ワイヤレス接続に関するナレッジベース

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

Wireless Connectivity Knowledge Base

ディスカッション

ソート順:
Sniffing is the process of capturing any information from the surrounding environment. In this process, addressing or any other information is ignored, and no interpretation is given to the received data. Freescale provides both means and hardware to create devices capable of performing this kind of operation. For example, a KW01 board can be easily turned into a Sub-GHz sniffer using Test Tool 12.2.0 which can be found at https://www.freescale.com/webapp/sps/download/license.jsp?colCode=TESTTOOL_SETUP&appType=file2&location=null&DOWNLOAD_ID=null After downloading and installing Test Tool 12.2.0 there are several easy steps to create your own sniffer for Sub-GHz bands. 1) How to download the sniffer image file onto KW01.      a) Connect KW01 to PC using the mini-usb cable      b) Connect the J-Link to the PC      c) Open Test Tool 12.2 and go to the Firmware Loaders tab      d) Select Kinetis Firmware Loader. A new tab will pop-up.      e) J-Link will appear under the J-Link devices tab.      f) Select the KW01Z128_Sniffer.srec file and press the upload button.     g) From the Development Board Option menu select KW01Z128.      h) Follow the on-screen instruction and unplug the board. Then plug it back in.      i) Close the Kinetis Firmware Loader tab and open the Protocol Analyzer Tab 2) How to use the Protocol Analyzer feature. Basics.     a) The Protocol Analyzer should automatically detect the KW01 sniffer. If not, close the tab, unplug the board, plug it back and re-open the tab. If this doesn’t work, try restarting Test Tool.     b) To start “sniffing” the desired channel, click the arrow down button from Devices: KW01 (COMx) Off and select the desired mode and channel.     c) The tab will change to ON meaning that KW01 will "sniff" on the specified channel. To select another channel, click the tab again and it will switch back to Off. Then select a new channel.      d) Regarding other configurations, please note that you can specify what decoding will be applied to the received data. Additional information: The sniffer image found in Test Tool is compiled for the 920-928MHz frequency band. Because of this, the present document will have attached to it two sniffer images, for the 863-870MHz and the 902-928MHz frequency bands. To upload a custom image perform the steps described at the beginning of this document, but instead of selecting a *.srec file from the list in Kinetis Firmware Loader click the Browse button and locate the file on disk. After selecting it, redo the steps for uploading an image file. A potential outcome: sometimes, if you load a different frequency band sniffer image, the Protocol Analyzer will display the previously used frequency band. To fix this, close Test Tool, re-open it and go to the Protocol Analyzer tab again. The new frequency band should be displayed. More information on this topic can be found in Test Tool User Guide (..\Freescale\Test Tool 12\Documentation\TTUG.pdf), under Chapter 5 (Protocol Analyzer, page 87).
記事全体を表示
The FRDM-KW36 comes with the OpenSDA circuit which allows users to program and debug the evaluation board. There are different solutions to support such OpenSDA circuits: 1. The J-Link (SEGGER) firmware.  2. The CMSIS-DAP (mbed) firmware. The FRDM-KW36 comes pre-programmed with the CMSIS-DAP firmware. However, if you want to update the firmware version, you need to perform the next steps.  Press and hold the Reset button (SW1 push button in the board).  Unplug and plug the FRDM-KW36 again to the PC.  The board will be enumerated as "DAPLINKBOOT" device. Drag and drop the binary file to update the OpenSDA firmware.  If the J-Link version is programmed, the board will be enumerated as "FRDM-KW36J". On the other hand, if the CMSIS-DAP version is programmed, the board will be enumerated as "FRDM-KW36". The binary for the J-link version can be downloaded from the next link: SEGGER - The Embedded Experts - Downloads - J-Link / J-Trace  The binary for the CMSIS-DAP version can be found in the next link: OpenSDA Serial and Debug Adapter|NXP    Hope this helps... 
記事全体を表示
This patch fix the issue in hdmi dongle JB4.2.2_1.1.0-GA release that wifi((STA+P2P)/AP) cann't be enabled properly. In the root directory of Android Source Code, use the following command to apply the patch: $ git apply hdmi_dongle_wifi_jb4.2.2_1.1.0.patch
記事全体を表示
Bluetooth Low Energy, through the Generic Attribute Profile (GATT), supports various ways to send and receive data between clients and servers. Data can be transmitted through indications, notifications, write requests and read requests. Data can also be transmitted through the Generic Access Profile (GAP) by using broadcasts. Here however, I'll focus on write and read requests. Write and read requests are made by a client to a server, to ask for data (read request) or to send data (write request). In these cases, the client first makes the request, and the server then responds, by either acknowledging the write request (and thus, writing the data) or by sending back the value requested by the client. To be able to make write and read requests, we must first understand how BLE handles the data it transmits. To transmit data back and forth between devices, BLE uses the GATT protocol. The GATT protocol handles data using a GATT database. A GATT database implements profiles, and each profile is made from a collection of services. These services each contain one or more characteristics. A BLE characteristic is made of attributes. These attributes constitute the data itself, and the handle to reference, access or modify said data. To have a characteristic that is able to be both written and read, it must be first created. This is done precisely in the GATT database file ( gatt_db.h 😞 /* gatt_db.h */ /* Custom service*/ PRIMARY_SERVICE_UUID128(service_custom, uuid_custom_service)     /* Custom characteristic with read and write properties */     CHARACTERISTIC_UUID128(char_custom, uuid_custom_char, (gGattCharPropRead_c | gGattCharPropWrite_c))         /* Custom length attribute with read and write permissions*/         VALUE_UUID128_VARLEN(value_custom, uuid_custom_char, (gPermissionFlagReadable_c | gPermissionFlagWritable_c), 50, 1, 0x00) The custom UUIDs are defined in the gatt_uuid128.h file: /* gatt_uuid128.h */ /* Custom 128 bit UUIDs*/ UUID128(uuid_custom_service, 0xE0, 0x1C, 0x4B, 0x5E, 0x1E, 0xEB, 0xA1, 0x5C, 0xEE, 0xF4, 0x5E, 0xBA, 0x00, 0x01, 0xFF, 0x01) UUID128(uuid_custom_char, 0xA1, 0xB2, 0xC3, 0xD4, 0xE5, 0xF6, 0x17, 0x28, 0x39, 0x4A, 0x5B, 0x6C, 0x7D, 0x8E, 0x9F, 0x00) With this custom characteristic, we can write and read a value of up to 50 bytes (as defined by the variable length value declared in the gatt_db.h file, see code above). Remember that you also need to implement the interface and functions for the service. For further information and guidance in how to make a custom profile, please refer to the BLE application developer's guide (BLEDAG.pdf, located in <KW40Z_connSw_install_dir>\ConnSw\doc\BLEADG.pdf. Once a connection has been made, and you've got two (or more) devices connected, read and write requests can be made. I'll first cover how to make a write and read request from the client side, then from the server side. Client To make a write request to a server, you'll need to have the handle for the characteristic you want to modify. This handle should be stored once the characteristic discovery is done. Obviously, you also need the data that is going to be written. The following function needs a pointer to the data and the size of the data. It also uses the handle to tell the server what characteristic is going to be written: static void SendWriteReq(uint8_t* data, uint8_t dataSize) {       gattCharacteristic_t characteristic;     characteristic.value.handle = charHandle;     // Previously stored characteristic handle     GattClient_WriteCharacteristicValue( mPeerInformation.deviceId, &characteristic,                                          dataSize, data, FALSE,                                          FALSE, FALSE, NULL); } uint8_t wdata[15] = {"Hello world!