Layerscape Knowledge Base

cancel
Showing results for 
Search instead for 
Did you mean: 

Layerscape Knowledge Base

Discussions

Sort by:
On successful probing of the DSA Felix switch, each available front panel switch port should have a network device interface attached with the swpX name format. The ip link show command uses the swpX@enoY name format to also indicate the associated master Ethernet interface for the DSA switch port, which corresponds to an internal ENETC interface, usually the eno2 (Port2) for the LS1028A SoC. LS1028 Interface naming in Linux Single port mode Bridge mode
View full article
Follow these steps to update the  composite firmware image in QSPI NOR flash. cpld reset   boots the board from QSPI NOR flash0 and   cpld reset altbank   boots the board from QSPI NOR flash1. sf probe 0:1   means that the alternate bank will be written to. So, if the board boots from QSPI NOR flash0 and   sf probe 0:1   is entered at the U-Boot prompt, the commands that follow will program QSPI NOR flash1. Obtaining composite firmware image   LSDK includes pre-built firmware images for QSPI NOR flash. The LSDK composite firmware includes RCW+PBI, U-Boot/UEFI, PPA, boot loader environment variables, DPAA1 FMan ucode, QE/uQE firmware, Ethernet PHY firmware, device tree, and lsdk_linux_<arch>.itb images. Refer Flash layout for new boot flow with TF-A  for  t he complete flash memory layout of the images.   On a Linux host machine, download composite firmware image for QSPI boot from nxp.com.     $ wget  http://www.nxp.com/lgfiles/sdk/lsdk <LSDK version> /firmware_ <RDB_name>_uboot_qspiboot.img     For example:   $ wget http://www.nxp.com/lgfiles/sdk/lsdk1812/firmware_ls1046ardb_uboot_qspiboot.img   Flashing composite firmware   images   to   QSPI NOR flash Composite   firmware   image can be loaded to LS1046ARDB from a TFTP server or from a mass storage device (SD, USB, or SATA). Option 1: Load image from the TFTP server Boot LS1046RDB from QSPI NOR flash. Ensure that the switches are set to boot the board from QSPI NOR flash.  For booting from   QSPI flash ,  SW5[1:8] = 00100010 Boot from  QSPI NOR  flash0:  => cpld reset In boot log, you’ll see: Board: LS1046ARDB, boot from QSPI vBank 0 Set up Ethernet connection When board boots up, U-Boot prints a list of enabled Ethernet interfaces. FM1@DTSEC3 [PRIME], FM1@DTSEC4, FM1@DTSEC5, FM1@DTSEC6, FM1@TGEC1, FM1@TGEC2 Set server IP to the IP of the host machine on which you have configured the TFTP server.  => setenv serverip <ipaddress1> Set ethact and ethprime as the Ethernet interface connected to the TFTP server. Refer LS1046ARDB Ethernet port mapping for the mapping of Ethernet port names appearing on the chassis front panel with the port names in U-Boot and Linux. =>  setenv ethprime <name of interface connected to TFTP server> For example: => setenv ethprime FM1@DTSEC4 => setenv ethact <name of interface connected to TFTP server> For example: => setenv ethact FM1@DTSEC4 Set IP address of the board. You can set a static IP address or, if the board can connect to a dhcp server, you can use the   dhcp   command. Static IP address assignment: => setenv ipaddr <ipaddress2> => setenv netmask <subnet mask> Dynamic IP address assignment: => dhcp Save the settings. =>  saveenv Check the connection between the board and the TFTP server. => ping $serverip Using  FM1@DTSEC4   device host 192.168.1.1 is alive   Load composite firmware image from the TFTP server Program QSPI NOR flash1:  => sf probe 0:1 Flash composite firmware image: => tftp a0000000 firmware_ls1046ardb_uboot_qspiboot.img =>  print  filesize filesize=2351db0 Program composite firmware image to QSPI NOR flash:   =>  sf erase 0x0 +$filesize && sf write 0xa0000000 0x0 $filesize   Address 0x0  is the location of the  composite firmware  image in QSPI NOR flash.   