Layerscape ナレッジベース

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

Layerscape Knowledge Base

ディスカッション

ソート順:
This how-to topic is applicable only to LSDK 18.09 and older releases. For LSDK 18.12 and newer releases, refer LS1088ARDB-PB - How to deploy TF-A binaries on SD card. Follow these steps to update U-Boot binary on the SD card.  Prerequisites  Ubuntu 18.04 64-bit should be installed on the Linux host machine for building LSDK 18.06 or LSDK 18.09 U-Boot binary.   Compiling U-Boot binary Clone the u-boot repository. $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/u-boot.git $ cd u-boot $ git checkout -b <new branch name> LSDK-<LSDK version>. For example, $ git checkout -b LSDK-18.09 LSDK-18.09  $ export ARCH=arm64 $ export CROSS_COMPILE=aarch64-linux-gnu- $ make distclean Execute appropriate defconfig file: For LS1088ARDB: $ make ls1088ardb_sdcard_qspi_defconfig For LS1088ARDB-PB: $ make ls1088ardb_pb_sdcard_qspi_defconfig If required, make changes to the U-Boot files. $ make If the make command shows the error "*** Your GCC is older than 6.0 and is not supported", ensure that you are using Ubuntu 18.04 64-bit version for building LSDK 18.06 or LSDK 18.09 U-Boot binary.  The compiled U-Boot image, u-boot-with-spl.bin, is available at u-boot/. SD card start block number for U-Boot binary Image  SD card start block number U-Boot binary 0x00800 = 2048 Refer the Flash layout for boot flow with PPA – LSDK 18.09 and older releases for a complete listing of the SD card start block numbers for all LSDK firmware images.     Programming U-Boot binary to SD card Plug the SD card into the Linux host. Run the following command on the Linux host: $ sudo dd if=u-boot-with-spl.bin of=/dev/sdX bs=512 seek=2048 conv=fsync Use the command cat /proc/partitions to see a list of devices and their sizes to make sure that the correct device names have been chosen. The SDHC storage drive in the Linux PC is detected as /dev/ sdX, where X is a letter such as a, b, c. Make sure to choose the correct device name, because data on this device will be replaced. If your Linux host machine supports read/write SDHC card directly without an extra SDHC card reader device, the device name of SDHC card is typically mmcblk0.    Remove the SD card from the Linux host machine. On the LS1088ARDB/LS1088ARDB-PB, ensure that the switches are set to boot the board from SD card.  For booting from SD card, SW1[1:8] + SW2[1] = 0010_0000_0  Plug the SD card into the board and boot the board to Ubuntu. If U-Boot does not find LSDK on the SD card, it will boot TinyDistro from lsdk_linux_arm64_ tiny.itb stored on the SD card.
記事全体を表示
Follow these steps to update the composite firmware image in QSPI NOR flash. cpld reset boots the board from QSPI NOR flash0 and cpld reset altbank boots the board from QSPI NOR flash1. sf probe 0:1 means that the alternate bank will be written to. So, if the board boots from QSPI NOR flash0 and sf probe 0:1 is entered at the U-Boot prompt, the commands that follow will program QSPI NOR flash1. Obtaining composite firmware image  LSDK includes pre-built firmware images for QSPI NOR flash. The LSDK composite firmware includes RCW+PBI, U-Boot/UEFI, PPA, boot loader environment variables, DPAA1 FMan ucode, QE/uQE firmware, Ethernet PHY firmware, device tree, and lsdk_linux_<arch>.itb images. Refer Flash layout for new boot flow with TF-A for the complete flash memory layout of the images.  On a Linux host machine, download composite firmware image for QSPI boot from nxp.com.    $ wget http://www.nxp.com/lgfiles/sdk/lsdk<LSDK version>/firmware_<RDB_name>_uboot_qspiboot.img    For example:  $ wget http://www.nxp.com/lgfiles/sdk/lsdk1812/firmware_ls1046ardb_uboot_qspiboot.img  Flashing composite firmware images to QSPI NOR flash Composite firmware image can be loaded to LS1046ARDB from a TFTP server or from a mass storage device (SD, USB, or SATA). Option 1: Load image from the TFTP server Boot LS1046RDB from QSPI NOR flash. Ensure that the switches are set to boot the board from QSPI NOR flash. For booting from QSPI flash, SW5[1:8] = 00100010 Boot from QSPI NOR flash0: => cpld reset In boot log, you’ll see: Board: LS1046ARDB, boot from QSPI vBank 0 Set up Ethernet connection When board boots up, U-Boot prints a list of enabled Ethernet interfaces. FM1@DTSEC3 [PRIME], FM1@DTSEC4, FM1@DTSEC5, FM1@DTSEC6, FM1@TGEC1, FM1@TGEC2 Set server IP to the IP of the host machine on which you have configured the TFTP server.  => setenv serverip <ipaddress1> Set ethact and ethprime as the Ethernet interface connected to the TFTP server. Refer LS1046ARDB Ethernet port mapping for the mapping of Ethernet port names appearing on the chassis front panel with the port names in U-Boot and Linux. => setenv ethprime <name of interface connected to TFTP server> For example: => setenv ethprime FM1@DTSEC4 => setenv ethact <name of interface connected to TFTP server> For example: => setenv ethact FM1@DTSEC4 Set IP address of the board. You can set a static IP address or, if the board can connect to a dhcp server, you can use the dhcp command. Static IP address assignment: => setenv ipaddr <ipaddress2> => setenv netmask <subnet mask> Dynamic IP address assignment: => dhcp Save the settings. => saveenv Check the connection between the board and the TFTP server. => ping $serverip Using FM1@DTSEC4 device host 192.168.1.1 is alive   Load composite firmware image from the TFTP server Program QSPI NOR flash1: => sf probe 0:1 Flash composite firmware image: => tftp a0000000 firmware_ls1046ardb_uboot_qspiboot.img => print filesize filesize=2351db0 Program composite firmware image to QSPI NOR flash: => sf erase 0x0 +$filesize && sf write 0xa0000000 0x0 $filesize  Address 0x0 is the location of the composite firmware image in QSPI NOR flash.  Refer Flash layout for new boot flow with TF-A for the complete flash memory layout. Boot from QSPI NOR flash1: => cpld reset altbank In boot log, you’ll see: Board: LS1046ARDB, boot from QSPI vBank 4 Ensure that SD card, USB flash drive, or SCSI hard disk installed with LSDK Ubuntu distribution is plugged into the board to boot the board to Ubuntu. If U-Boot does not find LSDK on a mass storage device, it will boot TinyDistro from lsdk_linux_arm64_ tiny.itb stored in QSPI NOR flash. Option 2: Load image from partition on mass storage device (SD, USB, or SATA) Boot LS1046RDB from QSPI NOR flash. Ensure that the switches are set to boot the board from QSPI NOR flash. For booting from QSPI flash, SW5[1:8] = 00100010 Boot from QSPI NOR flash0: => cpld reset In boot log, you’ll see: Board: LS1046ARDB, boot from QSPI vBank 0 Select mass storage device to use. => mmc rescan => mmc info Or => usb start => usb info Or => scsi scan => scsi info Optional – List files on storage device => ls mmc <device:partition> For example: => ls mmc 0:2 Or => ls usb <device:partition> For example: => ls usb 0:1 Or => ls scsi <device:partition> For example: => ls scsi 0:2 Program QSPI NOR flash1: => sf probe 0:1 Load composite firmware image from the storage device => load mmc 0:2 a0000000 <image name> => print filesize For example: => load mmc 0:2 a0000000 firmware_ls1046ardb_uboot_qspiboot.img => print filesize filesize=2351db0 Or => load usb 0:2 a0000000 <image name> => print filesize Or => load scsi 0:2 a0000000 <image name> => print filesize If the ls command fails to run, check that U-Boot in QSPI NOR flash0 supports the command by typing ls at the U-Boot prompt: => ls ls - lists files in a directory (default) Usage: ls <interface> [<dev[:part]> [directory]] - Lists files in directory [directory] of partition [part] on device type [interface] and instance [dev]. If U-Boot does not support this command, then update the composite firmware image in QSPI NOR flash0. Program image to QSPI NOR flash: => sf erase 0x0 +$filesize && sf write 0xa0000000 0x0 $filesize Address  0x0 is the location of the composite firmware image in QSPI NOR flash.  Refer Flash layout for new boot flow with TF-A for the complete flash memory layout.  Boot from QSPI NOR flash1: => cpld reset altbank In boot log, you’ll see: Board: LS1046ARDB, boot from QSPI vBank 4 Ensure that SD card, USB flash drive, or SCSI hard disk installed with LSDK Ubuntu distribution is plugged into the board to boot the board to Ubuntu. If U-Boot does not find LSDK on a mass storage device, it will boot TinyDistro from lsdk_linux_arm64_ tiny.itb stored in QSPI NOR flash.