\r"}; uint8_t size = sizeof(wdata); SendWriteReq(wdata, size); The data is send with the GattClient_WriteCharacteristicValue() API. This function has various configurable parameters to establish how to send the data. The function's parameters are described with detail on the application developer's guide, but basically, you can determine whether you need or not a response for the server, whether the data is signed or not, etc. Whenever a client makes a read or write request to the server, there is a callback procedure triggered,  to which the program then goes. This callback function has to be registered though. You can register the client callback function using the App_RegisterGattClientProcedureCallback() API: App_RegisterGattClientProcedureCallback(gattClientProcedureCallback); void gattClientProcedureCallback ( deviceId_t deviceId,                                    gattProcedureType_t procedureType,                                    gattProcedureResult_t procedureResult,                                    bleResult_t error ) {   switch (procedureType)   {        /* ... */        case gGattProcWriteCharacteristicValue_c:             if (gGattProcSuccess_c == procedureResult)             {                  /* Continue */             }             else             {                  /* Handle error */             }             break;        /* ... */   } } Reading an attribute is somewhat similar to writing an attribute, you still need the handle for the characteristic, and a buffer in which to store the read value: #define size 17 static void SendReadReq(uint8_t* data, uint8_t dataSize) {     /* Memory has to be allocated for the characteristic because the        GattClient_ReadCharacteristicValue() API runs in a different task, so        it has a different stack. If memory were not allocated, the pointer to        the characteristic would point to junk. */     characteristic = MEM_BufferAlloc(sizeof(gattCharacteristic_t));     data = MEM_BufferAlloc(dataSize);         characteristic->value.handle = charHandle;     characteristic->value.paValue = data;     bleResult_t result = GattClient_ReadCharacteristicValue(mPeerInformation.deviceId, characteristic, dataSize); } uint8_t rdata[size];         SendReadReq(rdata, size); As mentioned before, a callback procedure is triggered whenever there is a write or read request. This is the same client callback procedure used for the write request, but the event generates a different procedure type: void gattClientProcedureCallback ( deviceId_t deviceId,                                    gattProcedureType_t procedureType,                                    gattProcedureResult_t procedureResult,                                    bleResult_t error ) {   switch (procedureType)   {        /* ... */        case gGattProcReadCharacteristicValue_c:             if (gGattProcSuccess_c == procedureResult)             {                  /* Read value length */                  PRINT(characteristic.value.valueLength);                  /* Read data */                  for (uint16_t j = 0; j < characteristic.value.valueLength; j++)                  {                       PRINT(characteristic.value.paValue[j]);                  }             }             else             {               /* Handle error */             }             break;       /* ... */   } } There are some other methods to read an attribute. For further information, refer to the application developer's guide chapter 5, section 5.1.4 Reading and Writing Characteristics. Server Naturally, every time there is a request to either read or write by a client, there must be a response from the server. Similar to the callback procedure from the client, with the server there is also a callback procedure triggered when the client makes a request. This callback function will handle both the write and read requests, but the procedure type changes. This function should also be registered using the  App_RegisterGattServerCallback() API. When there is a read request from a client, the server responds with the read status: App_RegisterGattServerCallback( gattServerProcedureCallback ); void gattServerProcedureCallback ( deviceId_t deviceId,                                    gattServerEvent_t* pServerEvent ) {     switch (pServerEvent->eventType)     {         /* ... */         case gEvtAttributeRead_c:             GattServer_SendAttributeReadStatus(deviceId, value_custom, gAttErrCodeNoError_c);                             break;         /* ... */     } } When there is a write request however, the server should write the received data in the corresponding attribute in the GATT database. To do this, the function GattDb_WriteAttribute() can be used: void gattServerProcedureCallback ( deviceId_t deviceId,                                    gattServerEvent_t* pServerEvent ) {     switch (pServerEvent->eventType)     {         /* ... */         case gEvtAttributeWritten_c:             if (pServerEvent->eventData.attributeWrittenEvent.handle == value_custom)             {                 GattDb_WriteAttribute( pServerEvent->eventData.attributeWrittenEvent.handle,                                        pServerEvent->eventData.attributeWrittenEvent.cValueLength,                                        pServerEvent->eventData.attributeWrittenEvent.aValue );                              GattServer_SendAttributeWrittenStatus(deviceId, value_custom, gAttErrCodeNoError_c);             }             break;         /* ... */     } } If you do not register the server callback function, the attribute can still be written in the GATT database (it is actually done automatically), however, if you want something else to happen when you receive a request (turning on a LED, for example), you will need the server callback procedure.
記事全体を表示
This document describes how to update and sniff Bluetooth LE wireless applications on the USB-KW41 Programming the USB-KW41 as sniffer   It was noticed that there are some issues trying to follow a Bluetooth LE connection, even if the sniffer catches the connection request. These issues have been fixed in the latest binary file which can be found in the Test Tool for Connectivity Products 12.8.0.0 or newest.   After the Test Tool Installation, you’ll find the sniffer binary file at the following path. C:\NXP\Test Tool 12.8.1.0\images\KW41_802.15.4_SnifferOnUSB.bin   Programming Process. 1. Connect the USB-KW41Z to your PC, and it will be enumerated as Mass Storage Device 2. Drag and drop the "KW41_802.15.4_SnifferOnUSB.bin" included in Test tool for Connectivity Products.    "C:\NXP\Test Tool 12.8.0.0\images\KW41_802.15.4_SnifferOnUSB.bin"   3. Unplug the device and hold the RESET button of the USB-KW41Z, plug to your PC and the K22 will enter in bootloader mode. 4. Drag and drop the "sniffer_usbkw41z_k22f_0x8000.bin" included in Test tool for Connectivity Products.    "C:\NXP\Test Tool 12.8.5.9\images\sniffer_usbkw41z_k22f_0x8000.bin"   5. Then, unplug and plug the USB-KW41Z to your PC.                                                                                                          Note: If the USB-KW41 is not enumerated as Mass Storage Device, please look at the next thread https://community.nxp.com/thread/444708   General Recommendations   Software Tools  Kinetis Protocol Analyzer Wireshark version (2.4.8) Hardware Tools 1 USB-KW41 (updated with KW41_802.15.4_SnifferOnUSB.bin from Test Tool 12.8 or later)   The Kinetis Protocol Analyzer provides the ability to monitor the Bluetooth LE Advertisement Channels. It listens to all the activity and follows the connection when capturing a Connection Request.   Bluetooth LE Peripheral device transmits packets on the 3 advertising channels one after the other, so the USB-KW41 will listen to the 3 channels one by one and could or not catch the connection request.   Common use case The USB-KW41 will follow the Bluetooth LE connection if the connection request happens on the same channel that It is listening. If is listening to a different channel when the connection request is sent, it won't be able to follow it.   A Simple recommendation is the Bluetooth LE Peripheral should be set up to send the adv packets only to one channel and the sniffer just capturing on the same channel.   Improvement Use 3 USB-KW41, each of them will be dedicated to one channel and will catch the connection request.   Configure Kinetis Protocol Analyzer and Wireshark Network Analyzer   Note: For better results, address filter can be activated. When you are capturing all the packets in the air, you will notice 3 adv packets. Each packet will show the adv channel that is getting the adv frame.       One of the three sniffers will capture the Connection Request. In this case, it happens on channel 38.       You will be able to follow the connection, see all the data exchange.   For a better reference, you can look at the USB-KW41 Getting Started     Hope it helps   Regards, Mario
