传感器知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

Sensors Knowledge Base

讨论

排序依据:
FXLS93xxx 是NXP针对底盘安全领域的PSI5接口的加速度传感器。FXPS7140xxxx 是NXP针对气囊中侧碰,行人保护等应用推出的PSI5接口的压力传感器。   FXLS93xxx内部集成了OTP, One-Time-Programmable Memory (一次性烧写,不支持客户重复烧写),这种OTP Memory 分为NXP工厂烧写部分(Type是F),客户可读,和客户可烧写部分(UF0, UF1 & UF2). 支持客户烧写的范围是UF0($E0-EE), UF1($F0-FF) & UF2($16-5E) 的区间。芯片内还有部分寄存器是客户可读的和 可读可写的寄存器(非OTP的,写的内容会随下电后重新上电后消失,可以理解为RAM)。 未经烧写OTP的芯片会工作在默认模式PSI5-P16C-500/2L,FXLS93xx0(单轴)加速度数据会在Time slot 1发送,FXLS93xxx(双轴)加速度数据,Ch0数据会在Time slot 1发送,Ch1数据会在Time slot 2发送。 OTP programming 烧写流程     进入烧程模式PME(Programming Mode Entry)的时序 上电后delay(tRS_PM) 6ms     发至少31个同步头,同步头的时间周期必须满足 245-255us   发PME command 注:上电后6ms+127ms中如果没有收到PME command, 则退出PM Entry.       烧写电压Vpp 电压9-11V是指BUS_I/VCC pin上电压   依据寄存器配置内容,写寄存器,寄存器默认值为0x00,如配置内容是默认值,则不需要写 寄存器配置内容写好后, 写0x80到WRITE_OTP_EN($11) 烧写UF0, delay 10ms 烧写完成 写0x81到WRITE_OTP_EN($11) 烧写UF1, delay 10ms 烧写完成 写0x8E(跳过COMMTYPE和PHYSADDR寄存器烧写)到WRITE_OTP_EN($11) 烧写UF2, delay 10ms 烧写完成   验证步骤: 读回烧写过的寄存器,确保烧写内容是否正确 读DEVSTAT和DEVSTAT2 寄存器,判断是否在烧写过程中有错误产生。 烧写UF1,UF2后,做Margin read, 判断烧写深度是否足够   烧写注意事项: OTP烧写中常出现的问题主要是烧写深度不足。失效现象是通过PSI5总线收到传感器错误代码,10-bit 500 即0x1F4, 16-bit 32000 即 0x7D00(PSI5_CFG寄存器中 EMSG_EXT = 0),10-bit 491 即0x1EB, 16-bit 31424 即 0x7AC0(PSI5_CFG寄存器中 EMSG_EXT = 1)错误码可能是会在传感器放置或者工作后一段时间,如几天,几个月或更长时间后产生,所以如发生该问题容易导致客户端失效。目前已知原因是: 烧写电压VPP不够: Datasheet中Vpp 电压9-11V是指BUS_I/VCC pin上电压,要考虑串联电阻和线束的压降,确保烧写OTP过程中,BUS_I pin电压稳定在这个范围内 烧写时间不足,写WRITE_OTP_EN后的延时必须大于10ms, 以保证烧写完成(这里写的OTP Program Timing 最大值10ms是每颗芯片需要烧写的时间有区别,但芯片最大的烧写时间是10ms, 所以烧写时间需要大于10ms以确保每颗芯片都烧写深度足够。)     为确保该问题不发生,请确保前面的两点已经满足,并且推荐烧写UF1,UF2后,做Margin read, 判断烧写深度是否足够。并将所有烧写后寄存器读回,判断烧写内容是否正确。 还要注意进入烧写模式(PME)后,请勿热插拔FXLS93xxx 芯片或模块, 以避免芯片损坏。   烧写工具: 很多客户除了做PSI5传感器, 还在做含有PSI5接口的ECU. 所以我们的文档可以支持客户自己开发PSI5 OTP烧写工具。(NXP 没有烧写工具的解决方案) 购买Seskion的 PSI5 Simulyzer进行烧写 Seskion PSI5-Simulyzer – Measuring, Analyzing, Simulating 下面是介绍如何通过Seskion PSI5 Simulyzer 进行快速烧写     Seskion configuration Once the script is generated from the NXP script generator tool you will need to load it on the PSI5 Simulyzer from Seskion by going into Tools-> ECU Pattern Editor -> Channel 0 -> Load -> Select generated script file. Make sure that “Use for Sensor Init” is ticked , see below snapshot.                 Below an example of a script generated by the Seskion Script generation tool :           The 2 first “0” are trimmed out by the defined number of bit set to 0x2A = 42. Note : Once the script file are loaded to the PSI5-Simulizer from Seskion the “00” from 00b32ba623e are not shown and what will be displayed is b32ba623e. However since the number of bit is 0x2A = 42 the 5x ‘0’ are automatically appended at the beginning of the command.         If the programming using the PSI5 Simulyzer from Seskion is not working there few things to consider for debug : Make Sure that the bit distance in bidirectional communication is set to 250us as specified in sensor product specification.     Make sure that Init Phase1 timing is set to 6.     If device respond to PSI5 programming command but the configuration is not getting written into OTP, please make sure that the applied voltage level is within product specification 9-11V at BUS_I pin. So please include potential voltage drop cause by any potential resistor connected on BUS_I/VCC pin.   烧写过程,一定是先点RUN, 然后再点Power ,烧写完成后sensor一直发送0x1e1, 就代表烧写成功了      
查看全文
Session Overview Session Details Sensors Development Ecosystem   Session Hands-on Prerequisites SW prerequisites: Install required SW and tools Download following SDK, IDE and tools: 1. MCUXpresso IDE v11.9.0 or newer 2. MCUXpresso SDK v2.14.0 for FRDM-MCXN947 (while generating SDK select ISSDK and FreeMASTER middleware) 3. FreeMASTER Tool v3.2 or newer: FreeMaster Run-time Debugging tool   HW prerequisites: HW Setup and Connection  1. Know the HWs for Hands-On Training:  2. Connect HWs to get ready for Hands-On Session: Special Instructions: Attendees to bring their own Windows Laptop for hands-on training. Attendees are requested to follow this guide and come prepared with Pre-requisite SW installed on their windows laptops. Hands-on training material and boards (“FRDM-MCXN947” and “Accel 4 Click” boards) will be provided for training purpose only.        