Refer Flash layout for new boot flow with TF-A  for  t he complete flash memory layout. Boot from QSPI NOR flash1:   => cpld reset altbank In boot log, you’ll see: Board: LS1046ARDB, boot from QSPI vBank 4 Ensure that SD card, USB flash drive, or SCSI hard disk installed with LSDK Ubuntu distribution is plugged into the board to boot the board to Ubuntu. If U-Boot does not find LSDK on a mass storage device, it will boot TinyDistro from   lsdk_linux_arm64_ tiny.itb   stored in QSPI NOR flash. Option 2: Load image from partition on mass storage device (SD, USB, or SATA) Boot LS1046RDB from QSPI NOR flash. Ensure that the switches are set to boot the board from QSPI NOR flash.  For booting from   QSPI flash ,  SW5[1:8] = 00100010 Boot from  QSPI NOR  flash0:  => cpld reset In boot log, you’ll see: Board: LS1046ARDB, boot from QSPI vBank 0 Select mass storage device to use. => mmc rescan => mmc info Or => usb start => usb info Or => scsi scan => scsi info Optional – List files on storage device => ls mmc <device:partition> For example: => ls mmc 0:2 Or => ls usb <device:partition> For example: => ls usb 0:1 Or => ls scsi <device:partition> For example: => ls scsi 0:2 Program QSPI NOR flash1:  => sf probe 0:1 Load composite firmware image from the storage device => load mmc 0:2 a0000000 <image name> => print filesize For example: => load mmc 0:2 a0000000 firmware_ls1046ardb_uboot_qspiboot.img => print filesize filesize=2351db0 Or => load usb 0:2 a0000000 <image name> => print filesize Or => load scsi 0:2 a0000000 <image name> => print filesize If the   ls   command fails to run, check that U-Boot in QSPI NOR flash0 supports the command by typing   ls   at the U-Boot prompt: => ls ls - lists files in a directory (default) Usage: ls <interface> [<dev[:part]> [directory]] - Lists files in directory  [directory]  of partition  [part]  on device type  [interface]  and instance  [dev] . If U-Boot does not support this command, then update the composite firmware image in QSPI NOR flash0. Program image to QSPI NOR flash:  =>   sf erase 0x0 +$filesize && sf write 0xa0000000 0x0 $filesize Address    0x0  is the location of the composite firmware image in QSPI NOR flash.   Refer Flash layout for new boot flow with TF-A  for  t he complete flash memory layout.  Boot from QSPI NOR flash1:   => cpld  reset altbank In boot log, you’ll see: Board: LS1046ARDB, boot from QSPI vBank 4 Ensure that SD card, USB flash drive, or SCSI hard disk installed with LSDK Ubuntu distribution is plugged into the board to boot the board to Ubuntu. If U-Boot does not find LSDK on a mass storage device, it will boot TinyDistro from   lsdk_linux_arm64_ tiny.itb   stored in QSPI NOR flash.
View full article
The table below shows the mapping of the Ethernet port names appearing on the front panel of the LS1043ARDB chassis with the port names in U-Boot, tinyDistro, and NXP LSDK userland.  Ethernet port mapping Port name on chassis Port name in U-Boot Port name in Linux (tinyDistro) Port name in Linux (LSDK userland) QSGMII.P0 FM1@DTSEC1 eth0 fm1-mac1 QSGMII.P1 FM1@DTSEC2 eth1 fm1-mac2 QSGMII.P2 FM1@DTSEC3 eth2 fm1-mac5 QSGMII.P3 FM1@DTSEC4 eth3 fm1-mac6 RGMII1 FM1@DTSEC5 eth4 fm1-mac3 RGMII2 FM1@DTSEC6 eth5 fm1-mac4 10G Copper FM1@TGEC1 eth6 fm1-mac9 Below is a table that shows the mapping between port numbers (from configuration file), character devices, hardware ports (Rx) and mEMACs for the standard SDK configuration (using RCW protocol 1455). FMC port mapping Port name on chassis XML port number (configuration file) Serdes protocol Character device Hardware port (device tree node) mEMAC (device tree node) QSGMII.P0 1 qsgmii fm0-port-rx0 port@88000 ethernet@e0000 QSGMII.P1 2 qsgmii fm0-port-rx1 port@89000 ethernet@e2000 QSGMII.P2 5 qsgmii fm0-port-rx4 port@8c000 ethernet@e8000 QSGMII.P3 6 qsgmii fm0-port-rx5 port@8d000 ethernet@ea000 RGMII1 3 rgmii fm0-port-rx2 port@8a000 ethernet@e4000 RGMII2 4 rgmii fm0-port-rx3 port@8b000 ethernet@e6000 10G Copper 9 xgmii fm0-port-rx6 port@90000 ethernet@f0000