記事全体を表示
Wireless Equipment: Ellisys:  Ellisys is a leading worldwide supplier of advanced protocol test solutions for Bluetooth®, Wi-Fi, WPAN, USB 2.0, SuperSpeed USB 3.1, USB Power Delivery, USB Type-C, DisplayPort and Thunderbolt technologies.  USB, Bluetooth and WiFi Protocol Test Solutions  Bluetooth Vanguard - Advanced Bluetooth Analysis System Bluetooth Qualifier - Bluetooth Qualification System   RFcreations:     RFcreations is a core team of highly skilled and knowledgeable, professional engineers with decades of experience across the design and development of both RF and digital hardware, embedded, protocol stacks and UI software mini-moreph morephCS   Teledyne Lecroy:    offers an extensive range of test solutions to help with design, development, and deployment of devices and systems frontline-x240 Wireless Protocol Analyzer  frontline-x500e Wireless Protocol Analyzer  Rohde&Schwarz:        is a global technology group striving for a safer and connected world. Offers Test & Measurement, Technology Systems and Networks & Cybersecurity Divisions R&S CMW270 wireless connectivity tester Useful links:  Top Online Bluetooth LE learning Resource Ellisys Bluetooth Video Series RFcreations Bluetooth Sniffers and Test Tools Learn Bluetooth Low Energy in a single weekend
記事全体を表示
The RW61x is a highly integrated, low-power tri-radio wireless MCU with an integrated MCU and Wi-Fi ®  6 + Bluetooth ®  Low Energy (LE) 5.4 / 802.15.4 radios designed for a broad array of applications, including connected smart home devices, enterprise and industrial automation, smart accessories and smart energy. The RW61x MCU subsystem includes a 260 MHz Arm ®  Cortex ® -M33 core with Trustzone ™ -M, 1.2 MB on-chip SRAM and a high-bandwidth Quad SPI interface with an on-the-fly decryption engine for securely accessing off-chip XIP flash. The RW612 includes a full-featured 1x1 dual-band (2.4 GHz/5 GHz) 20 MHz Wi-Fi 6 (802.11ax) subsystem bringing higher throughput, better network efficiency, lower latency and improved range over previous generation Wi-Fi standards. The Bluetooth LE radio supports 2 Mbit/s high-speed data rate, long range and extended advertising. The on-chip 802.15.4 radio can support the latest Thread mesh networking protocol. In addition, the RW612 can support Matter over Wi-Fi or Matter over Thread offering a common, interoperable application layer across ecosystems and products. NXP RW61x Block Diagram Documents   RW61x Datasheet      RW61x Datasheet RW61x User Manual:  UM11865: RW61x User Manual RW61x Register Manual: RM00278: RX16x Registers     RW61x Modules   Azurewave   AW-CU570 u-blox  IRIS-W10 Series  Murata LBES0ZZ2FR    Evaluation boards    FRDM-RW612 FRDM-RW612 is a compact and scalable development board for rapid prototyping of the RW61x series of Wi-Fi 6 + Bluetooth Low Energy + 802.15.4 tri-radio wireless MCUs. It offers easy access to the MCU’s I/O's and peripherals, integrated open-standard serial interfaces, external flash memory and on-board MCU-Link debugger. FRDM-RW612 Getting Started Getting Started with FRDM-RW612 FRDM-RW612 User Manual: UM12160: FRDM-RW612 Board User Manual FRDM-RW612 Quick Start Guide FRDM-RW612 Quick Start Guide   u-blox   USB-IRIS-W1 The USB-IRIS-W1 development platform is built on the dual-band Wi-Fi 6 and Bluetooth LE module IRIS-W1, based on the NXP RW610/612 chip. The board is designed with a USB interface to simplify evaluation and prototyping directly from a PC. In addition to the IRIS-W1 module with integrated antenna, it also integrates four buttons, an RGB LED, and a USB/UART converter, to further support an easy evaluation.   u-blox   EVK-IRIS-W1  The EVK-IRIS-W1 evaluation kit provides stand-alone use of the IRIS-W1 module series featuring the NXP RW610/612 chipset. Azurewave    AW-CU570-EVB   Murata   2FR EVK     Application Notes     RM00287: Wi-Fi Driver API for SDK 2.16.100     The radio driver source code provides APIs to send and receive packets over the radio interfaces by communicating with the firmware images. This manual provides the reference documentation for the Wi-Fi driver and Wi-Fi Connection Manager.  UM12133: NXP NCP Application Guide for RW612 with MCU Host - User manual     This user manual describes: • The NXP NCP application for RW612 with MCU host platform i.MX RT1060 as example. • The hardware connections for one of the four supported interfaces to enable NCP mode on the NXP RW612 BGA V4 board (UART, USB, SDIO, or SPI). • The method to build and run the NCP applications on both the NCP host (i.MX RT1060) and the NCP device (RW612). The applications apply to Wi-Fi, Bluetooth Low Energy and OpenThread (OT)    UM12095:  NXP NCP Application Guide for RW612 with MPU Host - User manual      This user manual describes: • The NXP NCP application for RW612 with MPU host platform i.MX 8M Mini as example. • The hardware connections for one of the four supported interfaces to enable NCP mode on the NXP RW612 BGA V4 board (UART, USB, SDIO, or SPI). • The method to build and run the NCP applications on both the NCP host (i.MX 8M Mini) and the NCP device (RW612). The applications apply to Wi-Fi, Bluetooth Low Energy and OpenThread (OT).  AN14439: Migration Guide from FRDM-RW612 Board to Third-Party Module board This Application note provides an overview of what it means to migrate the application to a different board with different flash and pSRAM AN14111: Target Wake Time (TWT) on RW16x This application note describes the target wake time feature and provides examples for RW61X AN13006: Compliance and Certification Considerations This application note provides guidance and tips on how to test products on NXP Wi-Fi devices for regulatory compliance. AN13049: Wi-Fi/Bluetooth/802.15.4 M.2 Key E Pinout Definition This Application note defines M.2 usage for both NXP Wi-Fi/Bluetooth and Tri-Radio M.2 module design   Support   if you have questions regarding RW61x family please leave a question in our Wireless MCU Community! here    Training FRDM-RW612 Training Wi0Fi 6 Tri-Radio in a secure i.MX RT MCU RW61x Series Training - NXP Community   Equipment: Wireless Equipment:     this article provides the links to the Equipment that helps to the project development Development Tools    SDK builder     The MCUXpresso SDK brings open-source drivers, middleware, and reference example application to speed your software development. NXP MCUXpresso      MCUXpresso IDE offers advanced editing, compiling and debugging features with the addition of MCU-Specific debugging. Supports connections with all general-purpose Arm Cortex-M.  VSCode      MCUXpresso for Visual Studio Code (VS Code) provides an optimized embedded developer experience for code editing and development. Zephyr RTOs        The Zephyr OS is based on a small-footprint kernel designed for use on resource-constrained and embedded systems: from simple embedded environmental sensors and LED wearables to sophisticated embedded controllers, smart watches, and IoT wireless applications. NXP Application Code Hub      Application Code Hub (ACH) repository enables engineers to easily find microcontroller software examples, code snippets, application software packs and demos developed by our in-house experts. This space provides a quick, easy and consistent way to find microcontroller applications. NXP SPSDK      Is a unified, reliable, and easy to use Python SDK library working across the NXP MCU portfolio providing a strong foundation from quick customer prototyping up to production deployment. NXP SEC Tool      The MCUXpresso Secure Provisioning Tool us a GUI-based application provided to simplify generation and provisioning of bootable executables on NCP MCU devices. NXP OTAP Tool      Is an application that helps the user to perform an over the air firmware update of an NXP development board. SDK Examples for Wireless MCUs    The wireless examples feature many common connectivity configurations.   Useful Links     Bluetooth Spec Bluetooth_5.0_Feature_Overview  Bluetooth_5.1_Feature_Overview  Bluetooth_5.2_Feature_Overview Bluetooth_5.3_Feature_Overview Bluetooth_5.4_Feature_Overview Bluetooth_6_Feature_Overview  