查看全文
Hands-on Training using Sensors Development Ecosystem
查看全文
Here is the Installer file for the revision 4.2.0.8 of the Sensor Toolbox GUI
查看全文
The MMA8491Q is a low voltage, 3-axis low-g accelerometer housed in a 3 mm x 3 mm QFN package. The device can accommodate two accelerometer configurations, acting as either a 45° tilt sensor or a digital output accelerometer with I2C bus.      • As a 45° Tilt Sensor, the MMA8491Q device offers extreme ease of implementation by using a single line output per axis.      • As a digital output accelerometer, the 14-bit ±8g accelerometer data can be read from the device with a 1 mg/LSB sensitivity. The extreme low power capabilities of the MMA8491Q will reduce the low data rate current consumption to less than 400 nA per Hz. Here is a Render of the MMA8491 Breakout Board downloaded from OSH park: Layout Design for this board: If you're interested in more designs like this breakout board for other sensors, please go to Freescale Sensors Breakout Boards Designs – HOME
查看全文
Hi Everyone, As I am frequently asked for a simple bare metal example code for the Xtrinsic MMA8451Q digital accelerometer, I would like to share here one of my examples I have created for this part while working with the Freescale FRDM-KL25Z platform. This example illustrates: 1. Initialization of the MKL25Z128 MCU (mainly I2C and PORT modules). 2. Initialization of the accelerometer to achieve the highest resolution. 3. Simple offset calibration based on the AN4069. 4. Output data reading using an interrupt technique. 5. Conversion of the output values from registers 0x01 – 0x06 to real acceleration values in g’s. 6. Visualization of the output values in the FreeMASTER tool. 1. According to the schematic, the INT1 output of the MMA8451Q is connected to the PTA14 pin of the KL25Z MCU and both SCL and SDA lines are connected to the I2C0 module (PTE24 and PTE25 pins). The MCU is, therefore, configured as follows: void MCU_Init(void) {      //I2C0 module initialization      SIM_SCGC4 |= SIM_SCGC4_I2C0_MASK;        // Turn on clock to I2C0 module      SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK;       // Turn on clock to Port E module      PORTE_PCR24 = PORT_PCR_MUX(5);           // PTE24 pin is I2C0 SCL line      PORTE_PCR25 = PORT_PCR_MUX(5);           // PTE25 pin is I2C0 SDA line      I2C0_F  = 0x14;                          // SDA hold time = 2.125us, SCL start hold time = 4.25us, SCL stop hold time = 5.125us *      I2C0_C1 = I2C_C1_IICEN_MASK;             // Enable I2C0 module           //Configure the PTA14 pin (connected to the INT1 of the MMA8451Q) for falling edge interrupts      SIM_SCGC5 |= SIM_SCGC5_PORTA_MASK;       // Turn on clock to Port A module      PORTA_PCR14 |= (0|PORT_PCR_ISF_MASK|     // Clear the interrupt flag                        PORT_PCR_MUX(0x1)|     // PTA14 is configured as GPIO                        PORT_PCR_IRQC(0xA));   // PTA14 is configured for falling edge interrupts           //Enable PORTA interrupt on NVIC      NVIC_ICPR |= 1 << ((INT_PORTA - 16)%32);      NVIC_ISER |= 1 << ((INT_PORTA - 16)%32); } 2. At the beginning of the initialization, all accelerometer registers are reset to their default values by setting the RST bit of the CTRL_REG2 register. The dynamic range is set to ±2g and to achieve the highest resolution, the LNOISE bit is set and the lowest ODR (1.56Hz) and the High Resolution mode are selected (more details in AN4075). void Accelerometer_Init (void) {      unsigned char reg_val = 0;        I2C_WriteRegister(MMA845x_I2C_ADDRESS, CTRL_REG2, 0x40);           // Reset all registers to POR values          do            // Wait for the RST bit to clear      {         reg_val = I2C_ReadRegister(MMA845x_I2C_ADDRESS, CTRL_REG2) & 0x40;      }  while (reg_val);        I2C_WriteRegister(MMA845x_I2C_ADDRESS, XYZ_DATA_CFG_REG, 0x00);    // +/-2g range -> 1g = 16384/4 = 4096 counts      I2C_WriteRegister(MMA845x_I2C_ADDRESS, CTRL_REG2, 0x02);           // High Resolution mode      I2C_WriteRegister(MMA845x_I2C_ADDRESS, CTRL_REG1, 0x3D);           // ODR = 1.56Hz, Reduced noise, Active mode   } 3. A simple offset calibration method is implemented according to the AN4069. At the end of the calibration routine, the DRDY interrupt is enabled and routed to the INT1 interrupt pin that is configured to be a push-pull, active-low output. void Calibrate (void) {      unsigned char reg_val = 0;            while (!reg_val)           // Wait for a first set of data               {         reg_val = I2C_ReadRegister(MMA845x_I2C_ADDRESS, STATUS_REG) & 0x08;      }               I2C_ReadMultiRegisters(MMA845x_I2C_ADDRESS, OUT_X_MSB_REG, 6, AccData);           // Read data output registers 0x01-0x06                                                 Xout_14_bit = ((short) (AccData[0]<<8 | AccData[1])) >> 2;           // Compute 14-bit X-axis output value      Yout_14_bit = ((short) (AccData[2]<<8 | AccData[3])) >> 2;           // Compute 14-bit Y-axis output value      Zout_14_bit = ((short) (AccData[4]<<8 | AccData[5])) >> 2;           // Compute 14-bit Z-axis output value                                          Xoffset = Xout_14_bit / 8 * (-1);        // Compute X-axis offset correction value      Yoffset = Yout_14_bit / 8 * (-1);        // Compute Y-axis offset correction value      Zoffset = (Zout_14_bit - SENSITIVITY_2G) / 8 * (-1);          // Compute Z-axis offset correction value                                          I2C_WriteRegister(MMA845x_I2C_ADDRESS, CTRL_REG1, 0x00);             // Standby mode to allow writing to the offset registers       I2C_WriteRegister(MMA845x_I2C_ADDRESS, OFF_X_REG, Xoffset);              I2C_WriteRegister(MMA845x_I2C_ADDRESS, OFF_Y_REG, Yoffset);       