View full article
LS1012A integrates a hardware packet forwarding engine to provide high performance Ethernet interfaces. This document introduces PFE hardware and software decomposition and data flow, setting up two PFE Ethernet ports to implement Ethernet packets forwarding through PFE, how to modify PFE driver and dts file to set up single PFE Ethernet port on LS1012A custom boards. PFE hardware Structure PFE Software Decomposition and Data Flow Setting up Two PFE Ethernet Ports to Implement Ethernet Packets Forwarding Set up Single PFE Ethernet Port on LS1012A Custom Boards
View full article
This document introduces how to configure RCW to support GPIO on LS1043 platform, how to configure Linux Kernel to load Linux GPIO driver to access GPIO from SYSFS and using loopback method to do verification on the target board. RCW configuration to support GPIO Configure GPIO driver in Linux Kernel Verify GPIO on the target board
View full article
How to bring up a card when the flash is blank, or the image is corrupted. How to boot cards from various boot mode when changed the RCW as requirements. This documentation will use LS1046ARDB as new board to realize the functions (all target board in the document is LS1046ARDB). Content Bring up LS1046A with CodeW arrior TAP Boot up from the SD card Compile PBL binary from RCW source file Compile the PBL binary into firmware Program the firmware into the target board (LS1046ARDB) Boot up from the QSPI Compile firmware from RCW source file Program the firmware into the target board (LS1046ARDB) Boot up from the eMMC Enable the on board eMMC Compile firmware from RCW source file Program the firmware into the target board (LS1046ARDB)
View full article
The BareMetal framework targets to support the scenarios that need low latency, real-time response, and high-performance. There is no OS running on the cores and customer-specific application runs on that directly. This document describes how to develop customer-specific application based on BareMetal framework. The directory “app” stored in u-boot repository includes the use cases for testing GPIO, I2C, IRQ init, QSPI, Ethernet, USB, PCIe, CAN, ENETC and SAI features. 1. GPIO use case 2. I2C use case 3. IRQ use case 4. QSPI Use case 5. Ethernet use case 6. USB Use case 7. PCIe use case 8. CAN Use Case 9. ENETC Use Case 10. SAI Use Case 11. Build and Run the Baremetal Application
View full article
1. FMan VSP Hardware Overview 2. The usage of Virtual Storage Profiles 3. FMan VSP Driver 4. Traffic bifurcation using VSP on LS1046ARDB
View full article
1. Fuse Provisioning Utility Introduction 2. Input File for Fuse Provisioning Tool 3. Build Fuse Provisioning Firmware Image with flex-builder and Deploy the Firmware Image 4. Build and Deploy Fuse Provisioning Image Manually 5. Validate Fuse Provisioning
View full article
This document introduces basic concept of Power Management, LS1028 RCW configuration to enable GPIO, Linux Kernel source and device tree modification to support GPIO wakeup, Kernel configuration to enable sleep feature and GPIO wakeup driver, export GPIO pin and enable interrupt, Order system to sleep and trigger GPIO interrupt to wake up the system.
