NXP Designs Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

NXP Designs Knowledge Base

Discussions

Sort by:
For further information visit the complete guide on our NXP Designs: https://community.nxp.com/docs/DOC-344585 
View full article
This video shows how to get GPS coordinates and send them to the internet by using the Sigfox OL2385 board
View full article
Overview This reference design demonstrates speed control of the 3-Phase Switched Reluctance (SR) motor with Hall position sensor using the NXP® 56F80x or 56F83XX Digital Signal Controllers (DSCs). It helps start development of the SR drive dedicated to the targeted application The DSC runs main control algorithm; when the start command is accepted, the state of the Hall sensors position signals is sensed and the individual motor phases are powered in order to start the motor in the requested direction of rotation without rotor alignment According to the determined switching pattern and the calculated duty cycle, the on-chip PWM module generates the PWM signals for the SR motor power stage Features Speed Control of an SR motor with position Hall sensors Targeted 56F80X, 56F83XX, and 56F81XX Digital Signal Controllers Running on a 3-Phase SR HV Motor Control Development Platform (115/230VAC) Running on a 3-phase SR LV Motor Control Development Platform (12V DC) The control technique: voltage control with a speed closed loop Hall sensors position reference for commutation Start from any motor position without rotor alignment Manual interface FreeMASTER software control interface and monitor Fault protection Block Diagram Board Design Resources
View full article
Demo Summary Our Smart Antennae Solutions make up our Internet Everywhere segment. NXP offers and develops several types of solutions for small-cell PA designers, optimized for performance and integration     Smart Antenna Solutions for "Internet Everywhere" - YouTube      Demo / product features BGA5022 High Performance Small Cell Power Amplifier 4 W peak power 400 MHz bandwidth 40% efficiency DPD agnostic   Links RF | NXP   Fast-Track 5G with NXP   Fast-Track 5G with NXP - YouTube 
View full article
Demo e-Cockpit Demo featuring cluster plus infotainment display. Infotainment display created using Crank Storyboard Suite. Cluster developed using CGI Studio   Cluster plus infotainment system with CAN communication Infotainment done with Crank Storyboard™ Suite; cluster done with CGI Studio Working hands-free profile with BlueZ and oFono open source libraries   Featured NXP Products i.MX6 i.MX6QP|i.MX 6QuadPlus Processors|Quad Core|NXP   Links Crank Demo - GUI / Software
View full article
Watch the C29x PKC, OpenSSL offload. Secure network traffic is growing ... fast! Security is everywhere and must scale and hardware acceleration is key to this NXP C29x family of crypto coprocessors.     Features SSL Acceleration with Public Key Offload C29x crypto coprocessor runs on industry-leading QorIQ SoC or x86 Enables efficient scaling with growth in secure networking traffic Featured NXP Products Product Link Crypto Coprocessor https://www.nxp.com/products/processors-and-microcontrollers/legacy-mcu-mpus/crypto-coprocessors/crypto-coprocessor:C29x?&tid=vanC29x C29x PCI Express® Adapter Platform C29x PCI Express® Adapter Platform | NXP   
View full article
NXP Thread Commissioning Demo with Arrayent’s Cloud Control Thread devices can be monitored and controlled from anywhere in the world using Arrayent Connect Cloud Devices are easily commissioned onto a Thread network using NXP Thread App & QR code Devices are secure using Arrayent Unique ID (whitelisting) and AES-128 bit encryption. This Demo Is Probably of Interest If You: Want to monitor and control Thread devices that sit behind a consumer grade firewall from anywhere in the world. Want to commission Thread devices in a easy way. Differentiation This Demo Highlights Control and monitor Thread devices that sit behind a consumer grade firewall from anywhere in the world. Commission Thread devices using QR code Description The Thread network is managed by a LS1021A  IT Gateway with FRDM-KW24 Thread Border border reference design. The board supports Thread, Wi-Fi, BlueTooth and NFC too. NXP’s Thread commissioning android App discovers the Thread border router. NXP powered Thread “device” is a card with a NXP Kinetis® KW2xD 802.15.4 Wireless chip with an ARM Cortex M4 MCU board running the Thread protocol and the lightweight Arrayent Connect Agent. The Thread device boards are commissioned (or “paired”) on to the Thread network by using the NXP Thread commissioning Android App takes the device’s unique ID from the  QR code on the  device and pushes Thread network credentials into the device. This is shown again with a second card. Arrayent’s Connect Agent has been pre-loaded into the device boards.  