記事全体を表示
SC16is752 is a I2C to dual UART bridge, it is often used to expand UART interface when SoC UART can't provide sufficient interfaces, some users also select the chip to connect Bluetooth UART, in the article, the following 4 contents will be described. 1. Hardware connections (1) i.MX8MP-EVK--->SC16IS752---->nxp  IW416-EVK UART (2)i.MX8MP-EVK--->SC16IS752 (CPU UART <--->SC16IS752 UART Channel A) 2. Software configurations (1) Kernel options (2) SC16IS752 device tree 3. UART Test  Transmitting data between CPU uart3 & SC16is752 UART_A 4. Bluetooth test UART_A of SC16IS752 is connected to IW416 BT UART, and make a file transmission between PC & IW416 using obexd & obexctl tool.   NXP TIC Connectivity Team Weidong Sun Oct-28-2024
記事全体を表示
KW45’s three-core architecture integrates a 96 MHz CM33 application core, dedicated CM3 radio core and an isolated EdgeLock Secure Enclave. The Flash-based radio core with dedicated SRAM delivers a highly configurable and upgradeable software-implemented radio, freeing resources on the main core for customer application space. The Bluetooth Low Energy 5.3-compliant radio supports up to 24 simultaneous secure connections. The EdgeLock Secure Enclave’s isolated execution environment provides a set of cryptographic accelerators, key store operations and secure lifecycle management that minimizes main core security responsibilities. The KW45 MCU additionally integrates FlexCAN, helping enable seamless integration into an automobile’s in-vehicle or industrial CAN communication network. The FlexCAN module can support CAN’s flexible data rate (CAN FD) for increased bandwidth and lower latency. KW45 Block Diagram KW45 Architecture Block Diagram Documents: Reference Manual Datasheet Errata Secure Reference manual** Certifications SEPSI2 EUROPEAN UNION DECLARATION OF CONFORMITY (EVK) EUROPEAN UNION DECLARATION OF CONFORMITY (LOC) Bluetooth Spec Bluetooth_5.0_Feature_Overview  Bluetooth_5.1_Feature_Overview  Bluetooth_5.2_Feature_Overview Bluetooth_5.3_Feature_Overview Bluetooth_5.4_Feature_Overview Bluetooth_6_Feature_Overview Evaluation boards KW45 KW45-EVK KW45-EVK Schematic KW45-EVK Design Files KW45-EVK User manual KW45-LOC User manual KW45-EVK Getting Started Application Notes Software, Hardware and Peripherals:   AN14122 : How to use RTC on KW45 This application note describes how to configure and use the RTC peripheral in a BLE demo AN14141 : Enabling Watchdog Timer Module on KW45 Bluetooth Low Energy Connectivity Stack This application note describes the process to implement the WDOG timer in a Connectivity Stack demo. AN13855 : KW45/K32W1 Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device This Application note provides the steps and process for integrating the Over the Air Programming Client Service into a BLE peripheral device. AN13584 : Kinetis KW45 and K32W1 Loadpull Report This application note describes measurement methodology and associated results on the load-pull characteristics. AN13860 : Creating Firmware Update Image for KW45/K32W1 using OTAP tool This application note provides the steps to create and upgrade the image on the KW45 board via OTAP. AN14077 : Steps to migrating KW45 (1MB) to KW45 (512kB) This application note describes the initial steps require to migrate from 1MB flash to 512kB flash. Power Management: AN13230 : Kinetis KW45 and K32W1 Bluetooth LE Power Consumption Analysis This application note provides information about the power consumption of KW45 wireless MCUs, the hardware design and optimized for low power operation. AN13831 : KW45/K32W1 Power Management Hardware This application note describes the usage of the different modules dedicated to power management in the KW45/K32W1 MCU. RF: AN13687 : K32W1 Connectivity test for 802.15.4 Application This application note describes how to use the connectivity test tool to perform K32W1 802.15.4 RF performance. AN13728 : KW45 RF System Evaluation Report for Bluetooth LE and IEEE 802.15.4 Applications This application note provides the radio frequency evaluation test results of the KW45 board for BLE (2FSK modulation) and for IEEE 802.15.4 (OQPSK modulation) applications. Also describes the setup and tools that can be used to perform the tests.  AN14098: KW45-LOC RF Test Report This application note provides basic RF test result of the KW45B41Z localization board.  AN13228 : KW45-EVK RF System Evaluation Report for BLE Applications This application note provides the RF evaluation test result of the KW45B41Z-EVK for BLE application using two frequency Shift Keying modulation. AN13229 : KW45-EVK Co-existence with RF System Evaluation Report for BLE application This application note provides the RF evaluation test results of the KW45B41Z-EVK for BLE application (2FSK modulation) AN13512 : Kinetis Wireless Family Products BLE Coexistence with Wi-Fi Application  This application note provides the K32W1/4X low energy family products immunity on Wi-Fi signals and methods to improve coexistence with Wi-Fi  Security: AN13859 : KW45/K32W1 In-System Programming Utility This application note provides steps to boot KW45/K32W1 MCU in ISP mode and establish various serial connections to communicate with the MCU. AN1403 : Programming the KW45 Flash for Application and Radio Firmware via Serial Wire Debug during mass production This application note describes the steps to write, burn and programming all the necessary settings via SWD in mass production.    Support if you have questions regarding KW45 please leave a question in our Wireless MCU Community! here    Useful Links The best way to build a PCB first time right with KW45 (Automotive) or K32W1/MCXW71 (IoT/Industrial)... Community : In this community provides the important link to build a PCB using a KW45 or K32W148 and MCXW71 and all concerning the radio performances, low power and radio certification (CE/FCC/ICC) How to use the HCI_bb on Kinetis family products and get access to the DTM mode:  This article is presenting two parts: How to flash the HCI_bb binary into the Kinetis product. Perform RF measurement using the R&S CMW270 BLE HCI Application to set transmitter/receiver test commands: This article provides the steps to show how user could send serial commands to the device. Bluetooth LE HCI Black Box Quick Start Guide : This article describes a simple process for enabling the user controls the radio through serial commands. Kinetis (K32/38/KW45 & K32W1/MCXW71) Power Profile Tools:  This page is dedicated to the Kinetis (KW35/KW38/KW45) and MCX W7x (MCX W71) Power Profile Tools. It will help you to estimate the power consumption in your application (Automotive or IoT) and evaluate the battery lifetime of your solution. KW45/K32W1 32MHz & 32kHz Oscillation margins: this article provides the properly configuration for the Oscillation margins for the circuit. KW45 Based CS 1 to Many Demo NXP - Channel Sounding Training <<Link to training community Post>>   Equipment:   Wireless Equipment:     this article provides the links to the Equipment that helps to the project development  Development Tools    SDK builder     The MCUXpresso SDK brings open-source drivers, middleware, and reference example application to speed your software development. NXP MCUXpresso      MCUXpresso IDE offers advanced editing, compiling and debugging features with the addition of MCU-Specific debugging. Supports connections with all general-purpose Arm Cortex-M.  NXP SPSDK      Is a unified, reliable, and easy to use Python SDK library working across the NXP MCU portfolio providing a strong foundation from quick customer prototyping up to production deployment. NXP SEC Tool      The MCUXpresso Secure Provisioning Tool us a GUI-based application provided to simplify generation and provisioning of bootable executables on NCP MCU devices. NXP OTAP Tool      Is an application that helps the user to perform an over the air firmware update of an NXP development board. Config Tool    MCUXpresso Config Tools, an integrated suite of configuration tools, these configuration tools allow developers to quickly build a custom SDK and leverage pins, clocks and peripheral to generate initialization C code or register values for custom board support. SDK Examples for Wireless MCUs    The wireless examples feature many common Bluetooth configurations. **For secure files is necessary to request additional access. 