View full article
PCI-Express introduction PCIe Device Type And Topology PCIe system architecture          2.1 Transaction Layer          2.2 Data link layer          2.3 Physical Layer Interrupts Mechanism PCIe enumeration and resource assignment
View full article
DPDK provides a simple, complete framework for fast packet processing in data plane applications. Using the APIs provided as part of the framework, applications can leverage the capabilities of underlying network infrastructure. This document describes DPDK basic introduction, DPDK core components, DPDK Linux networking, DPDK Crypto Subsystem, DPDK memory manager and DPDK implementation on Layerscape platforms. 1. DPDK Basic Introduction 2. DPDK core components 3. DPDK Linux Networking 4. DPDK Crypto Subsystem     4.1 DPDK Crypto Subsystem APIs     4.2 DPDK Security Offload – rte_security 5. DPDK memory manager     5.1 Multi-layered memory architecture     5.2 Buffer Manager     5.3 Packet Buffer mbuf 6. DPDK implementation on Layerscape platforms
View full article
boot loader requirements to boot Kernel ARM64 Virtual Memory Layout ARM64 IRQ Vectors Setup FDT Mapping ARM64 Kernel booting process        5.1 Prior to start_kernel              5.1.1__create_page_tables              5.1.2 __cpu_setup              5.1.3 __primary_switch       5.2 Start_kernel             5.2.1 Start_kernel -> setup_arch                     5.2.1.1 Start_kernel -> setup_arch -> setup_machine_fdt                     5.2.1.2 Start_kernel -> setup_arch -> paging_init / bootmem_init                     5.2.1.3 Start_kernel -> setup_arch -> psci_init             5.2.2 Start_kernel -> Rest_init                      5.2.2.1 Start_kernel -> Rest_init -> kernel_init
View full article
FlexSPI controller is new IP from Microcontroller group and it will replace QSPI in all future SoCs. FlexSPI is superset and superior to QSPI. Most of the feature set of FlexSPI and QSPI are same, but there are few difference related to IO signal width, command set, default LUT programming and Hyperflash support. FlexSPI has AHB and IP bus interface. AHB 64-bit interface and is mainly use for READ and WRITE flash operation whereas IP is 32-bit interface and it supports all flash operation – READ, WRITE, STATUS CHECK, GET PARAMS etc. FlexSPI programs various commands in LUT and these commands sequence are trigger when we do AHB/IP bus READ/WRITE operation. This documents introduces FlexSPI controller, FlexSPI serial NOR driver implementation and FlexSPI serial NAND driver implementation.  1.  FlexSPI Controller Introdunction 1.1 FlexSPI Connections 1.2 FlexSPI Command Interfaces 1.3 FlexSPI Look Up Table(LUT) 1.4 FlexSPI Command Set (Programmable Sequence Engine)   2. FlexSPI serial NOR driver implementation 3. FlexSPI serial NAND driver implementation    
View full article
NXP created eIQ machine learning software for QorIQ Layerscape applications processors, a set of ML tools which allows developing and deploying ML applications on the QorIQ Layerscape family of devices. OpenCV is an open-source computer vision library. It offers a unitary solution for both the neural network inference (DNN module) and the standard machine learning algorithms (ML module). It includes many computer vision functions, making it easier to build complex machine learning applications in a short amount of time and without being dependent on other libraries. This document describe applications YOLO object detection, Image segmentation, Image colorization, Image classification, Human pose estimation and Text detection developed based on OpenCV DNN framework.
View full article
1. Debugging Packet Loss Issue 1.1 Frame Manager(FMan) Introduction 1.2 Frame Manager Buffer Manager Interface (BMI) Rx Port Statistics Counters 1.3 Linux Sysfs Support for Fman Rx Port Statistics 2. Queue Manager(Qman) Enqueue Rejections 2.1 Reasons for an Enqueue Rejection 2.2 Frame Queue Descriptor 2.3 Qman Debugfs 2.4 Buffer Manager (BMan) Debugfs
View full article
