW41Z with a TFT display that will be mounted on a bike and collecting speed and cadence measurements from Bluetooth® Low Energy mass market sensors as the ride goes. The logged data will be sent to another Kinetis KW41Z connected to a PC that forwards data to the Cloud   https://community.nxp.com/players.brightcove.net/4089003392001/default_default/index.html?videoId=4939361163001 Features: Kinetis KW41Z SoC Bluetooth® Low Energy 4.2 compliant Simultaneous Bluetooth® Low Energy Connections with market ready sensors products Bluetooth® Cycling Speed and Cadence Profile implementation interoperable with market ready product Wireless Connectivity   _______________________________________________________________________________________________________   Featured NXP Products: Product Link Kinetis® KW41Z-2.4 GHz Dual Mode: Bluetooth® Low Energy and 802.15.4 Wireless Radio Microcontroller (MCU) based on Arm® Cortex®-M0+ Core Arm® Cortex®-M0+|Kinetis® KW41Z 2.4 GHz Bluetooth Low Energy Thread Zigbee Radio MCUs | NXP  Freedom Development Kit for Kinetis® KW41Z/31Z/21Z MCUs FRDM-KW41Z |Bluetooth Thread Zigbee enabled Freedom Development Kit | NXP  Bluetooth Low Energy/IEEE® 802.15.4 Packet Sniffer/USB Dongle USB-KW41Z|Bluetooth Low Energy Thread Zigbee Wireless Packet Sniffer | NXP  _______________________________________________________________________________________________________
查看全文
Overview In the industrial world, technologies to track performance and correct problems instantly have become critical to meeting output expectations and keeping personnel safe. This is especially true with organizations facing the impact of an unpredictable economic environment and aging infrastructure. Our NXP two-way radio solution takes advantage of our complete technology portfolio of high-performance MPUs, MCUs, and peripheral devices that integrate security and connectivity features and a 10-15 year product longevity program. This combination delivers high reliability and quality communication and performance that enables your customers to work safely, efficiently and enables seamless communication that boosts productivity and insight to extend the life of business assets.   Interactive Block Diagram Recommended Products   Category Products Features MCU Arm® Cortex®-M4|Kinetis® KV3x Real-time Control MCUs | NXP  100/120 MHz Cortex®-M4 core with DSP and floating-point unit – improves performance in math-intensive applications (e.g., processing of sensorless FOC (field-oriented control) algorithms) 2x 16-bit ADCs with two capture and hold circuits and up to 1.2 MSPS sample rate – simultaneous measurement of current and voltage phase, reduced jitter on input values improving system accuracy Up to 2 x 8-channel and 2 x 2-channel programmable FlexTimers – high-accuracy PWM generation with integrated power factor correction or speed sensor decoder (incremental decoder/hall sensor) MPU i.MX 8M Applications Processor | Arm® Cortex®-A53, Cortex-M4 | 4K display resolution | NXP  Quad Arm Cortex-A53; Cortex-M4F 6x I2S/SAI (20+ channels, each 32-bits @384 kHz); SPDIF Tx/Rx; DSD512 OpenGL® ES 3.1, OpenGL® 3.0, Vulkan®, OpenCL™ 1.2 Secure Element A1006 | Secure Authenticator IC: Embedded Security Platform | NXP  Advanced security using asymmetrical public/private key Diffie-Hellman authentication protocol with two different keys for encryption and decryption based on ECC (Elliptic Curve Cryptography) with a NIST B-163 bit strong binary field curve Authentication time (on-chip calculations) < 50 ms Power Consumption: 500 μA active CapTouch Sensor PCF8883 | NXP  Wide input capacitance range (10 pF to 60 pF) Wide voltage operating range (VDD = 3 V to 9 V) Designed for battery-powered applications (IDD = 3 μA, typical) Automatic calibration RTC PCF8523 | NXP  Provides year, month, day, weekday, hours, minutes, and seconds based on a 32.768 kHz quartz crystal Resolution: seconds to years Analog Switch Logic controlled high-side power switch | NXP  Wide supply voltage range from 3 V to 5.5 V 30 V tolerant on VBUS ISW maximum 2 A continuous current Load Switch USB PD and type C current-limited power switch | NXP  VIN supply voltage range from 4.0 V to 5.5 V All-time reverse current protection with ultra-fast RCP recovery Adjustable current limit from 400 mA to 3.3 adjustable current limits from 400 mA to 3.3 A Clamped current output in the over-current condition Very low ON resistance: 30 mΩ (typical) USB Type-C PTN5150 | NXP  USB Type-C Rev 1.1 compliance Compatible with legacy OTG hardware and software Support plug, orientation, role and charging current detection Level Translator PCAL6416AEX | NXP  The 16-bit general-purpose I/O expander Latched outputs with 25 mA drive maximum capability The operating power supply voltage range of 1.65 V to 5.5 V GPIO Expander PCAL6416AEX | NXP  The 16-bit general-purpose I/O expander Latched outputs with 25 mA drive maximum capability The operating power supply voltage range of 1.65 V to 5.5 V PMIC PMIC with 1A Li+ Linear Battery Charger | NXP  Input voltage VIN from 5V bus, USB, or AC adapter (4.1 V to 6.0 V) withstands up to 22V transient DDR memory reference voltage, VREFDDR, 0.5 to 0.9 V, 10 mA I2C interface User-programmable Standby, Sleep/Low-power, and Off (REGS_DISABLE) modes Accelerometer ±2g/±4g/±8g, Low g, 14-Bit Accelerometer | NXP  1.95 V to 3.6 V supply voltage 1.6 V to 3.6 V interface voltage ±2g/±4g/±8g dynamically selectable acceleration full-scale range Temperature Sensor PCT2075: I2C-bus Fm+, 1 Degree C Accuracy | NXP  Pin-for-pin replacement for LM75 series but allows up to 27 devices on the bus Power supply range from 2.7 V to 5.5 V Temperatures range from -55 °C to +125 °C Wireless MCU Arm® Cortex®-M0+|Kinetis® KW41Z 2.4 GHz Bluetooth Low Energy Thread Zigbee Radio MCUs | NXP  2.4 GHz Bluetooth Low Energy version 4.2 Compliant IEEE Std. 802.15.4 Standard Compliant AES-128 Accelerator (AESA), True Random Number Generator (TRNG)
查看全文