And once the board is connected to the Thread network, the device board starts communicates directly to the Arrayent Cloud. Essentially key attributes on the board are presented up to the Arrayent Connect Cloud web services APIs. The final step is to use the Arrayent devkit app to monitor and control the device board from anywhere in the world.  In this case the we can demonstrate three monitor/control use cases: 1.     Turn on and off the device LED from the mobile app. 2.     Press a button three times to update the Apps button press counter (in this case three times.) 3.     Push the board temperature to the mobile app. What this Demo is All About Video Link : 5310 Find more information Press release: Read on The Business Journals Blog posts to read: NXP and Arrayent Collaborate to Connect Thread Devices at Embedded World, Nuremberg, Germany Thread-Enabled Smart Home Powered by Arrayent Demo Diagram IoT Physical Components Gateways SOC: NXP i.MX6 Applications Processor, NXP Kinetis®KW24D SoC Software: Embedded Linux, NXP Thread Stack for border router End User Products: LS1021A IT Gateway with FRDM-KW24 Thread Border border reference design Edge Devices SOC: NXP Kinetis®KW24D (802.15.4 Wireless chip with an ARM Cortex M4 MCU) Boards/Modules: NXP FRDM-KW24D  Development Board Software: Arrayent Connect Agent ported to the KW2xD, NXP Thread Stack for router end devices Wireless Connectivity SOC: NXP Kinetis®KW24D (802.15.4 Wireless chip with an ARM Cortex M4 MCU) Sensors SOC: KW24D On-chip Temperature, MMA8451Q 3-axis accelerometer Cloud Infrastructure/Services Software/Services: Arrayent Connect Cloud Smart Devices/Apps Software: Arrayent Android DevKit sample app and SDK Software: NXP Android Thread provisioning app IoT System Capabilities Device Management Each device is flashed at time of manufacturing a unique Arrayent Device ID and AES key.  The device ID is bound to a specific customer account at time of device commissioning. Cloud/App Communications/Interworking Arrayent devkit app talks to the Arrayent Connect Cloud’s device services interface through the Arrayent Connect Agent embedded software to connect to the device boards. The App is used to monitor and control the device board from anywhere in the world.  In this case the we can demonstrate three monitor/control use cases: Turn on and off the device LED from the mobile app. Press a button three times to update the Apps button press counter (in this case three times.) Push the board temperature to the mobile app. Security Arrayent uses device ID Whitelisting, that is Arrayent issued device ID is flashed into endpoint MCU memory at time of manufacturing.  The per device unique ID is reserved in the cloud. Arrayent ACA embedded agent and ACC cloud services support AES-128 bit end-to-end encryption with dynamic temporal key refresh. Analytics/Data The Arrayent Connect Cloud support IoT Product Type Product/Component Vendor Research or Procure This Product/Component End User Hardware USB Wireless Keyboard and Touchpad Commercial Logitech Wireless Touch Keyboard K400 with Built-in Multi-Touch Touchpad, Black End User Hardware Dell 22" HDMI Monitor Commercial Dell 22" Monitor End User Smart Device Motorola XT1032 Moto G Android Smart Phone Commercial Motorola Android Smart Phone End User Edge Device Xfinity XR2 Remote Control Unit Commercial Comcast Remote Control End User Edge Device Philips HUE Bulb ZigBee Lightlink (HA 1.2) Commercial Hue, Professional Wireless LED Lighting | Philips Lighting End User Edge Device CentraLite 3-Series Appliance Module (4257050-RZHAC) (Zigbee HA 1.2) Commercial SmartPlug End User Edge Device Axis 0301004 M1011-W camera (WiFi g) Commercial AXIS M1011-W Network Camera, a small wireless IP camera | Axis Communications End User Edge Device Maxxima Style Night Light w/ sensor Commercial Night Light End User Edge Device TP-LINK TL-MR3020 3G/4G Wireless N 150 Portable Router Commercial WiFi Router
View full article
Overview The NXP® home health hub (HHH) reference platform is designed to speed and ease development for telehealth applications using seamless connectivity and data aggregation for remote access and improved healthcare management. Multiple connectivity options to obtain data from commercially available wired and wireless healthcare devices such as blood pressure monitors, pulse oximeters, weight scales, blood glucose monitors, etc. Provides connectivity to take action with collected data by sharing it through a remote device with a display such as a tablet, PC or smartphone or through the Cloud Delivers a real-time connection to caregivers for comfort and safety to the person being monitored Features Automatic reporting of vital sign measurements Cloud connectivity and secure integration into medical vaults Pervasive mobile device access Daily activity alarms, security alarms and passive monitoring of safety sensors for early detection of injury or security risks Anytime consultation with monitoring center, medical staff, family and friends Anytime and intuitive access to trusted health resources Compelling user interface for a remote display Block Diagram Board Videos Design Resources