The below steps describe how to modify the content of the existing rootfs. Steps are explained using LX2160ARDB board, however, the steps are applicable to all Layerscape devices and boards. Extract and modify contents of cpio.gz archive Generate .itb image Set up Ethernet connection between TFTP server and Layerscape board Boot the Linux kernel using new .itb image Step1: Extract and modify contents of cpio.gz archive Create a temporary directory for extracting the contents of the cpio.gz archive image. For example: mkdir temp_folder.   Extract the contents of the cpio.gz archive in the temporary folder. For example: gunzip -c rootfs_lsdk2012_yocto_tiny_arm64.cpio.gz | sh -c 'cd temp_folder/&& cpio -i' The temporary folder lists the filesystem as follows:  bin boot dev etc home init lib media mnt proc run sbin sys tmp usr var Make changes to the filesystem in the temporary folder. For example: copy a 'HelloWorld' file in the filesystem using the following command: cp <path>/HelloWorld . Repack the filesystem into a new cpio.gz archive. For example: use the following command: sh -c 'cd temp_folder/ && find . | cpio -H newc -o' | gzip -9 > new_rootfs_lsdk2012_yocto_tiny_arm64.cpio.gz   Step2: Generate .itb image Change the path for new rootfs (new_rootfs_lsdk2012_yocto_tiny_arm64.cpio.gz) in linux_arm64_LS.its using gedit editor. For example: Change directory to flexbuild_lsdk<version>/configs/linux. gedit linux_arm64_LS.its Update path as follows:  data = /incbin/("../../packages/rfs/initrd/new_rootfs_lsdk2012_yocto_tiny_arm64.cpio.gz"); Generate .itb image using the following command: For example: flex-builder -i mkitb -r yocto:tiny This generates lsdk2012_yocto_tiny_LS_arm64.itb image. Copy the .itb image to the TFTP server. Step 3 - Set up Ethernet connection between TFTP server and Layerscape board Set up Ethernet connection between the board (for example, LX2160ARDB) and host machine on which you have configured the TFTP server. Boot the board to U-Boot prompt. U-Boot prints a list of enabled Ethernet interfaces. For example, LX2160ARDB U-Boot prints following Ethernet interfaces. DPMAC2@xlaui4, DPMAC3@xgmii, DPMAC4@xgmii, DPMAC5@25g-aui, DPMAC6@25g-aui, DPMAC17@rgmii-id, DPMAC18@rgmii-id  Set server IP address to the IP address of the host machine on which you have configured the TFTP server . => setenv serverip <ipaddress1> Set ethact and ethprime as the ethernet interface connected to the TFTP server. See LX2160ARDB Ethernet Port Mapping for the mapping of Ethernet port names appearing on the chassis front panel with the port names in U-Boot and Linux. =>   setenv ethprime <name of interface connected to TFTP server> For example: => setenv ethprime DPMAC3@xgmii => setenv ethact <name of interface connected to TFTP server> For example: => setenv ethact DPMAC3@xgmii Set IP address of the board. You can set a static IP address or, if the board can connect to a dhcp server, you can use the dhcp command.  Static IP address assignment: => setenv ipaddr <ipaddress2> => setenv netmask <subnet mask> Dynamic IP address assignment: => dhcp Save the settings. => saveenv Check the connection between the board and the TFTP server. => ping $serverip Using DPMAC3@xgmii device host 192.168.2.1 is alive Step4: Boot the Linux kernel using new .itb image Load the .itb image from TFTP server to DDR memory of the board. => tftp 0xa0000000 <itb_file_name> For example:   => tftp 0xa0000000 lsdk2012_yocto_tiny_LS_arm64.itb Boot the kernel with .itb image as follows: => bootm 0xa0000000#<board_name> For example:   => bootm 0xa0000000#lx2160ardb Let the board boots to Tiny Linux. List the filesystem. NXP LSDK tiny 2012 (based on Yocto) TinyLinux login: root root@TinyLinux:~# ls root@TinyLinux:~# cd / root@TinyLinux:/# ls HelloWorld boot etc init media new_rootfs_lsdk2012_yocto_tiny_arm64.cpio.gz root sbin tmp var bin dev home lib mnt proc run sys usr root@TinyLinux:/# You will observe the HelloWorld file available in the filesystem.
View full article
The VPP platform is an extensible framework that provides out-of-the-box production quality switch/router functionality. This document introduces Vector Packet Processing(VPP), creating VPP IPsec configuration scripts, building VPP v20.05 in LSDK 20.12, executing VPP IPsec on LS1046ARDB and LS2088ARDB platforms
View full article