I2C_WriteRegister(MMA845x_I2C_ADDRESS, OFF_Z_REG, Zoffset);       I2C_WriteRegister(MMA845x_I2C_ADDRESS, CTRL_REG3, 0x00);             // Push-pull, active low interrupt      I2C_WriteRegister(MMA845x_I2C_ADDRESS, CTRL_REG4, 0x01);             // Enable DRDY interrupt      I2C_WriteRegister(MMA845x_I2C_ADDRESS, CTRL_REG5, 0x01);             // DRDY interrupt routed to INT1 - PTA14      I2C_WriteRegister(MMA845x_I2C_ADDRESS, CTRL_REG1, 0x3D);             // ODR = 1.56Hz, Reduced noise, Active mode  } 4. In the ISR, only the interrupt flag is cleared and the DataReady variable is set to indicate the arrival of new data. void PORTA_IRQHandler() {      PORTA_PCR14 |= PORT_PCR_ISF_MASK;            // Clear the interrupt flag      DataReady = 1;      } 5. The output values from accelerometer registers 0x01 – 0x06 are first converted to signed 14-bit values and afterwards to real values in g’s. if (DataReady)             // Is a new set of data ready? {                 DataReady = 0;                                                                                                                      I2C_ReadMultiRegisters(MMA845x_I2C_ADDRESS, OUT_X_MSB_REG, 6, AccData);           // Read data output registers 0x01-0x06             Xout_14_bit = ((short) (AccData[0]<<8 | AccData[1])) >> 2;           // Compute 14-bit X-axis output value      Yout_14_bit = ((short) (AccData[2]<<8 | AccData[3])) >> 2;           // Compute 14-bit Y-axis output value      Zout_14_bit = ((short) (AccData[4]<<8 | AccData[5])) >> 2;           // Compute 14-bit Z-axis output value                      Xout_g = ((float) Xout_14_bit) / SENSITIVITY_2G;              // Compute X-axis output value in g's      Yout_g = ((float) Yout_14_bit) / SENSITIVITY_2G;              // Compute Y-axis output value in g's      Zout_g = ((float) Zout_14_bit) / SENSITIVITY_2G;              // Compute Z-axis output value in g's                                   } 6. The calculated values can be watched in the "Variables" window on the top right of the Debug perspective or in the FreeMASTER application. To view both the 14-bit and real values in the FreeMASTER application, some USBDM drivers need to be first installed on your computer. They are available for download from SourceForge. Erich Styger described their installation in this tutorial. In addition to that, the USBDM_OpenSDA application that provides both debugging and a virtual serial port needs to be loaded into the MK20 debugger chip on the FRDM-KL25Z board. This installation follows the usual FRDM-KL25Z bootloader process: Unplug the FRDM-KL25Z board. Whilst holding the SW1/RST switch depressed plug in the FRDM-KL25Z board. The green LED should start blinking at a rate of about 1Hz. Open a file explorer and locate the USB drive that has now appeared. It will have the drive name "BOOTLOADER". Drag the file USBDM_OpenSDA.sx to the USB drive and wait a short while. The OpenSDA firmware on the FRDM-KL25Z board will program the USBDM firmware into the MK20 debugger chip on the board. Remove and re-plug the FRDM-KL25Z board. The board will now appear as a USBDM device. Attached you can find the complete source code written in the CW for MCU's v10.5 as well as the FreeMASTER project. So make it, test it and keep in touch... Regards, Tomas
查看全文
Hi Everyone,   I would like to share here another simple bare-metal example code/demo for the Xtrinsic MMA8652FC digital accelerometer that I have created while working with the Freescale FRDM-KL25Z development platform and FRDM-FXS-MULTI(-B) sensor expansion board. To visualize the acceleration data that are read from the MMA8652FC using an interrupt technique through the I 2 C interface, I have used the FreeMASTER tool.   This example illustrates:   1. Initialization of the MKL25Z128 MCU (mainly I 2 C and PORT modules). 2. I 2 C data write and read operations. 3. Initialization of the accelerometer to achieve the highest resolution. 4. Simple offset calibration based on the AN4069. 5. Output data reading using an interrupt technique. 6. Conversion of the output values from registers 0x01 – 0x06 to real acceleration values in g’s. 7. Visualization of the output values in the FreeMASTER tool.   1. As you can see in the FRDM-FXS-MULTI(-B)/FRDM-KL25Z schematics and the image below, I2C signals are routed to the I2C1 module (PTC1 and PTC2 pins) of the KL25Z MCU and the INT1 output is connected to the PTA5 pin (make sure that pin #3 of J4 and pin #2 of J6 connector on the sensor expansion board are connected together). The INT1 output of the MMA8652FC is configured as a push-pull active-low output, so the corresponding PTA5 pin configuration is GPIO with an interrupt on falling edge.     The MCU is, therefore, configured as follows. void MCU_Init(void) {      //I2C1 module initialization      SIM_SCGC4 |= SIM_SCGC4_I2C1_MASK;        // Turn on clock to I2C1 module      SIM_SCGC5 |= SIM_SCGC5_PORTC_MASK;       // Turn on clock to Port C module      PORTC_PCR1 |= PORT_PCR_MUX(0x2);         // PTC1 pin is I2C1 SCL line      PORTC_PCR2 |= PORT_PCR_MUX(0x2);         // PTC2 pin is I2C1 SDA line      I2C1_F  |= I2C_F_ICR(0x14);              // SDA hold time = 2.125us, SCL start hold time = 4.25us, SCL stop hold time = 5.125us      I2C1_C1 |= I2C_C1_IICEN_MASK;            // Enable I2C1 module                      //Configure the PTA5 pin (connected to the INT1 of the MMA8652FC) for falling edge interrupts      SIM_SCGC5 |= SIM_SCGC5_PORTA_MASK;       // Turn on clock to Port A module      PORTA_PCR5 |= (0|PORT_PCR_ISF_MASK|      // Clear the interrupt flag                       PORT_PCR_MUX(0x1)|      // PTA5 is configured as GPIO                       PORT_PCR_IRQC(0xA));    // PTA5 is configured for falling edge interrupts                     //Enable PORTA interrupt on NVIC      NVIC_ICPR |= 1 << ((INT_PORTA - 16)%32);      NVIC_ISER |= 1 << ((INT_PORTA - 16)%32); }   2. The 7-bit I 2 C address of the MMA8652FC is fixed value 0x1D. As shown above, the SCL line is connected to the PTC1 pin and SDA line to the PTC2 pin. The I2C clock frequency is 125 kHz. The screenshot below shows the write operation which writes the value 0x39 to the CTRL_REG1 (0x2A).     