View full article
Demo The driver does not use a steering wheel or pedals to control a car on a race. All he uses is the movement of his head to turn the car and his mouth to accelerate and stop.       Featured NXP Products   K64_120 |Kinetis K64 120 MHz MCUs|NXP Freedom Development Platform for Kinetis|NXP Sensor Fusion|NXP   Links Arrow SAM Project   Videos          
View full article
  Description NXP Home Appliances is dedicated to provide intelligent, reliable and appealing solutions to make everyday life a bit easier.Home appliances are part of our daily lives and have been evolving with us. Our wireless MCUs add HAN, WiFi and NFC and along our security devices ensure high-quality wireless connectivity. We have a wide range of precise sensors and complete solutions to simply add voice control to any home appliance. From gas cooktops to inductive and RF cooking; electric toothbrushes with low-energy consumption and battery charging; blenders with efficient, reliable and robust motor control, and all of them need to have sensing options and secure connectivity to offer a personalized and optimal experience. Block Diagram Products Category Name 1: MCU Product URL 1 Arm Cortex-M4|Kinetis KE1xF 32-bit 5V MCUs | NXP  Product Description 1 Kinetis KE1xF MCUs are the Kinetis E high-end series MCUs, providing a robust 5V solution with the high-performance Arm® Cortex®-M4 core running at up to 168 MHz. The KE1xF features a Flextimer featured 8ch PWM supports 3-phase motor control with dead-time insertion and fault detect.   Category Name 2: Gate Driver Product URL 1 GD3100 | Single-Channel Gate Driver for IGBTs/SiC | NXP  Product Description 1 The GD3100 is an advanced single-channel gate driver for IGBTs/SiC. The integrated Galvanic isolation and low on-resistance drive transistors provide a high charging and discharging current. The GD3100 features SPI for programmability and diagnostics.   Category Name 3: LED Driver Product URL 1 PCA9955BTW | NXP  Product Description 1 The PCA9955B is an I2C-bus controlled 16-channel constant current LED driver optimized for dimming and blinking 57 mA Red/Green/Blue/Amber (RGBA) LEDs in amusement products. The PCA9955B works at 31.25 kHz with a duty cycle that is adjustable from 0 % to 100 % to allow the LED to be set to a specific brightness value.   Category Name 4: AC/DC Product URL 1 TEA19363LT: GreenChip SMPS Primary Side Control IC with QR/DCM Operation and Active x-Capacitor Discharge  Product Description 1 The TEA19363LT is a member of the GreenChip family of controller ICs for switched mode power supplies.   Category Name 5: Small Engine Control Product URL 1 MC33813: One Cylinder Small Engine Control IC  Product Description 1 The NXP® MC33813 is an engine control analog power IC delivering a cost-optimized solution for managing one and one-cylinder engine. Category Name 6: Temperature Sensor Product URL 1 PCT2075: I2C-Bus Fm+, 1 Degree C Accuracy, Digital Temperature Sensor And Thermal Watchdog  Product Description 1 The PCT2075 is a temperature-to-digital converter featuring ±1 °C accuracy over ‑25 °C to +100 °C range. Related Documentation Document URL Title https://www.nxp.com/docs/en/application-note/AN5380.pdf  Using FTM, PDB, and ADC on KE1xF to Drive Dual PMSM FOC and PFC Tools Tools URL TWR-KE18F|Tower Development Board|Kinetis® MCU | NXP  Training Training URL Power Regulation/Market Trend and Overview of NXP AC/DC Power Solutions  Advanced Analog Solutions 
View full article
Demo FlexIO Demos below: Title Link Luminaire: A tale of woe https://www.hackster.io/0xtj/luminaire-a-tale-of-woe-263189 FlexIO Based Multi-Copter Rotor Control https://www.hackster.io/agent-titanium-c6063b/flexio-based-multi-copter-rotor-control-57d124 Automated water level https://www.hackster.io/andre-pereira-da-silva/automated-water-level-2fb900 IOT" Hydrometer E-mailer" https://www.hackster.io/benf2/iot-hydrometer-e-mailer-7a7ca5 FlexIO 3D Printer https://www.hackster.io/BigLazyPlayer/flexio-3d-printer-7e9d57 IoT with Kinetis FlexIO https://www.hackster.io/bltrobotics/iot-with-kinetis-flexio-0d4c3e Air Quality Control https://www.hackster.io/claude4/air-quality-control-2e7d65 Wireless Digital scale https://www.hackster.io/dhq/wireless-digital-scale-238e83 FRDMK82F Servo and Brushless Motor Control https://www.hackster.io/ElvisWolcott/frdmk82f-servo-and-brushless-motor-control-6461fb FRDM-K82F Camera Based Parking Assistant https://www.hackster.io/inakizi/frdm-k82f-camera-based-parking-assistant-9dfa6f KD2 Droid https://www.hackster.io/jreese/kd2-droid-7fbed1 NXP Kinetics Smart Web Multimedia IoT - Flexduino Platform https://www.hackster.io/mhanuel/nxp-kinetics-smart-web-multimedia-iot-flexduino-platform-1a76f7 