This topic explains steps to compile and execute Hello World program (in C) on a Layerscape board. Similarly, you can execute other custom applications on your board. Create a Hello World program in C.  Copy this file (.c) on a Ubuntu machine (using WinSCP). Run the following command to convert the .c file into a binary file. $ aarch64-linux-gnu-gcc <.c file> -o <binary file> For example: $ aarch64-linux-gnu-gcc Hello_World.c -o Hello_World Note: You can use this command in the same directory in which .c file is present or provide path of this file. Connect to the board console on which you want to execute the custom application via terminal and boot the board with LITB. Note: It is suggested to boot the board with Tiny Linux for executing custom application.  => tftp 0xa0000000 lsdk2004_yocto_tiny_LS_arm64.itb Using e1000#0 device TFTP from server 192.168.3.1; our IP address is 192.168.3.142 Filename 'lsdk2004_yocto_tiny_LS_arm64.itb'. Load address: 0xa0000000 Loading: ################################################################# ################################################################# ##################################################### 4.3 MiB/s done Bytes transferred = 37030212 (2350944 hex) => bootm 0xa0000000#lx2160ardb ## Loading kernel from FIT Image at a0000000 ... Using 'lx2160ardb' configuration Trying 'kernel' kernel subimage Description: ARM64 Kernel Created: 2021-02-03 6:01:29 UTC Type: Kernel Image Compression: gzip compressed Data Start: 0xa00000d0 Data Size: 14086432 Bytes = 13.4 MiB When Tiny Linux boots, enable Ethernet to download the HelloWorld program on the board. To see the available networks. root@TinyLinux:~# ifconfig -a eth0 Link encap:Ethernet HWaddr 68:05:ca:2b:2c:ca BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:114 Memory:90460c0000-90460e0000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) sit0 Link encap:UNSPEC HWaddr 00-00-00-00-31-00-6C-6F-00-00-00-00-00-00-00-00 NOARP MTU:1480 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Enable the Ethernet connection. # ifconfig <eth interface> <IP address> netmask <netmask> up For example: root@TinyLinux:~# ifconfig eth0 192.168.3.121 netmask 255.255.255.0 up Set the gateway IP and ping the server to test the connection. # route add default gw <gateway IP> # ping <server IP> For example: root@TinyLinux:~# route add default gw 192.168.3.1 root@TinyLinux:~# ping 192.168.3.1 PING 192.168.3.1 (192.168.3.1): 56 data bytes 64 bytes from 192.168.3.1: seq=0 ttl=64 time=0.479 ms 64 bytes from 192.168.3.1: seq=1 ttl=64 time=0.204 ms Download the HelloWorld binary file on your board. For example: root@TinyLinux:~# scp user@192.168.3.1:/tftpboot/LX2160ARDB/HelloWorld . Execute the HelloWorld application. root@TinyLinux:~# ./HelloWorld Hello, World!    
View full article
This topic shows steps to customize LITB by using a different kernel image instead of the existing kernel image. Browse to the FlexBuild installation directory. Modify the kernel image in linux_arm64_LS.its. $ vi configs/linux/linux_arm64_LS.its Save the changes done in the file. Generate LITB using flex-builder. $ source setup.env $ flex-builder -i mkitb -r <distro_type>:<distro_scale> -a <arch> For example: $ source setup.env $ flex-builder -i mkitb -r ubuntu:main -a arm64 INSTRUCTION: mkitb DISTRO TYPE: ubuntu DISTRO SCALE: main .... .... /home/flexbuild_lsdk2004/build/images/lsdk2004_ubuntu_main_LS_arm64.itb [Done]   Note: To create .itb file directly from .its file, run this command: mkimage -f <xyz.its> <xyz.itb> Connect to the board console via terminal and run following commands at U-boot to boot the board with customized LITB. => ping $serverip Using e1000#0 device host 192.168.3.1 is alive => Using e1000#0 device host 192.168.3.1 is alive => tftp 0xa0000000 lsdk2004_ubuntu_main_LS_arm64.itb Using e1000#0 device TFTP from server 192.168.3.1; our IP address is 192.168.3.49 Filename 'lsdk2004_ubuntu_main_LS_arm64.itb'. Load address: 0xa0000000 Loading: ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# ################################################################# #################################### 9.8 MiB/s done Bytes transferred = 683506200 (28bd7a18 hex) => bootm 0xa0000000#lx2160ardb ## Loading kernel from FIT Image at a0000000 ... Using 'lx2160ardb' configuration Trying 'kernel' kernel subimage Description: ARM64 Kernel Created: 2021-02-03 6:01:29 UTC Type: Kernel Image Compression: gzip compressed Data Start: 0xa00000d0 Data Size: 14086432 Bytes = 13.4 MiB   Check timestamp in boot log to ensure that the board is booted with the updated kernel image in the customized LITB.   Starting kernel ... [ 0.000000] Booting Linux on physical CPU 0x0000000000 [0x410fd083] [ 0.000000] Linux version 5.4.3 (test@Ubuntu-18) (gcc version 7.5.0 (Ubuntu/Linaro 7.5.0-3ubuntu1~18.04)) #1 SMP PREEMPT Wed Feb 3 00:04:09 IST 2021 [ 0.000000] Machine model: NXP Layerscape LX2160ARDB [ 0.000000] earlycon: pl11 at MMIO32 0x00000000021c0000 (options '') [ 0.000000] printk: bootconsole [pl11] enabled [ 0.000000] efi: Getting EFI parameters from FDT:  
View full article