記事全体を表示
The table below shows the mapping of the Ethernet port names appearing on the front panel of the LS1043ARDB chassis with the port names in U-Boot, tinyDistro, and NXP LSDK userland.  Ethernet port mapping Port name on chassis Port name in U-Boot Port name in Linux (tinyDistro) Port name in Linux (LSDK userland) QSGMII.P0 FM1@DTSEC1 eth0 fm1-mac1 QSGMII.P1 FM1@DTSEC2 eth1 fm1-mac2 QSGMII.P2 FM1@DTSEC3 eth2 fm1-mac5 QSGMII.P3 FM1@DTSEC4 eth3 fm1-mac6 RGMII1 FM1@DTSEC5 eth4 fm1-mac3 RGMII2 FM1@DTSEC6 eth5 fm1-mac4 10G Copper FM1@TGEC1 eth6 fm1-mac9 Below is a table that shows the mapping between port numbers (from configuration file), character devices, hardware ports (Rx) and mEMACs for the standard SDK configuration (using RCW protocol 1455). FMC port mapping Port name on chassis XML port number (configuration file) Serdes protocol Character device Hardware port (device tree node) mEMAC (device tree node) QSGMII.P0 1 qsgmii fm0-port-rx0 port@88000 ethernet@e0000 QSGMII.P1 2 qsgmii fm0-port-rx1 port@89000 ethernet@e2000 QSGMII.P2 5 qsgmii fm0-port-rx4 port@8c000 ethernet@e8000 QSGMII.P3 6 qsgmii fm0-port-rx5 port@8d000 ethernet@ea000 RGMII1 3 rgmii fm0-port-rx2 port@8a000 ethernet@e4000 RGMII2 4 rgmii fm0-port-rx3 port@8b000 ethernet@e6000 10G Copper 9 xgmii fm0-port-rx6 port@90000 ethernet@f0000
記事全体を表示
This document introduces porting TDM Linux driver working in internal loopback mode to do verification during custom boards bringing up and verification stage. 1. TDM Interface Configuration to Support Internal Loopback Mode 2. Modify Linux Kernel Driver to Make TDM Working in Internal Loopback Mode 3. Build TDM Driver into Linux Kernel and do verification on the target board
記事全体を表示
The table below shows the mapping of the Ethernet port names appearing on the front panel of the LS1046ARDB chassis with the port names in U-Boot, tinyDistro, and NXP LSDK userland.  Port name on chassis Port name in U-Boot Port name in Linux (tinyDistro) Port name in Linux (LSDK userland) RGMII1 FM1@DTSEC3 eth0 fm1-mac3 RGMII2 FM1@DTSEC4 eth1 fm1-mac4 SGMII1 FM1@DTSEC5 eth2 fm1-mac5 SGMII2 FM1@DTSEC6 eth3 fm1-mac6 10G Copper FM1@TGEC1 eth4 fm1-mac9 10G SEP+ FM1@TGEC2 eth5 fm1-mac10
記事全体を表示
The attached patch is to support Aquantia AQR107 in LS1043A.
記事全体を表示
LS1043ARDB version updated because we replaced the Nand Flash with different page size one as the old one is obsolete. Version update information FA version Nand flash program by CodeWarrior Nand Flash firmware bring up files Boot Mode setting
記事全体を表示
In the LS1028ARDB, SPI is not enable, some customers need to enable this interface to debug their device and some customer maybe enable this device but the SPI sequence would be some uncertain error which will delay their plan. In this documents, will introduce how to enable the SPI3 on the LS1028ARDB, and use a SPI tools in the LSDK to help customer debug their SPI device in the initial stages of debugging.
記事全体を表示
The CodeWarrior tool – QCVS SerDes tool allows you to configure the SerDes block and provides you a GUI application to validate the SerDes configuration.  QCVS SERDES supports LX2 but except Serdes#1 Lane H, customer can use the guide below for Tx pattern generation. 
記事全体を表示
SECURE BOOT Secure Boot introduction Build secure boot ATF image Generate secure boot CSF headers for Linux tiny itb image Deploy secure boot images on the target board Blow OTPMK fuse in u-boot and through CodeWarrior CCS Write SRK hash keys to the mirror registers through CCS Secure boot Trouble Shooting  Fuse Provisioning Fuse Provisioning Utility Introduction Input File for Fuse Provisioning Tool Build Fuse Provisioning Firmware Image with flex-builder and Deploy the Firmware Image Build and Deploy Fuse Provisioning Image Manually Validate Fuse Provisioning Secure Debug Program DCVR and DRVR fuses to activate secure debug Unlock JTAG debug port after locking it through CCS commands Unlock JTAG debug port after locking it through CW IDE  
記事全体を表示
PPS (Pulses Per Second) signal applies to most network controllers of Layerscape, including DPAA1 platforms. PPS signal is output through 1588 timer pulse out pin. The QorIQ PTP driver configured fixed interval period pulse (FIPER) generator as PPS signal in default. This document describes how to create dts file to customize configuration on the 1588 timer such as selecting other reference clock source, and configuring nominal clock period, FIPERs period, and output clock period to generate the required PPS signal.