Ultimate Hardware Expansion Board https://www.hackster.io/myriaddev/ultimate-hardware-expansion-board-494906 MIDI-USB Theremin https://www.hackster.io/razulued/midi-usb-theremin-65b521 Marveloucycle  https://www.hackster.io/skywalker-efe247/marveloucycle-4aafdb Port MySensors Library https://www.hackster.io/storycrafter/port-mysensors-library-1df3b6 Face match doorbell https://www.hackster.io/user015606/face-match-doorbell-db49bc Twitter Bot https://www.hackster.io/user1713477/twitter-bot-0687fe Agricultural flow estimator https://www.hackster.io/uLipe/agricultural-flow-estimator-1ad21d Directional Motion-Detecting USB Web Cam Using a FRDM-K82F https://www.hackster.io/stephanick/directional-motion-detecting-usb-web-cam-using-a-frdm-k82f-f81b81 How to build an Air Mouse with NXP K82F https://www.hackster.io/asadzia/how-to-build-an-air-mouse-with-nxp-k82f-56fb60 Intelligent Elbow Motion-Assistance Actuator https://www.hackster.io/hal-flynn-f79994/intelligent-elbow-motion-assistance-actuator-6a6c73 Water quality flow control https://www.hackster.io/mikey0000/water-quality-flow-control-030b2e Flex-WS2812B https://www.hackster.io/momososo/flex-ws2812b-a6beaf Freedom K82F Sport Kit Companion https://www.hackster.io/nghiajenius_iot/freedom-k82f-sport-kit-companion-319878 Freedom Maraca https://www.hackster.io/wesee/freedom-maraca-6f7bfc Twinkle Twinkle Little Star Musical Cup https://www.hackster.io/wesee/twinkle-twinkle-little-star-musical-cup-45a584 Smart DICE: The Physical + Digital RNG https://www.hackster.io/whatnick/smart-dice-the-physical-digital-rng-18ee03 Navisys https://www.hackster.io/YasithLokuge/navisys-03aa5f Flash! https://www.hackster.io/acylbotr/flash-6c1959 Freedom Flight Controller for Autonomus Drones https://www.hackster.io/bluetiger9/freedom-flight-controller-for-autonomus-drones-9efba4 Camera modules for Self-Driving Car. https://www.hackster.io/gawad/camera-modules-for-self-driving-car-fb37fb The Freedom Infinity Mirror https://www.hackster.io/MarcelK/the-freedom-infinity-mirror-9a2c13 Kinetis FlexIO Ultrasonic Radar https://www.hackster.io/mirkix/kinetis-flexio-ultrasonic-radar-573b40 Self-powered weather station https://www.hackster.io/user52242/self-powered-weather-station-b4252d Android Guided Vehicle https://www.hackster.io/11bharath11/android-guided-vehicle-6892d3 PHYSICALLY REGULATED OPERATING SUITE LIMB https://www.hackster.io/20321/physically-regulated-operating-suite-limb-89a61e Energy Efficient Cooler for home https://www.hackster.io/20986/energy-efficient-cooler-for-home-de0dc5 FRDM K82F-Play X-0 Game https://www.hackster.io/akashchandran30/frdm-k82f-play-x-0-game-0ebccb Working With FRDM-K82F https://www.hackster.io/akashchandran30/working-with-frdm-k82f-9459cd The Portable All Season Clothes Dryer https://www.hackster.io/alz190/the-portable-all-season-clothes-dryer-76626a NXP Scarab Robot https://www.hackster.io/asokfair/nxp-scarab-robot-eb6c6d Tip Tap Game https://www.hackster.io/bharathegr/tip-tap-game-e700e1 Read accelerometer x and y axis readings from the FRDM K82F https://www.hackster.io/gauravmishra/read-accelerometer-x-and-y-axis-readings-from-the-frdm-k82f-b47cc6 VIRTUAL SPEECH FOR VOCALLY CHALLENGED https://www.hackster.io/JagadeeshKumar/virtual-speech-for-vocally-challenged-5233cb Alexa Intelligent Personal Assistant / Home Automation Usi https://www.hackster.io/lalitnandandiwakar/alexa-intelligent-personal-assistant-home-automation-usi-862ea8 Musical Alarm Clock https://www.hackster.io/LiLShReDdeR/musical-alarm-clock-83edfc Eternal Pose to Antarctica: South Pointing Smart LED Compass https://www.hackster.io/PSoC_Rocks/eternal-pose-to-antarctica-south-pointing-smart-led-compass-5fb86f Gesture Drive: Accelerate with Freedom  https://www.hackster.io/PSoC_Rocks/gesture-drive-accelerate-with-freedom-e9dde1 Setting Up GPIO, PWM, I2C for K82 Freedom Board in KDS https://www.hackster.io/PSoC_Rocks/setting-up-gpio-pwm-i2c-for-k82-freedom-board-in-kds-e5b73d Accident Alert system https://www.hackster.io/ROBINTHOMAS/accident-alert-system-e97f34 NeerAssure: Water Usage Statistics https://www.hackster.io/Shachindra/neerassure-water-usage-statistics-03268b Getting Started with FRDM-K82F https://www.hackster.io/sowmith/getting-started-with-frdm-k82f-05b3ed FlexIO Car https://www.hackster.io/SURESH_V_S/flexio-car-13a692 FlexIO Based Smart Helmet https://www.hackster.io/taifur/flexio-based-smart-helmet-82efe9 SMART BAND https://www.hackster.io/user355388807/smart-band-6d3d31 Theft Alarm K82F TSI_LAUNCHPAD https://www.hackster.io/Vignesh_Jaishankar/theft-alarm-k82f-tsi-launchpad-2ff06c FlexIO security keypad https://www.hackster.io/nxp/flexio-security-keypad-15d9fd NXP Recommends http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/kinetis-cortex-m-mcus/k-series/k8x-scalable-secure-mcus:K8X-SCALABLE-SECURE-MCU?cof=0&am=0 AN5275: Using FlexIO for parallel Camera Interfacehttp://cache.nxp.com/files/microcontrollers/doc/app_note/AN5275.pdf?fsrch=1&sr=1&pageNum=1 AN5280: Using Kinetis FlexIO to drive a Graphical LCD Training