And here is the single byte read from the WHO_AM_I register 0x0D. As you can see, it returns the correct value 0x4A.     Multiple bytes of data can be read from sequential registers after each MMA8652FC acknowledgment (AK) is received until a no acknowledge (NAK) occurs from the KL25Z followed by a stop condition (SP) signaling an end of transmission. A burst read of 6 bytes from registers 0x01 to 0x06 is shown below. It also shows how the INT1 pin is automatically deasserted by reading the acceleration output data.       3. At the beginning of the initialization, all registers are reset to their default values by setting the RST bit of the CTRL_REG2 register. The dynamic range is set to ±2g and to achieve the highest resolution, the lowest ODR (1.56Hz) and the High Resolution mode are selected (more details in AN4075). The DRDY interrupt is enabled and routed to the INT1 interrupt pin that is configured to be a push-pull, active-low output. void MMA8652FC_Init (void) {      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG2, 0x40);          // Reset all registers to POR values           Pause(0x631);          // ~1ms delay           I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, XYZ_DATA_CFG_REG, 0x00);   // +/-2g range with ~0.977mg/LSB       I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG2, 0x02);          // High Resolution mode      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG3, 0x00);          // Push-pull, active low interrupt      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG4, 0x01);          // Enable DRDY interrupt      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG5, 0x01);          // DRDY interrupt routed to INT1 - PTA5      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG1, 0x39);          // ODR = 1.56Hz, Active mode       }   4. A simple offset calibration method is implemented according to the AN4069.   void MMA8652FC_Calibration (void) {      char X_offset, Y_offset, Z_offset;           DataReady = 0;                while (!DataReady){}          // Is a first set of data ready?      DataReady = 0;           I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG1, 0x00);          // Standby mode                I2C_ReadMultiRegisters(MMA8652FC_I2C_ADDRESS, OUT_X_MSB_REG, 6, AccelData);          // Read data output registers 0x01-0x06                         Xout_12_bit = ((short) (AccelData[0]<<8 | AccelData[1])) >> 4;             // Compute 12-bit X-axis acceleration output value      Yout_12_bit = ((short) (AccelData[2]<<8 | AccelData[3])) >> 4;             // Compute 12-bit Y-axis acceleration output value      Zout_12_bit = ((short) (AccelData[4]<<8 | AccelData[5])) >> 4;             // Compute 12-bit Z-axis acceleration output value                  X_offset = Xout_12_bit / 2 * (-1);          // Compute X-axis offset correction value      Y_offset = Yout_12_bit / 2 * (-1);          // Compute Y-axis offset correction value      Z_offset = (Zout_12_bit - SENSITIVITY_2G) / 2 * (-1);         // Compute Z-axis offset correction value                  I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, OFF_X_REG, X_offset);                  I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, OFF_Y_REG, Y_offset);            I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, OFF_Z_REG, Z_offset);                        I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG1, 0x39);          // Active mode again }   5. In the ISR, only the interrupt flag is cleared and the DataReady variable is set to indicate the arrival of new data.   void PORTA_IRQHandler() {      PORTA_PCR5 |= PORT_PCR_ISF_MASK;          // Clear the interrupt flag      DataReady = 1;    }   6. The output values from accelerometer registers 0x01 – 0x06 are first converted to signed 12-bit values and afterwards to real values in g’s.   if (DataReady)             // Is a new set of data ready? {                  DataReady = 0;                                                                                                                         I2C_ReadMultiRegisters(MMA8652FC_I2C_ADDRESS, OUT_X_MSB_REG, 6, AccelData);          // Read data output registers 0x01-0x06                    // 12-bit accelerometer data      Xout_12_bit = ((short) (AccelData[0]<<8 | AccelData[1])) >> 4;             // Compute 12-bit X-axis acceleration output value      Yout_12_bit = ((short) (AccelData[2]<<8 | AccelData[3])) >> 4;             // Compute 12-bit Y-axis acceleration output value      Zout_12_bit = ((short) (AccelData[4]<<8 | AccelData[5])) >> 4;             // Compute 12-bit Z-axis acceleration output value                             // Accelerometer data converted to g's      Xout_g = ((float) Xout_12_bit) / SENSITIVITY_2G;              // Compute X-axis output value in g's      Yout_g = ((float) Yout_12_bit) / SENSITIVITY_2G;              // Compute Y-axis output value in g's      Zout_g = ((float) Zout_12_bit) / SENSITIVITY_2G;              // Compute Z-axis output value in g's               }     7. The calculated values can be watched in the "Variables" window on the top right of the Debug perspective or in the FreeMASTER application. To open and run the FreeMASTER project, install the FreeMASTER application and FreeMASTER Communication Driver.       Attached you can find the complete source code written in the CW for MCU's (Eclipse IDE) including the FreeMASTER project.   If there are any questions regarding this simple application, do not hesitate to ask below. Your feedback or suggestions are also welcome.   Regards, Tomas