記事全体を表示
The MCX W71 Wireless Microcontroller features a 96 MHz Arm® Cortex®-M33 core coupled with a multiprotocol radio subsystem supporting Matter™, Thread®, Zigbee® and Bluetooth® Low Energy. The independent radio subsystem, with a dedicated core and memory, offloads the main CPU, preserving it for the primary application and allowing firmware updates to support future wireless standards. The MCX W71x also offers advanced security with an integrated EdgeLock® Secure Enclave Core Profile and will be supported by NXP's EdgeLock 2GO cloud services for credential sharing. The MCX W71x family supports industrial and IoT devices as a single chip solution or by acting as a coprocessor in a hosted architecture.   MCX W71 Block Diagram   Documents   Reference Manual Datasheet Errata Secure Reference manual** Certifications   Evaluation boards   FRDM-MCXW71 Page FRDM-MCXW71 Schematic FRDM-MCXW71 Design Files FRDM-MCXW71 User manual FRDM-MCXW71 Getting Started   Application notes   AN14398: How to use RTC on FRDM-MCXW71      This application note describes how to configure and use the RTC peripheral in a BLE demo. AN14416: Enabling Watchdog Timer Module on FRDM-MCXW71 Bluetooth Low Energy Connectivity Stack      This application note describes the process to implement the WDOG timer in a Connectivity Stack demo.  AN14396: MCX W71 Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device      This Application note provides the steps and process for integrating the Over the Air Programming Client Service into a BLE peripheral device. AN14391: MCX W71 Loadpull Report      This application note describes measurement methodology and associated results on the load-pull characteristics. AN14394: Creating Firmware Update Image for MCX W71 using OTAP tool      This application note provides the steps to create and upgrade the image on the MCX W71 board via OTAP.  AN14389: MCXW71 Bluetooth LE Power Consumption Analysis      This application note provides information about the power consumption of MCXW71 wireless MCXs, the hardware design and optimized for low power operation.  AN14387: MCXW71 Power Management Hardware      This application note describes the usage of the different modules dedicated to power management in the MCXW71 MCU. AN14399: MCXW71 Connectivity test for 802.15.4 Application      This application note describes how to use the connectivity test tool to perform MCXW71 802.15.4 RF performance. AN14374: FRDM-MCXW71 RF System Evaluation Report for Bluetooth LE and IEEE 802.15.4 Applications      This application note provides the radio frequency evaluation test results of the FRDM-MCXW71 board for BLE (2FSK modulation) and for IEEE 802.15.4 (OQPSK modulation) applications. Also describes the setup and tools that can be used to perform the tests.  AN14427: MCXW71 In-System Programming Utility      This application note provides steps to boot MCXW71 MCU in ISP mode and establish various serial connections to communicate with the MCU. AN14397: Programming the MCXW71 Flash for Application and Radio Firmware via Serial Wire Debug during mass production      This application note describes the steps to write, burn and programming all the necessary settings via SWD in mass production.    Support if you have questions regarding MCX W71 please leave a question in our Wireless MCU Community! here   Useful Links The best way to build a PCB first time right with KW45 (Automotive) or K32W1/MCXW71 (IoT/Industrial) - NXP Community : In this community provides the important link to build a PCB using a KW45 or K32W148 and MCXW71 and all concerning the radio performances, low power and radio certification (CE/FCC/ICC) How to use the HCI_bb on Kinetis family products and get access to the DTM mode:  This article is presenting two parts: How to flash the HCI_bb binary into the Kinetis product. Perform RF measurement using the R&S CMW270 BLE HCI Application to set transmitter/receiver test commands: This article provides the steps to show how user could send serial commands to the device. Bluetooth LE HCI Black Box Quick Start Guide : This article describes a simple process for enabling the user controls the radio through serial commands.   Training MCX W71 Training, Secure MCUs for Matter, Zigbee, BLE MCX W Series Training - NXP Community   Equipment: Wireless Equipment:     this article provides the links to the Equipment that helps to the project development  Development Tools    NXP MCUXpresso      MCUXpresso IDE offers advanced editing, compiling and debugging features with the addition of MCU-Specific debugging. Supports connections with all general-purpose Arm Cortex-M.  VSCode      MCUXpresso for Visual Studio Code (VS Code) provides an optimized embedded developer experience for code editing and development. Zephyr RTOs  NXP Application Code Hub      Application Code Hub (ACH) repository enables engineers to easily find microcontroller software examples, code snippets, application software packs and demos developed by our in-house experts. This space provides a quick, easy and consistent way to find microcontroller applications. NXP SPSDK      Is a unified, reliable, and easy to use Python SDK library working across the NXP MCU portfolio providing a strong foundation from quick customer prototyping up to production deployment. NXP SEC Tool      The MCUXpresso Secure Provisioning Tool us a GUI-based application provided to simplify generation and provisioning of bootable executables on NCP MCU devices. NXP OTAP Tool      Is an application that helps the user to perform an over the air firmware update of an NXP development board.   **For secure files is necessary to request additional access. 
記事全体を表示
This article gives detailed hands-on steps about how to do Bluetooth A2DP music playing and Wi-Fi 2.4G iperf throughout coexist test. The hands-on test is based on 88W8997 with I.MX8MQ which is based on Linux 5.15.71 host platform. Using driver is  Q1-2024 released Wi-Fi driver + Q1-2024 released FW version. You can refer to this article to do similar Bluetooth A2DP music playing and Wi-Fi 2.4G iperf throughout test on other Wi-Fi/Bluetooth chips based on other Linux platform. For detailed steps, please refer to attached pdf file.   Best regards, Christine.