View full article
Demo Owner: Eduardo Montanez   Watch how Kinetis K Series and Kinetis L Series MCUs beat out the competition.     Features Latest Kinetis K2 microcontrollers running a CoreMark benchmark from EEMBC 4 different Microcontrollers are put to the test. Running all the same iteration benchmark with same capacity for all of the products Featured NXP Products K22F KL02 Links Kinetis MCUs|ARM® Cortex®-M Cores|NXP Kinetis L Series MCUs: Energy-Efficiency Benchmark Demo Kinetis L Series MCUs Energy Efficiency Benchmark - YouTube  
View full article
Demo NXP has a full range of high power LDMOS ICs for powering outdoor small cell base stations. Our small cell portfolio delivers industry leading performance with powerful, efficient and diverse range of outdoor small cells targeting rapidly growing frequencies and regions in the world. This demo features new devices that cover all cellular bands from 700 to 3800 MHz     Outdoor Small Cells for Cellular Infrastructure - YouTube        Demo / product features A2I08H040N 9 W IC Final Small Cell Solution Frequency 728-960 MHz Gain 30.7 dB Efficiency 46% TO-270WB-15 plastic package   A2I20H060N 5 W IC Final Small Cell Solution Frequency 1800–2200 MHz Doherty performance at 8 dB OBO 1805-1880 MHz Gain 28.5 dB Efficiency 44% Peak 48.5 dBm TO-270WB-15 plastic package   A2I25H060N 5 W IC Final Small Cell Solution Frequency 2300–2690 MHz Doherty performance at 8 dB OBO 2496-2690 MHz Gain 27.5 dB Efficiency 41% Peak 48.2 dBm TO-270WB-17 plastic package   A2I35H060N 5 W IC Final Small Cell Solution Frequency 3400–3800 MHz Doherty performance at 8 dB OBO 3400-3600 MHz Gain 24 dB Efficiency 33% Peak 48 dBm TO-270WB-17 plastic package   A2I25D025N 5 W IC Final Small Cell Solution Frequency 2100–2900 MHz Doherty performance at 8 dB OBO 2400-2600 MHz Gain 29.1 dB Efficiency 40% Peak 45.8 dBm TO-270WB-15 plastic package   A2I25D012N 2.2 W IC Final Small Cell Solution Frequency 2100-2900 MHz Gain 27.7 dB Efficiency 40% TO-270WB-15 plastic package   A2I20D040N 5 W IC Final Small Cell Solution Frequency 1400–2300 MHz Doherty performance at 8 dB OBO 1850-1950 MHz Gain 29.7 dB Efficiency 46% Peak 47.6 dBm TO-270WB-17 plastic package   A2I20D020N 2.5 W Final Small Cell Solution Frequency 1400-2300 MHz Gain 29.7 dB Efficiency 43% TO270WB-17 plastic package   NXP Recommends A2I08H040N A2I20H060N A2I25H060N A2I35H060N A2I25D025N A2I25D012N A2I20D040N A2I20D020N   Fast Track 5G with NXP   Fast-Track 5G with NXP - YouTube 
View full article
Demo This is an ideal tri-radio system solution. The demo shows one board with 3 Wi-Fi radios. They are 2.4GHz, 5 GHz, 802.11AC working in conjunction with BLE devices, then running a virtual IoT network where different virtual machines will handle different parts of the processes. One of the virtual machines will handle all IoT communications (from the BLE devices). Another virtual machine will take care of the DLNA  (Video streaming to a wireless tablet) and the last virtual machine will run the firewall system. All data that is being transferred through the platform can be visually displayed on the GUI for each of the instances shown. Products Product Link QorIQ® LS1043A reference design board QorIQ® LS1043A-RDB | NXP  Freedom Development Kit for Kinetis® KW41Z/31Z/21Z MCUs https://www.nxp.com/design/development-boards/freedom-development-boards/wireless-connectivy/freedom-development-kit-for-kinetis-kw41z-31z-21z-mcus:FRDM-KW41Z?&fsrch=1&sr=8&pageNum=1 Training Containers 
View full article
Description Governing motion and speed, this domain is what makes an automobile move. Movement is based on inputs from the driver or the driver-substitute and can be modified based on personal preferences and environmental constraints, such as road conditions. The vehicle dynamics portion of this domain is where supporting subsystems, such as suspension and steering, ensure stability and a smooth ride. Our angular sensors include magnetic field sensors, integrated amplifiers and programmable sensors. NXP’s 16- and 32-bit single and dual-core automotive MCUs provide enhanced computing power and specialized peripherals for complex electric motor control functions. Integrated power supply solutions are also important elements of a power steering control unit. Features BLDC motor commutation Electronic Power Steering (EPS) Steering angle measurement Window wiper position detection Contactless angle measurement Quick response High accuracy over wider temperature range Block Diagram Products Category Name 1: MCU Product URL 1 32-bit Automotive General Purpose MCUs | NXP  Product Description 1 S32K MCUs combine multiple low power operating modes with autonomous, low power peripherals