查看全文
Hi Everyone, In this document I would like to go through a simple example code I created for the FRDMKL25-A8471 kit using the KDS 3.0.2 and KSDK 2.0. I will not cover the Sensor Toolbox – CE and Intelligent Sensing Framework (ISF) which primarily support this kit. The FreeMASTER tool is used to visualize the acceleration data that are read from the FXLS8471Q using an interrupt technique through the SPI interface. This example illustrates: 1. Initialization of the MKL25Z128 MCU (mainly PORT and SPI modules). 2. SPI data write and read operations. 3. Initialization of the FXLS8471Q to achieve the highest resolution. 4. Output data reading using an interrupt technique. 5. Conversion of the output values from registers 0x01 – 0x06 to real acceleration values in g’s. 6. Visualization of the output values in the FreeMASTER tool. 1. As you can see in the FRDMSTBC-A8471/FRDM-KL25Z schematics and the image below, SPI signals are routed to the SPI0 module of the KL25Z MCU and the INT1 output is connected to the PTD4 pin. The PTD0 pin (Chip Select) is not controlled automatically by SPI0 module, hence it is configured as a general-purpose output. The INT1 output of the FXLS8471Q is configured as a push-pull active-low output, so the corresponding PTD4 pin configuration is GPIO with an interrupt on falling edge. The configuration is done in the BOARD_InitPins() function using the NXP Pins Tool for Kinetis MCUs. void BOARD_InitPins(void) {    CLOCK_EnableClock(kCLOCK_PortD);                                          /* Port D Clock Gate Control: Clock enabled */    CLOCK_EnableClock(kCLOCK_Spi0);                                           /* SPI0 Clock Gate Control: Clock enabled */    PORT_SetPinMux(PORTD, PIN1_IDX, kPORT_MuxAlt2);                           /* PORTD1 (pin 74) is configured as SPI0_SCK */    PORT_SetPinMux(PORTD, PIN2_IDX, kPORT_MuxAlt2);                           /* PORTD2 (pin 75) is configured as SPI0_MOSI */    PORT_SetPinMux(PORTD, PIN3_IDX, kPORT_MuxAlt2);                           /* PORTD3 (pin 76) is configured as SPI0_MISO */    PORT_SetPinMux(PORTD, PIN0_IDX, kPORT_MuxAsGpio);                         /* PORTD0 (pin 73) is configured as PTD0 */    GPIO_PinInit(GPIOD, PIN0_IDX, &CS_config);                                /* PTD0 = 1 (Chip Select inactive) */       PORT_SetPinMux(PORTD, PIN4_IDX , kPORT_MuxAsGpio);                        /* PORTD4 (pin 77) is configured as PTD4 */    PORT_SetPinInterruptConfig(PORTD, PIN4_IDX, kPORT_InterruptFallingEdge);  /* PTD4 is configured for falling edge interrupts */      NVIC_EnableIRQ(PORTD_IRQn);                                               /* Enable PORTD interrupt on NVIC */ } The SPI_INIT() function is used to enable and configure the SPI0 module. The FXLS8471Q uses the ‘Mode 0′ SPI protocol, which means that an inactive state of clock signal is low and data are captured on the leading edge of clock signal and changed on the falling edge. The SPI clock is 500 kHz. void SPI_Init(void) {    uint32_t sourceClock = 0U;    sourceClock = CLOCK_GetFreq(kCLOCK_BusClk);    spi_master_config_t masterConfig = {    .enableMaster = true,    .enableStopInWaitMode = false,    .polarity = kSPI_ClockPolarityActiveHigh,    .phase = kSPI_ClockPhaseFirstEdge,    .direction = kSPI_MsbFirst,    .outputMode = kSPI_SlaveSelectAsGpio,    .pinMode = kSPI_PinModeNormal,    .baudRate_Bps = 500000U     };    SPI_MasterInit(SPI0, &masterConfig, sourceClock); } 2. The falling edge on the CS pin starts the SPI communication. A write operation is initiated by transmitting a 1 for the R/W bit. Then the 8-bit register address, ADDR[7:0] is encoded in the first and second serialized bytes. Data to be written starts in the third serialized byte. The order of the bits is as follows: Byte 0: R/W, ADDR[6], ADDR[5], ADDR[4], ADDR[3], ADDR[2], ADDR[1], ADDR[0] Byte 1: ADDR[7], X, X, X, X, X, X, X Byte 2: DATA[7], DATA[6], DATA[5], DATA[4], DATA[3], DATA[2], DATA[1], DATA[0] The rising edge on the CS pin stops the SPI communication. Below is the write operation which writes the value 0x3D to the CTRL_REG1 (0x3A). Similarly a read operation is initiated by transmitting a 0 for the R/W bit. Then the 8-bit register address, ADDR[7:0] is encoded in the first and second serialized bytes. The data is read from the MISO pin (MSB first). The screenshot below shows the read operation which reads the correct value 0x6A from the WHO_AM_I register (0x0D). Multiple read operations are performed similar to single read except bytes are read in multiples of eight SCLK cycles. The register address is auto incremented so that every eighth next clock edges will latch the MSB of the next register. A burst read of 6 bytes from registers 0x01 to 0x06 is shown below. It also shows how the INT1 pin is automatically cleared by reading the acceleration output data. 3. At the beginning of the initialization, all FXLS8471Q registers are reset to their default values by setting the RST bit of the CTRL_REG2 register. The dynamic range is set to ±2g and to achieve the highest resolution, the LNOISE bit is set and the lowest ODR (1.56Hz) and the High Resolution mode are selected (more details in AN4075). The DRDY interrupt is enabled and routed to the INT1 interrupt pin that is configured to be a push-pull, active-low output. void FXLS8471Q_Init (void) {    FXLS8471Q_WriteRegister(CTRL_REG2, 0x40);            /* Reset all registers to POR values */    Pause(0xC62);                                        /* ~1ms delay */    FXLS8471Q_WriteRegister(CTRL_REG2, 0x02);            /* High Resolution mode */    FXLS8471Q_WriteRegister(CTRL_REG3, 0x00);            /* Push-pull, active low interrupt */    FXLS8471Q_WriteRegister(CTRL_REG4, 0x01);            /* Enable DRDY interrupt */    FXLS8471Q_WriteRegister(CTRL_REG5, 0x01);            /* DRDY interrupt routed to INT1 - PTD4 */    FXLS8471Q_WriteRegister(CTRL_REG1, 0x3D);            /* ODR = 1.56Hz, Reduced noise, Active mode */ } 4. In the ISR, only the interrupt flag is cleared and the DataReady variable is set to indicate the arrival of new data. void PORTD_IRQHandler(void) {    PORT_ClearPinsInterruptFlags(PORTD, 1<<4);           /* Clear the interrupt flag */    DataReady = 1; } 5. In the main loop, the DataReady variable is periodically checked and if it is set, the accelerometer registers 0x01 – 0x06 are read and then converted to signed 14-bit values and real values in g’s. if (DataReady)                                                        /* Is a new set of data ready? */ {    DataReady = 0;    FXLS8471Q_ReadMultiRegisters(OUT_X_MSB_REG, 6, AccData);           /* Read data output registers 0x01-0x06 */    Xout_14_bit = ((int16_t) (AccData[0]<<8 | AccData[1])) >> 2;       /* Compute 14-bit X-axis output value */    Yout_14_bit = ((int16_t) (AccData[2]<<8 | AccData[3])) >> 2;       /* Compute 14-bit Y-axis output value */    Zout_14_bit = ((int16_t) (AccData[4]<<8 | AccData[5])) >> 2;       /* Compute 14-bit Z-axis output value */    Xout_g = ((float) Xout_14_bit) / SENSITIVITY_2G;                   /* Compute X-axis output value in g's */    Yout_g = ((float) Yout_14_bit) / SENSITIVITY_2G;                   /* Compute Y-axis output value in g's */    Zout_g = ((float) Zout_14_bit) / SENSITIVITY_2G;                   /* Compute Z-axis output value in g's */ } 6. The calculated values can be watched in the Debug perspective or in the FreeMASTER application. To open and run the FreeMASTER project, install the FreeMASTER 2.0 application and FreeMASTER Communication Driver. Attached you can find the complete source code written in the KDS 3.0.2 including the FreeMASTER project. If there are any questions regarding this simple application, do not hesitate to ask below. Your feedback or suggestions are also welcome. Best regards, Tomas
查看全文
My friend Matt Muddiman of Freescale gave this presentation as part of the MEMS Education Series (hosted by Arizona Technology Council and MEMS Industry Group) in Scottsdale Arizona earlier this week.
查看全文
Hi Everyone,   If you are interested in a simple bare metal example code illustrating the use of the accelerometer motion detection function, please find below one of my examples I created for the FXLS8471Q accelerometer while working with the NXP FRDM-KL25Z platform and FRDMSTBC-A8471 board.   The FXLS8471Q is set to detect motion exceeding 315mg for a minimum period of 40 ms on either the X or Y axis. Once an event is triggered, an interrupt will be generated on the INT1 pin:   void FXLS8471Q_Init (void) { FXLS8471Q_WriteRegister(FT_MT_THS_REG, 0x85); // Set threshold to 312.5mg (5 x 62.5mg ) FXLS8471Q_WriteRegister(FF_MT_COUNT_REG, 0x02); // Set debounce timer period to 40ms FXLS8471Q_WriteRegister(FF_MT_CFG_REG, 0xD8); // Latch enabled, motion detection enabled for X and Y axis FXLS8471Q_WriteRegister(CTRL_REG4, 0x04); // Motion interrupt enabled FXLS8471Q_WriteRegister(CTRL_REG5, 0x04); // Route motion interrupt to INT1 - PTD4 FXLS8471Q_WriteRegister(CTRL_REG1, 0x29); // ODR = 12.5Hz, Active mode }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍     In the ISR, only the interrupt flag is cleared and the FF_MT_SRC (0x16) register is read in order to clear the SRC_FFMT flag in the INT_SOURCE register and deassert the INT1 pin, as shown on the screenshot below.   void PORTD_IRQHandler() { PORTD_PCR4 |= PORT_PCR_ISF_MASK; // Clear the interrupt flag IntSource = FXLS8471Q_ReadRegister(FF_MT_SRC_REG); // Read the FF_MT_SRC register to clear the SRC_FFMT flag in the INT_SOURCE register EventCounter++; }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍       Attached you can find the complete source code. If there are any questions regarding this simple example code, please feel free to ask below.    Regards, Tomas
查看全文
Hello community, As we know, The MMA8451Q has embedded single/double and directional tap detection. This post describes an example project using the Single Tap detection for the MMA8451Q included on the FRDM-KL25Z. Figure 1. Depending on the tapping direction, positive or negative of each axis, the RGB LED will turn into a different color. For more detailed information on how to configure the device for tap detection please refer to NXP application note, AN4072. Configuring the MCU Enable the I2C module of the KL25Z MCU and turn on all the corresponding clocks. In this case, the INT1 output of the MMA8451Q is connected to the PTA14 pin and both SCL and SDA lines are connected to the I2C0 module (PTE24 and PTE25 pins). Please review the FRDM-KL25Z schematic.      //I2C0 module initialization        SIM_SCGC4 |= SIM_SCGC4_I2C0_MASK;        // Turn on clock to I2C0 module        SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK;       // Turn on clock to Port E module        PORTE_PCR24 = PORT_PCR_MUX(5);           // PTE24 pin is I2C0 SCL line        PORTE_PCR25 = PORT_PCR_MUX(5);           // PTE25 pin is I2C0 SDA line        I2C0_F = 0x14;                           // SDA hold time = 2.125us, SCL start hold time = 4.25us, SCL stop hold time = 5.125us *        I2C0_C1 = I2C_C1_IICEN_MASK;             // Enable I2C0 module                   //Configure the PTA14 pin (connected to the INT1 of the MMA8451Q) for falling edge interrupts        SIM_SCGC5 |= SIM_SCGC5_PORTA_MASK;       // Turn on clock to Port A module        PORTA_PCR14 |= (0|PORT_PCR_ISF_MASK|     // Clear the interrupt flag        PORT_PCR_MUX(0x1)|           // PTA14 is configured as GPIO        PORT_PCR_IRQC(0xA));         // PTA14 is configured for falling edge interrupts                   //Enable PORTA interrupt on NVIC        NVIC_ICPR |= 1 << ((INT_PORTA - 16)%32);        NVIC_ISER |= 1 << ((INT_PORTA - 16)%32); Configure the RBG LED of the FRDM-KL25Z Based on FRDM-KL25Z User's Manual , the RGB LED signals are connected as follow: The pins mentioned, are configured as output.      //Configure PTB18, PTB19 and PTD1 as output for the RGB LED        SIM_SCGC5 |= SIM_SCGC5_PORTB_MASK;    // Turn on clock to Port B module        SIM_SCGC5 |= SIM_SCGC5_PORTD_MASK;    // Turn on clock to Port D module                   PORTB_PCR18 |= PORT_PCR_MUX(0x1);     // PTB18 is configured as GPIO        PORTB_PCR19 |= PORT_PCR_MUX(0x1);     // PTB19 is configured as GPIO        PORTD_PCR1 |= PORT_PCR_MUX(0x1);      // PTD1 is configured as GPIO                   GPIOB_PDDR |= (1 << 18);              //Port Data Direction Register (GPIOx_PDDR)        GPIOB_PDDR |= (1 << 19);              //Set GPIO direction set bit corresponding bit on the direction        GPIOD_PDDR |= (1 << 1);               //register for each port, set the bit means OUTPUT Initialize and configure the MMA8451Q for Tap Detection To utilize the single and/or double tap detection the following eight (8) registers must be configured. Register 0x21: PULSE_CFG Pulse Configuration Register Register 0x22: PULSE_SRC Pulse Source Register Register 0x23 - 0x25: PULSE_THSX,Y,Z Pulse Threshold for X, Y and Z Registers Register 0x26: PULSE_TMLT Pulse Time Window 1 Register Register 0x27: PULSE_LTCY Pulse Latency Timer Register Register 0x28: PULSE_WIND Second Pulse Time Window Register Please review the MMA8451Q datasheet in order to get more information about the registers mentioned. For a single tap event, the PULSE_TMLT, PULSE_THSX/Y/Z and PULSE_LTCY registers are key parameters to consider. Note in condition (a) the interrupt is asserted since the acceleration due to a pulse exceeds the specified acceleration threshold (value set in the PULSE_THSX) and crosses up and down before the specified Pulse Time Limit (value set in PULSE_TMLT) expires. Note that in condition (b) the acceleration due to a pulse exceeds the specified acceleration threshold limit, but does not go below the threshold before the specified Pulse Time Limit expires. Therefore, this is an invalid pulse and the interrupt will not be triggered. Also note that the Latency is not shown for this example.              unsigned char reg_val = 0, CTRL_REG1_val = 0;            I2C_WriteRegister(MMA845x_I2C_ADDRESS, CTRL_REG2, 0x40);             // Reset all registers to POR values                 do            // Wait for the RST bit to clear        {               reg_val = I2C_ReadRegister(MMA845x_I2C_ADDRESS, CTRL_REG2) & 0x40;        }      while (reg_val);            I2C_WriteRegister(MMA845x_I2C_ADDRESS, CTRL_REG1, 0x0C);             // ODR = 400Hz, Reduced noise, Standby mode        I2C_WriteRegister(MMA845x_I2C_ADDRESS, XYZ_DATA_CFG_REG, 0x00);      // +/-2g range -> 1g = 16384/4 = 4096 counts        I2C_WriteRegister(MMA845x_I2C_ADDRESS, CTRL_REG2, 0x02);             // High Resolution mode            I2C_WriteRegister(MMA845x_I2C_ADDRESS, PULSE_CFG_REG, 0x15);         //Enable X, Y and Z Single Pulse        I2C_WriteRegister(MMA845x_I2C_ADDRESS, PULSE_THSX_REG, 0x20);        //Set X Threshold to 2.016g        I2C_WriteRegister(MMA845x_I2C_ADDRESS, PULSE_THSY_REG, 0x20);        //Set Y Threshold to 2.016g        I2C_WriteRegister(MMA845x_I2C_ADDRESS, PULSE_THSZ_REG, 0x2A);        //Set Z Threshold to 2.646g        I2C_WriteRegister(MMA845x_I2C_ADDRESS, PULSE_TMLT_REG, 0x28);        //Set Time Limit for Tap Detection to 25 ms        I2C_WriteRegister(MMA845x_I2C_ADDRESS, PULSE_LTCY_REG, 0x28);        //Set Latency Time to 50 ms        I2C_WriteRegister(MMA845x_I2C_ADDRESS, CTRL_REG4, 0x08);             //Pulse detection interrupt enabled        I2C_WriteRegister(MMA845x_I2C_ADDRESS, CTRL_REG5, 0x08);             //Route INT1 to system interrupt            CTRL_REG1_val = I2C_ReadRegister(MMA845x_I2C_ADDRESS, CTRL_REG1);   //Active Mode        CTRL_REG1_val |= 0x01;        I2C_WriteRegister(MMA845x_I2C_ADDRESS, CTRL_REG1, CTRL_REG1_val); Handle the Interrupt The PULSE_SRC register indicates a double or single pulse event has occurred and also which direction. In this case the value of the register mentioned is passed to the PULSE_SRC_val variable and evaluated. Reading the PULSE_SRC register clears all bits. Reading the source register will clear the interrupt.      void PORTA_IRQHandler()      {             PORTA_PCR14 |= PORT_PCR_ISF_MASK;               // Clear the interrupt flag              PULSE_SRC_val = I2C_ReadRegister(MMA845x_I2C_ADDRESS, PULSE_SRC_REG); //Read Pulse Source Register      } Please find attached the complete source code written in the CodeWarrior for Microcontrollers-Eclipse IDE|NXP . As I mentioned before, you can find more detailed information at application note AN4072. Useful information about handling the MMA8451 can be founded in MMA8451Q - Bare metal example project. I hope you find useful and funny this sample project. Regards, David
查看全文