記事全体を表示
Sometimes, we need to assign a static IP to Wi-Fi chip which is working in STA mode to do test based on Linux platform. In this article, shared the steps to assign a static IP address for 88W8997 which is working in STA mode based on Linux. And you can also refer this method to set static IP for other Wi-Fi chips.
記事全体を表示
MIFARE DESFire EV1 supports the APDU message structure according to ISO/IEC 7816-4 for an optional wrapping of the native MIFARE DESFire EV1 APDU format and for the additionally implemented 7816-4 commands from a practical point of view.
記事全体を表示
 Introduction The KW45-EVK & FRDM-MCX W71 include an RSIM (Radio System Integration Module) module with an external 32 MHz crystal oscillator and 32kHz external oscillator. 32MHz clock source reference is mainly intended to supply the Bluetooth LE Radio peripheral, but it can be used as the main clock source of the MCU as well. This oscillator includes a set of programmable capacitors to support crystals with different load capacitance needs. Changing the value of these capacitors can modify the frequency the oscillator provides, that way, the central frequency can be tuned to meet the wireless protocol standards. This configurable capacitance range is from C: 3.74pF to C: 10.67pF and it is configured through the RFMC Register XO_Test field at the CDAC. The KW45 comes preprogrammed with a default load capacitance value (0x1Eh). However, since there is variance in devices due to tolerances and parasite effects, the correct load capacitance should be checked by verifying that the optimal central frequency is attained.  You will need a spectrum analyzer to measure the central frequency. To find the most accurate value for the load capacitance, it is recommended to use the Connectivity Test demo application. 32kHz clock source reference is mainly intended to run in low power when the 32MHz clock is switched off. This 32kHz clock enable to leave the low power mode and enter in Bluetooth LE events. Adjusting 32MHz Frequency Example   Program the KW45 /MCX W71 Connectivity Test software on the device. This example can be found in SDK_2_15_000_KW45B41Z-EVK_MR5\boards\kw45b41zevk\wireless_examples\genfsk\connectivity_test folder from your SDK package. Baremetal and FreeRTOS versions are available. In case that KW45-EVK board is being used to perform the test, you should move the 15pF capacitor populated in C3 to C4, to direct the RF signal on the SMA connector.                                   3. Connect the board to a serial terminal software. When you start the application,              you will be greeted by the NXP logo screen: Press the enter key to start the test. Then press "1" to select "Continuous tests":          5. Finally, select "6" to start a continuous unmodulated RF test. At this point, you should be able to measure the signal in the spectrum analyzer. You can change the RF channel from 0 to 127 ("q" Ch+ and "w" Ch- keys), which represents the bandwidth from 2.360GHz to 2.487GHz, stepping of 1MHz between two consecutive channels. To demonstrate the trimming procedure, this document will make use of channel 42 (2.402GHz) which corresponds to the Bluetooth LE channel 37. In this case, with the default capacitance value, our oscillator is not exactly placed at the center of the 2.402GHz, instead, it is slightly deflected to 2.40200155 GHz, as depicted in the following figure:         6. The capacitance can be adjusted with the "d" XtalTrim+ and "f" XtalTrim- keys. Increasing the capacitance bank means a lower frequency. In our case, we need to increase the capacitance to decrease the frequency. The nearest frequency of 2.402 GHz was 2.40199940 GHz        7. Once the appropriate XTAL trim value has been found, it can be programmed as default in any Bluetooth LE example, changing the BOARD_32MHZ_XTAL_CDAC_VALUE constant located in the board_platform.h file:   Adjusting 32kHz Frequency Example   You could adjust the capacitor bank on the 32kHz oscillator. You need to observe the 32kHz frequency at pin 45 (PTC7) using an spectrum analyzer or a frequency meter. Inserting this below code in the main(void) in your application: Hello_world application in this example. 32kHz frequency is not active by default on pin45(PTC7). You need to configure the OSC32K_RDY at 1 in the CCM32K register Status Register (STATUS) field to observe the 32kHz frequency at pin 45 (PTC7). Configure the CAP_SEL, XTAL_CAP_SEL and EXTAL_CAP_SEL field available in the CCM32K register 32kHz Oscillator Control Register (OSC32K_CTRL).       XTAL_CAP_SEL and EXTAL_CAP_SEL values are from 0pF (0x00h) to 30pF (0x0Fh). You could configure those 2 registers in the clock_config.c file. Default values are 8pF for both registers.        
記事全体を表示
Where to find Wi-Fi Software Drivers   NXP Recommends using Wi-Fi source code drivers available from GitHub based on the following decisions:     Software Drivers NXP Processor Linux software drivers on NXP host processor (i.MX6, 7, 8 or 9) Driver: GitHub - nxp-imx/mwifiex: WiFi extensions Radio firmware: GitHub - nxp-imx/imx-firmware Pre-built binary demo files for each quarterly BSP release are available here: Linux: Embedded Linux for i.MX Applications Processors | NXP Semiconductors Android: Android OS for i.MX Applications Processors | NXP Semiconductors Software Drivers NXP Microcontrollers RTOS software drivers on NXP host processor (MCX, MCU, or i.MX RT) Wi-Fi driver: GitHub - NXP/wifi_nxp: NXP Wi-Fi driver and networking utilities Bluetooth middleware: GitHub - nxp-mcuxpresso/mcux-sdk-middleware-edgefast-bluetooth: EdgeFast Bluetooth PAL Software Drivers Non-NXP Processor Non-nxp host processor with Linux or Android Driver: GitHub - nxp-imx/mwifiex: WiFi extensions Radio firmware: GitHub - nxp-imx/imx-firmware Software Drivers Non-NXP Microcontrollers Non-nxp host MCU RTOS Link: https://www.keil.arm.com/packs/wifi-nxp/versions In addition to GitHub, RTOS drivers are available on NXP web site and as an Open CMSIS Pack from ARM: SDK BUILDER mcuxpresso.nxp.com/en/welcome NXP Website Available in SDK Builder on nxp.com Distributed in .zip folder alongside entire SDK    OPEN-CMSIS-PACKS www.keil.arm.com/packs/wifi-nxp/versions/ ARM Open-CMSIS Pack NXP Wi-Fi driver CMSIS Pack Distributed as ARM CMSIS pack   Linux Drivers are available as a .ZIP folder from each of the Wi-Fi specific product pages.