providing complete control over the dynamic and static power profiles. Category Name 2: CAN Product URL 1 CAN/LIN SBC w/<Gen2 | NXP  Product Description 1 The MC33903 works as an advanced power management unit for the MCU and additional integrated circuits such as sensors and CAN transceivers Product URL 2 UJA1169LTK | Mini High-Speed CAN SBC | NXP  Product Description 2 The UJA1169L is designed to be used in applications that require more than one transceiver or additional power supply resources. Category Name 3: Sensor Product URL 1 KMZ60 | Angle sensor with integrated amplifier | NXP  Product Description 1 The MagnetoResistive (MR) sensor with integrated amplifier is designed for angular control applications and Brushless DC (BLDC) motors with even-numbered pole pairs. Demos Automotive Magnetic Sensors  Training Vehicle Dynamics &amp; Safety: Next-Generation Automotive Security Solutions  Tools Product Link S32K144EVB: S32K144 Evaluation Board S32K144 Evaluation Board | NXP  KIT33903BD3EVBE: Evaluation Kit - MC33903BD3, SBC Gen2 with CAN and LIN EVK - MC33903BD3, SBC Gen2 with CAN and LIN | NXP 
View full article
This post entry provides a detailed information about the EMVCo L1 certification process for contactless payment devices. The structure is the following: EMV Introduction Objective When a company is developing a POS device, there are some challenges to consider for a successful deployment in the market: The device needs to have a good performance to provide the client with a good user experience. Moreover, the device should be able to operate seamlessly with other devices and cards in the market in a secure and reliable way.   These key characteristics are tackled by the EMV specifications. Summarizing, EMV is a group of specifications for smart payment cards and terminals that were created by EMVCo to guarantee interoperability and acceptance of secure payment transactions. EMV stands for Europay, Mastercard, and Visa, the three companies that originally created the standard. These specifications are now managed by EMVCo, an organization of six members – including Mastercard, UnionPay, Visa, AmEx, Discover, and JCB.   EMVCo organization We can see in the figure below the structure of the organization. EMVCo is managed by the Board of Managers that consists of two representatives of every member of the organization. On top of the Board of Managers, the Executive Committee provides guidance on the group’s long-term strategy.     From a more technical point-of-view, it is organized in several Working Groups, each of them dedicated to specific topics. EMVCo also has the Associates Program, so key industry stakeholders can provide input and feedback to the Board of Managers, Executive Committee, and Working Groups.   EMV Technologies EMV specifications encompass a wide range of technologies, including: Contact chip technology, where smartcards and readers provide with cryptographical security advantages in comparison with the traditional magnetic stripe. EMV specifications also regulate contactless payment devices based on NFC technology.  Mobile Transactions where the mobile phone would play the role of a contactless device. The QR code technology, where the transaction can be made using a QR reader. Payment tokenization, that enables to perform transactions without compromising sensible card information. And other technologies like Secure Remote Commerce, 2nd Gen or 3-D Secure.   EMV Contactless specifications EMV Contactless specifications is now on version 2.6 but planning to move to version 3.0 by the end of the year.   The EMV Contactless specifications are structured in three books and the Contactless Interface Specifications that substitutes the Book D from previous versions of the specs. The Book A describes the overall architecture of the system, and the instructions involved in the communication between the entry point and the kernel. The Book B addresses the specifications regarding the Entry Point, which is the piece of sw in charge of the transaction pre-processing, or protocol activation among other tasks. Book C consists of 6 different levels for each of the kernels that are defined in the specifications. The EMV Contactless Interface Specifications describe the minimum set of functionalities that are required for the correct operation between the PICCs and the PCD.   In addition we will mention other relevant documents like: The PCD Test Bench and Test Case Requirements, that describes the test cases that are carried out by the testing laboratory in order to evaluate the devices. Note that there are 2 different documents, one for the Analog L1 tests and another one for the Digital tests. Another document describes the Device Test Environment, which is the software needed to control the device during the testing phase Another document describes the requirements regarding the Contactless symbol that should appear in all EMVCo Contactless POS in the market.   