記事全体を表示
Compile kernel in the ls-5.15.71-2.2.0_distro In the LLDPUG_RevL5.15.71-2.2.0, it seems when do some reconfiguration in the kernel, rootfs should be repack to finish the change. Here will generate kernel without repack the roofts in the Linux host machine just compile the kernel.
記事全体を表示
The SerDes tool is a part of the QorIQ Configuration and Validation Suite (QCVS) product. This document will illustrate how to use the tools to validate the SerDes on the LS1046ARDB SerDes1 Lane1(Lane C) without Oscilloscope and BERT(Bit Error Ratio Tester). It validate the LS1046ARDB SerDes1 Lane1 with digital loopback, external loopback and external mode.
記事全体を表示
Basic Concept of Secure boot on LS1028A Platform Build secure boot ATF image Generate secure boot CSF headers for Linux tiny itb image Deploy secure boot images on the target board Blow OTPMK fuse in u-boot and through CodeWarrior CCS Write SRK hash keys to the mirror registers through CCS Secure boot Trouble Shooting  
記事全体を表示
The attached patch adds error detection for A53 and A57 cores. Hardware error injection is supported on A53. Software error injection is supported on both. For hardware error injection on A53 to work, proper access to L2ACTLR_EL1, CPUACTLR_EL1 needs to be granted by EL3 firmware. This is done by making an SMC call in the driver. Failure to enable access disables hardware error injection. For error interrupt to work, another SMC call enables access to L2ECTLR_EL1. Failure to enable access disables interrupt for error reporting. CPU Memory Error Syndrome and L2 Memory Error Syndrome registers can be used for checking L1 and L2 memory errors. However, only A53 supports double-bit error injection to L1 and L2 memory. This driver uses the hardware error injection when available, but also provides a way to inject errors by software. Both A53 and A57 supports interrupt when multibit errors happen. To use hardware error injection and the interrupt, proper access needs to be granted in ACTLR_EL3 (and/or ACTLR_EL2) register by EL3 firmware SMC call. Correctable errors do not trigger such interrupt. This driver uses dynamic polling internal to check for errors. The more errors detected, the more frequently it polls. Combining with interrupt, this driver can detect correctable and uncorrectable errors. However, if the uncorrectable errors cause system abort exception, this driver is not able to report errors in time.
記事全体を表示
On the LS1046ARDB, there are 2 1G SGMII with PHY, but sometimes customer want to get PHY-less connection to evaluate the performance, so they may have to change the non-fixed link properties into fixed-link by reconfiguration the SW configuration. In this document, it will give details of configuring the LS1046ARDB to support the fixed-link requirement with LSDK2108 focus on the DTS and Linux kernel. The ethernet MAC in this document is FM1 mEMAC6: 1AE_A000h. Because there is no PHY-less connection on board. We only provide the status when the MAC has been configured.
記事全体を表示
When customer only has SD/eMMC on the customer board, when they don’t have CWTAP in hand, how do they boot the customer board(bare board) after the board come back from the factory for the first time. This document describes the steps how to use the CMSIS-DAP in this situation as a reference for user.
記事全体を表示
CMSIS-DAP is a useful tool and exists in some NXP reference boards, but how to use it. This document describes the steps how to use the CMSIS-DAP in the LS1034ARDB as a reference for user.
記事全体を表示
On the LX2160ARDB, there are 2 25G SFP interfaces, but no 10G SFP interface. When customer want to test the 10G SFPs to evaluate the performance, they have to change the 25G SFP interfaces into 10G by reconfiguration the SW configuration. In this document, it will give details of configuring the LX2160ARDB to support the customer’s 10G SFP interfaces requirement with LSDK2108. At the end, an image will be generated to deployed into the SD card. Because SD card is a convenient way boot up LX2160ARDB, if one wrong move could brick the system, the customer could unplug the SD card to repeat the steps below.
記事全体を表示
ENETC is a PCI Integrated End Point(IEP). IEP implements peripheral devices in an SoC such that software sees them as PCIe device. ENETC is an evolution of BDR(Buffer Descriptor Ring) based networking IPs. Key goal of the DPDK is to provide a simple, complete framework for fast packet processing in data plane applications. Using the APIs provided as part of the framework, applications can leverage the capabilities of underlying network infrastructure.DPDK been prominent software in user space for networking applications pushes for eNetc driver to be written in user space. This document introduces overview of the NXP ENETC and how its driver is implemented and integrated into the DPDK. DPDK eNetc Driver support features queue start/stop, MTU update, promisc, Unicast and multicast MAC filtering, rss hash, crc offload, vlan offload, Rx checksum offload, basic stats. 1. ENETC Hardware Introduction 2. LS1028 Default ENETC Driver 3. User Space eNetc Driver design 4. DPDK eNetc Driver support features 5. Setup DPDK applications over ENETC platform
記事全体を表示