記事全体を表示
Some users want to use SDIO signals on M.2 connector for WiFi card. In default linux bsp, there is no problem using imx8mp-evk-usdhc1-m2.dts, usdch1 driver can normally loaded, and detect WiFi module, But default android bsp doesn't support it, even if using corresponding device tree, usdch1 driver can NOT be loaded correctly, Because default android bsp doesn't load pwrseq_simple.ko, which is used by usdhc1 node. Detailed steps on enabling usdhc1 in the attached document, hope it can help users who wants to use M.2 SDIO WiFi card. [Note] For other android bsp version, users can also refer to the steps in attached document.   Thanks! Regards, Weidong Sun
記事全体を表示
/*** 2024 October 15th latest disclaimers:  - KW47, MCX W72 are direct derivative from KW45 and MCX W71  - please bookmark this page for future update - this article is for early enablement based on KW45, K32W148, MCX W71 and is pending updates up to wider releases of new KW47 and MCX W72 in 2025 -- Datasheet, Reference Manual and HW manufacturing files shared on request--  ***/ Please, find the important link to build a PCB using a KW47 or MCX W72 and all concerning the radio performances, low power and radio certification (CE/FCC/IC).   KW47 product NXP web page:  pending release of KW47/MCXW72  MCXW72 product NXP web page: https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/mcx-arm-cortex-m/mcx-w-series-microcontrollers/mcx-w72x-secure-and-ultra-low-power-mcus-for-matter-thread-zigbee-and-bluetooth-le:MCX-W72X KW-MCXW-EVK getting started NXP web page pending release of KW47/MCXW72  KW47-LOC getting started NXP web page pending release of KW47/MCXW72  MCXW72-LOC getting started NXP web page pending release of KW47/MCXW72     HARDWARE   KW47 MCX W72 EVK board: attached     KW47 LOC Channel Sounding board - diagram: attached     KW47-MCXW72-EVK HW guideline: Available on request        HVQFN48 package specification: SOT619-17(D)   pending release of SOT619-17(DD)       KW47-MCXW72-EVK User Manual pending release of KW47/MCXW72        Minimum BoM (attached file) >> KW45 applicable for KW47 waiting release of KW47/MCXW72      DCDC management guide (AN13831) : KW45/K32W148 - Power Management Hardware (nxp.com) KW45 applicable for KW47 waiting release of KW47/MCXW72      Design-In check list: see attached file at the bottom of this article     RF matching: S parameters (attached file) pending release of KW47/MCXW72    Information: “As RF behavior are dependent of PCB layout & manufacturing; PCB prototypes (based on NXP recommendations) will have to be fine-tuned to insure the expected qualified in RF is reached on the final productized platform.”   RADIO     RF report: KW45 and K32W148 RF System Evaluation Report for Bluetooth LE and K32W148 for 802.15.4 Applications ...  pending release of KW47/MCXW72 - available ON DEMAND     Radio co-existence: Kinetis Wireless Family Products Bluetooth Low Energy Coexistence with Wi-Fi Application (nxp.com) pending release of KW47/MCXW72      Distance performances: refer to attached file pending release of KW47/MCXW72      Antenna:  Compact Planar Antennas for 2.4 GHz Communication Designs and Applications within NXP EVK Boards Antennas for Channel Sounding Applications     BLE connectivity test binary file:  available in SDK on demand      Return loss (S11) measurement: How to measure the return loss of your RF matching (S11) part of the RF report (AN13728)     Loadpull: pending release of KW47/MCXW72   SW tools for RF trials:     IoT Tool box (mobile application)     Connectivity test tool for connectivity products (part of the IoT toolbox)     DTM: How to use the HCI_bb on Kinetis family products a... - NXP Community https://community.nxp.com/t5/Wireless-Connectivity-Knowledge/BLE-HCI-Application-to-set-transmitter-...   CRYSTAL   Article : KW45/K32W1 32MHz & 32kHz Oscilllation margins - NXP Communitypending release of KW47/MCXW72     Recommended Crystal attached LowPower      Estimator Tool https://community.nxp.com/t5/Wireless-Connectivity/Kinetis-KW35-38-KW45-amp-K32W1-MCXW71-Power-Profi... pending release of KW47/MCXW72       Low Power Consumption: https://www.nxp.com/docs/en/application-note/AN13230.pdf pending release of KW47/MCXW72     CERTIFICATION pending release of KW47/MCXW72  
記事全体を表示
Default init case By default, when no country regulatory setting is defined, we use WW (World Wide safe setting, meaning we only transmit on bands which are allowed worldwide, with the TX power compatible with all countries regulations)   Setting country 1/ When operating in AP mode: - we usually set country code (ex : country_code=JP) in hostapd.conf to define the country. - this country definition will be advertised to all connected STA if ieee80211d=1 is set in hostpad.conf - the country can also be set with "iw reg set" command   2/ When operating in STA mode - country code can be set with "iw reg set" command or in wpa_supplicant.conf (ex : country=jp) - once connected to the AP (with 80211d enabled), the STA will switch to the AP country setting (this behaviour can be disabled by adding country_ie_ignore=1 driver parameter)   Once country is set: - we will only transmit on channels allowed for that country - with country maximum TX power - we might use DFS feature on channels declared as DFS channels for that specific country   TX power settings   1/ By default, using Linux regulatory settings (/lib/firmware/regulatory.db, generated from db.txt) These settings define allowed channels, DFS flags and max TX power on a country basis See section "Regulatory db" further.   2/ Linux regulatory settings can be overwritten by: a. cntry_txpwr=0 and txpwrlimit_cfg=nxp/txpower.bin driver param (generated from txpower.conf (channel/MCS->txpower), see AN13009) Same setting for all countries (static). Using channels/flags from db.txt, and minimum TX power between db.txt and txpower.bin/rgpower.bin b. cntry_txpwr=1 (look for nxp/txpower_XX.bin files (generated from txpower.conf (channel/MCS->txpower), see AN13009) Need one txpower_XX.bin file for each country XX (dynamically loaded, for instance with iw reg set XX) Using channels/flags from db.txt, and minimum TX power between db.txt and txpower_XX.bin   cntry_txpwr txpwrlimit_cfg TX power limit Method 0 nxp/txpower.bin nxp/txpower.bin (static) V1 1 - nxp/txpower_XX.bin (dynamic) V1 cfg     We have default TX power tables, but customer can tune these TX power settings, based on their HW. Please refer to "AN13009 Wi-Fi Tx Power Management in Linux"       Regulatory db   Source https://wireless.wiki.kernel.org/en/developers/Regulatory/wireless-regdb   Wifi regulatory setting (allow channels, etc) are defined in db.txt, then converted to regulatory.db (store in /lib/firmware) We can get official db.txt from here, and build regulatory.db with below command   git clone git://git.kernel.org/pub/scm/linux/kernel/git/wens/wireless-regdb.git make   Kernel regulatory.db integrity is checked by the Linux kernel. Disabling REGDB signature check with the folllowing kernel config: CONFIG_EXPERT=y CONFIG_CFG80211_CERTIFICATION_ONUS=y # CONFIG_CFG80211_REQUIRE_SIGNED_REGDB is not set   Rebuilding kernel and flashing scp Image root@192.168.0.2:/run/media/mmcblk0p1/      iw reg command examples and other notes   root@imx8mqevk:~# iw reg get global country 00: DFS-UNSET         (2402 - 2472 @ 40), (N/A, 20), (N/A)         (2457 - 2482 @ 20), (N/A, 20), (N/A), AUTO-BW, PASSIVE-SCAN         (2474 - 2494 @ 20), (N/A, 20), (N/A), NO-OFDM, PASSIVE-SCAN         (5170 - 5250 @ 80), (N/A, 20), (N/A), AUTO-BW, PASSIVE-SCAN         (5250 - 5330 @ 80), (N/A, 20), (0 ms), DFS, AUTO-BW, PASSIVE-SCAN         (5490 - 5730 @ 160), (N/A, 20), (0 ms), DFS, PASSIVE-SCAN         (5735 - 5835 @ 80), (N/A, 20), (N/A), PASSIVE-SCAN         (57240 - 63720 @ 2160), (N/A, 0), (N/A) root@imx8mqevk:~# iw reg get global country FR: DFS-ETSI         (2400 - 2483 @ 40), (N/A, 20), (N/A)         (5150 - 5250 @ 80), (N/A, 23), (N/A), NO-OUTDOOR, AUTO-BW         (5250 - 5350 @ 80), (N/A, 20), (0 ms), NO-OUTDOOR, DFS, AUTO-BW         (5470 - 5725 @ 160), (N/A, 26), (0 ms), DFS         (5725 - 5875 @ 80), (N/A, 13), (N/A)         (57000 - 66000 @ 2160), (N/A, 40), (N/A)   By default (if no country is set), we are using the world domain. this is the most restrictive. Then you can set the country (using driver module parameter, wpa_supplicant.conf, etc) or get the country automatically provided by the access point (80211d). This will update the regulatory domain, meaning the allowed channels, etc. You can check the country settings with "iw reg get" command.   The regulatory domain has priority, compared to the channel list you would set in the wpa_supplicant.conf.  