PCD L1 Type Approval The following diagram summarizes the process for the PCD L1 Type Approval:     In the first step the Product Provider shall submit a Request for Registration form to EMVCo. Once EMVCo reviews and accepts the form, the product provider will receive a contract that has to be signed. Upon reception of this contract, EMVCo will assign a product provider registration number. In the second step the Product Provider will choose a Test Laboratory and complete a document called Implementation Conformance Statement in which it provides detailed information about the device and its features. The third step is the Product Validation phase. In this phase the laboratory performs the product testing, where the device goes through a set of tests to evaluate the digital and analog performance. In a final phase and considering the test reports from the Laboratory, the Product Provider might decide to send the product to EMVCo for approval. In that case, EMVCo would analyze the tests reports and grant with a Letter of Approval in case the reports demonstrate sufficient product conformance.   In our case we are going to focus on the Analog L1 PCD tests.    EMV Analog L1 PCD Tests Environment Before going directly to the actual set of tests, it worth it to explain some components about the testing environment to better understand the testing procedure. We have the following elements: Device Test Environment Contactless symbol Positioning conventions EMVCo Reference PICC   Device Test Environment (DTE) The Device Test Environment is a software application that is used to control the device under evaluation during the whole testing process. This application has to be developed by the product provider and shall be implemented in compliance with a set of requirements defined in the specifications. The software is submitted to the test laboratory along with the samples of the device under certification. The DTE shall implement different applications or modes of operation that would be used depending on the testing scenario. These application are:   PCD Controls: It allows the test operator to execute single basic commands from the ISO14443 standard (Carrier ON/OFF, WUPA, WUPB,..) Pre-validation application: This application is used to test the communication of the device with a set of actual EMV compliant cards. Loopback application: It is used to test the device for the majority of the Analog and Digital L1 PCD Tests. In this case the reader is communicating with a Card simulator connected to a reference antenna. Transaction send application: This application can be used by the laboratory to evaluate the compliancy of the device with the waveform requirements defined for the Analog L1 PCD Tests. The main characteristic of this mode of operation is that the device sends a sequence of commands without waiting the responses from the PICC.   Contactless symbol The contactless symbol is the logo that you can see in the lower image. It helps the user identify the area in the Point Of Sale where he has to tap the card in order to trigger the transaction. This symbol has to be visible in the device surface or screen before and during the transaction. The Contactless symbol is extremely important for the testing procedure as it marks the reference point for all the positions that the device should be tested.   Using this reference point EMVCo defines an operating volume.   Positioning convention All test position are included in this operating volume. Depending on the test case, it will be run in one or more positions. Every position is expressed with a set of 3 coordinates or parameters, representing the height, the radius, and the angle respectively.     In the figure above you can see the operating volume along with the different values that each parameter can have.   EMVCo Reference PICC The EMVCo Reference PICC is the reference antenna used to communicate with the PCD under test. It has 4 ports and 2 jumpers that are used to configure the PICC for different purposes. For example, jumper 8 is used to select between linear and non-linear load depending on the type of tests that are performed. In the same line, the MOD IN port where a Signal Generator will inject a certain modulation to emulate a PICC response. The DC OUT port is used to measure the voltage level in the power tests and the LETI COIL OUT is used to measure the waveform tests among others. In the figure below you can also see the reference point of the antenna where the two white lines crossed:   Power tests The power tests are evaluated in all positions with the purpose of guaranteeing that the device is emitting enough field in all the positions. Depending on the height the limiting values will differ. In the figure below you can see the different planes with the respective limiting values.     