記事全体を表示
On the KW45 product, there is a way to enable the 32kHz clock without using a crystal externally. Indeed, a FRO32K can be used instead. this article proposes to show you at a glance how to activate it and which performances to expect in comparison to a 32kHz crystal.  This Crystal-Less mode allows to reduce the cost of the system, without compromising the 32 kHz clock accuracy thanks to a software calibration mechanism called SFC standing for Smart Frequency Calibration. One other advantage of the FRO32K is the shorter start up time, including the calibration. The FRO32K clock is calibrated against the 32 MHz RF oscillator through the Signal Frequency Analyzer (SFA) module of KW45. Software enablement: The Crystal-less feature is available since the SDK version 2.12.7 (MR4) , all measurements in this document are done with softwares based on this version of SDK. To enable the Crystal-Less mode, simply define the compilation flag gBoardUseFro32k_d to 1 in board_platform.h or in app_preinclude.h. In this mode, the SFC module measures and recalibrates the FRO32K output frequency when necessary. This typically happens at a Power On Reset, or when the temperature changes, or periodically when the NBU is running. By using this mode, higher power consumption is expected. The FRO32K consumes more power than the XTAL32K in low power mode (around 350nA), and the NBU wakes up earlier while FRO32K is used, which also entails a higher power consumption.   FRO32K vs Xtal32K performances: For these measurements, we used an early FRO32K delivered feature but, even if it is still in experimental phase, the results below will already give you some information.    Clock accuracy at room temperature:    In steady state, the output frequency of the FRO32K is even more stable than that of the XTAL32K thanks to the SFC module. The clock frequency accuracy of the XTAL32K is a bit better than the FRO32K, however, both are within the permitted accuracy range and are compliant with the Bluetooth Low Energy specification. Clock accuracy after recalibration (triggered by a temperature variation):   This test proved that the FRO32K provided a source clock that is within the target accuracy range even during a temperature variation. Throughput test at room temperature: Throughput measurements are performed using two different clock sources to verify if there is any connection lost due to the potential clock drift entailed by using the FRO32K as a clock source. The BLE_Shell demo application is used for the throughput measurement. (refer to KW45-EVK Software Development Kit). The DUT is programmed with software using either the XTAL32K or the FRO32K as the source clock. After the communication establishment, the bit rate measurement is triggered manually, and the result is displayed on the prompt window.  Results: Two clock configurations show identical performance, which proves that the 32 kHz crystal-less mode presents no disconnection and no performance degradation. Throughput test over a temperature variation: it is the same test set up as above but within a 60 °C temperature variation. The results are identical to previous ones. No disconnection or performance degradation is detected. Conclusion Various tests and measurements proved that the FRO32K can be used as the 32 kHz clock source instead of the XTAL32K, with the help of the SFC module. It is capable of providing an accurate and stable 32 kHz clock source that satisfies the requirements of connectivity standards. However, please note that this feature is still in experimental phase, tests are still ongoing to ensure that the feature is robust in any circumstances. Customers who want to enable this feature in production must validate this solution according to their own use cases. For more detailed information, a draft version of the application note is attached to this article but an updated version will be available on NXP.com website when a new SDK is released.
記事全体を表示
CMSIS, the ARM Cortex Microcontroller Software Interface Standard, can be used to distribute software components in standard package format. CMSIS compliant software components allow: • Easy reuse of example applications or template code • Combination of SW components from multiple vendors CMSIS packages available here: https://www.keil.arm.com/packs/ NXP WiFi package available here: https://www.keil.arm.com/packs/wifi-nxp/versions/   Getting NXP WiFi/BT software   Please find the minimal setup required to download the NXP WiFi/BT software CMSIS packs: First, get cpackget binary from the Open CMSIS Pack toolbox binaries Then, install the NXP WiFi and Bluetooth packages and their dependencies using below commands cpackget add NXP::WIFI@2.0.0 cpackget add NXP::WIRELESS_WPA_SUPPLICANT@2.0.0 cpackget add NXP::EDGEFAST_BT_BLE@2.0.0   Please note that the CMSIS software packs are installed in below directory: ~/.cache/arm/packs/NXP/   Building NXP WiFi/Bluetooth software   Using combined WiFi+Bluetooth application on i.MXRT1060-revC board, as an example.   Prerequisite Follow below steps to install all the required tools to get CMSIS packages and build them . <(curl https://aka.ms/vcpkg-init.sh -L) . ~/.vcpkg/vcpkg-init vcpkg new --application vcpkg add artifact arm:cmsis-toolbox vcpkg add artifact microsoft:cmake vcpkg add artifact microsoft:ninja vcpkg add artifact arm:arm-none-eabi-gcc vcpkg activate Refer to CMSIS toolbox installation documentation    Activate required tools . ~/.vcpkg/vcpkg-init vcpkg activate Install the NXP i.MXRT1060-REVC Bluetooth examples and their dependencies cpackget add NXP::MIMXRT1060-EVKC_EDGEFAST_BLUETOOTH_Examples@1.0.0 Workaround: current NXP SW is aligned with ARM::CMSIS@5.8.0, and does not support latest ARM::CMSIS@6.0.0, so we need to use older version with below commands cpackget rm ARM::CMSIS@6.0.0 cpackget add ARM::CMSIS@5.8.0 List the installed packages cpackget list Building combined WiFi+BT example application Copy example application to local directory and provide write permissions mkdir -p ~/test cp -r ~/.cache/arm/packs/NXP/MIMXRT1060-EVKC_EDGEFAST_BLUETOOTH_Examples/1.0.0/boards/evkcmimxrt1060/edgefast_bluetooth_examples/wifi_cli_over_ble_wu/ ~/test/ cd ~/test/wifi_cli_over_ble_wu/ && chmod -R u+w .   Build the application csolution convert wifi_cli_over_ble_wu.csolution.yml cbuild wifi_cli_over_ble_wu.flexspi_nor_debug+armgcc.cprj Convert elf to bin for flashing cd armgcc/flexspi_nor_debug arm-none-eabi-objcopy wifi_cli_over_ble_wu.elf -O binary wifi_cli_over_ble_wu.bin
記事全体を表示