The critical positions for the power tests are usually the outer positions for plane z=4 and z=3 where the voltage measured may not be strong enough to pass the tests. On top of that and depending on the transmission configuration used, it can also happen that the voltage measured at positions (1, 0, 0) and (0, 0, 0) can exceed the maximum level.   Waveform tests The purpose of the waveform tests is to evaluate the wave shape of the modulation used in the commands from the PCD. That way, if the wave shape fits with the requirements an EMVCo compliant PICC would not have any problem understanding the commands sent by the PCD.   The waveform evaluation for Type A modulation include the following test cases: t1 (TB121) Monotonic Decrease (TB122) Ringing (TB123) t2 (TB124) t3 and t4 (TB125) Monotonic Increase (TB126) Overshoot (TB127)     In the same way, the Type B test cases are the following: Modulation Index (TB121)# Fall time (TB122) Rise time (TB123) Monotonic Increase (TB124) Monotonic Decrease (TB125) Overshoots (TB126) Undershoots (TB127)     Reception tests The objective of the communication or responsiveness tests is to guarantee that the PCD is able to properly finish a transaction when the response of the PICC is in the limits of the specifications in terms of amplitude and polarity.   That way we find 4 different tests: Minimum load modulation, positive polarity (Tx131) Maximum load modulation, positive polarity (Tx133) Minimum load modulation, negative polarity (Tx135) Maximum load modulation, negative polarity (Tx137)   In the two figures below we can easily check the difference in the load modulation level between the oscilloscope capture for the Tx131 and the Tx133.     Other tests Besides the power, waveform and communication tests there are other tests included in the EMVCo Analog L1 Test cases. Here is the list of these other tests:   Carrier frequency (TAB112) Field resetting (TAB113) Power off (TAB114) Polling sequence (TAB115) FDTA PICC (TA139) BitRate (TA141 & TB141) BitCodingPCD (TA142 & TB142) BitCodingPICC (TA143 & TB146) BitBoundaries (TB147) TFSOFF (TB145 & TB148)   EMV Contactless Specs v3.0 The most important change is that the tests will no longer be carried out with one specific EMVCo reference PICC but with three. The first two are Class 1 antennas tuned to 16.1MHz and 13.56MHz, and the third reference PICC is a Class 3 antenna tuned to 13.56MHz.     This is important since the device will need to pass the test for 3 different antennas, making the testing process between 2 and 3 times slower and the tuning of the device more difficult than for the 2.6 version of the specs.   Other changes are a second different load for the linear load tests and the modifications of some waveform tests limits.   NXP Product portfolio for POS The product portfolio that NXP offers for contactless POS device includes three main chips: CLRC663 plus: EMVCo 2.6 ready chip compliant both for analog and digital L1 requirements. The CLRC663 plus is able to work with a transmitter current of 350 mA and a limiting value of 500 mA. This feature allows us to increase the field strength radiated and overcome power issues because of the design of the POS or the antenna.  PN5180: The PN5180 chip is also an EMVCo compliant frontend, that supports highly innovative and unique features like the Dynamic Power Control that optimizes the RF performance even under detuned antenna conditions. Other features are the Adaptative Waveform Control or the Adaptative Receiver Control to automatically adjust the transmitter modulation or the receiver parameters. These and many other features turn the PN5180 into the best NFC frontend in the market. PN7462: It supports contact and contactless interface in the same chip. It is an NFC controller, so includes an MCU with a configurable host interface. For the contactless interface, it implements similar functionalities as the PN5180, like the Dynamic Power Control, the Adaptative Receiver Control, and the Adaptative Waveform Control.   Further Information You can find more information about NFC in: Our NFC everywhere portal: https://www.nxp.com/nfc You can ask your question in our technical community: https://community.nxp.com/community/identification-security/nfc You can look for design partners: https://nxp.surl.ms/NFC_AEC And you can check our recorded training: http://www.nxp.com/support/online-academy/nfc-webinars:NFC-WEBINARS   Video recorded session
View full article
This demo which shows a complete Ethernet AVB audio amplifier solution built with NXP silicon and software.     Features Audio Video Bridging for automotive infotainment purposes System AVB amplifier for car audio nodes Analog video/audio is converted into AVB and outputs to vybrid Tower running AVB stack Featured NXP Products Vybrid Qorivva MCU Development Hardware Used Vybrid TWR board
View full article