Hi Everyone, This tutorial is a detailed guide on how to import an ISSDK based example project (e.g. mma845x_interrupt) into MCUXpresso IDE, build and run it on the Freedom board (e.g. FRDM-KL27Z). If you intend to use another ISSDK example project/board, you can always follow this guide. A complete list of MCU boards, sensor kits and sensors supported by ISSDK is available in the ISSDK Release notes. 1. Download the FRDM-KL27Z SDK Open a web browser, navigate to the MCUXpresso homepage and select “Login to view configurations” to start a new configuration. You will be redirected to login to nxp.com. Enter your account information or register for a new account. Back on the MCUXpresso homepage, select the drop-down box to create a New Configuration. Select the board (FRDM-KL27Z) from the list and provide a name for the configuration. Select “Specify Additional Configuration Settings” to choose the Host OS, Toolchain (MCUXpresso IDE) and Middleware (ISSDK). Select Configuration Settings: Host OS (example: Windows) Toolchain/IDE (MCUXpresso IDE) Middleware (ISSDK) Once the configurations are set, select “Go to SDK Builder”.   Select “Request Build” to download the SDK. Once the build request is completed, download the SDK. Agree to Software Terms and Conditions. Unzip SDK to a folder (e.g. SDK_2.2.1_FRDM-KL27Z). 2. Import the SDK_2.1.1_FRDM-KL27Z into MCUXpresso IDE Open MCUXpresso IDE. Set the workspace directory of your choice and click on OK. Switch to the Installed SDKs view within the MCUXpresso IDE window. Open Windows Explorer, and drag and drop the SDK_2.2.1_FRDM-KL27Z (unzipped) file into the installed SDKs view. You will get the following pop-up so click on OK to continue the import.   The installed SDK will appear in the Installed SDKs view. 3. Import and build the ISSDK based mma845x_interrupt example project Find the Quickstart Panel in the lower left hand corner and select Import SDK example(s) Click on the FRDM-KL27Z board and then click on Next. Use the arrow button to expand the issdk_examples category, and then click the checkbox next to mma845x_interrupt to select that project. Then, click on Next. On the next screen, click the checkbox to Redirect printf/scanf to UART so that the terminal output gets sent out the UART instead of using semi-hosting through the debugger. Then click on Finish. Now build the project by clicking on the project name in the Project Explorer view and then click on the Build icon in the Quickstart Panel. You can see the status of the build in the Console view. 4. Run the mma845x_interrupt example project   Now that the project has been compiled, we can flash it to the board and run it. Make sure the FRDM-KL27Z board is plugged in, and click on Debug ‘frdmkl27z_issdk_examples_sensors_mma8451q_mma845x_interrupt’ [Debug] MCUXpresso will probe for connected boards and should find the OpenSDA debug probe that is part of the integrated OpenSDA circuit on the FRDM-KL27Z board. Click on OK to continue. The firmware will be downloaded to the board and the debugger started. Open a Terminal program (e.g. Tera Term) and connect to the FRDM-KL27Z COM port that it enumerated as. Use 115200 baud, 8 data, 1 stop, no parity. Start the application in the MCUXpresso IDE by clicking the "Resume" button. The application is now running and signed 14-bit accelerometer output values are displayed on the terminal. To modify the initial register settings of the MMA8451 accelerometer, find the mma845x_Config_Isr[] structure and change it according to your needs. Well done if you managed to follow along and get it all working. If there are any questions, do not hesitate to ask below. Your feedback or suggestions are also welcome. Regards, Tomas
查看全文
Hello Community,   One of the main features of the NXP accelerometers is the Auto-WAKE/SLEEP mode.   I would like to share this project in order to demonstrate the feasibility of using the Low-power and auto-WAKE/SLEEP modes for reducing current consumption in the different NXP accelerometers such as the MMA845x and MMA865x series.   I created this project using the FRDM-KL25Z platform and the MMA8652FC accelerometer (You may find the breakout board files here). The complete source code is written in CodeWarrior v10.x IDE.   This document gives you an introduction of the MMA8652FC accelerometer as well as the different power consumptions and guides you through the initialization process and how to appreciate the demonstration:   Initialization of the MKL25Z128 MCU. Initialization of the MMA8652FC. Auto-WAKE/SLEEP mode. MMA8652FC Embedded functions. Interrupt handlers. Evaluation of the interrupt source. Summarizing the application and Macros definition. Visualization of the current consumption.   1. As you can see in the FRDM-KL25Z schematic and the image below, the I2C signals are routed to the I2C1 module (PTC1 and PTC2 pins) of the KL25Z MCU and the INT1 and INT2 outputs are connected to the PTD5 and PTA5 pins. The INT1 and INT2 outputs of the MMA8652FC are configured as a push-pull active-low outputs, so the corresponding PTD5 and PTA5 pins configuration are GPIOs with an interrupt on falling edge.   The MCU is, therefore, configured as follows:          /* I2C1 module initialization */      SIM_SCGC4 |= SIM_SCGC4_I2C1_MASK;        // Turn on clock to I2C1 module      SIM_SCGC5 |= SIM_SCGC5_PORTC_MASK;       // Turn on clock to Port C module      PORTC_PCR1 |= PORT_PCR_MUX(0x2);         // PTC1 pin is I2C1 SCL line      PORTC_PCR2 |= PORT_PCR_MUX(0x2);         // PTC2 pin is I2C1 SDA line      I2C1_F  |= I2C_F_ICR(0x14);              // SDA hold time = 2.125us, SCL start hold time = 4.25us, SCL stop hold time = 5.125us      I2C1_C1 |= I2C_C1_IICEN_MASK;            // Enable I2C1 module        /*Configure the PTD5 and PTA5 pin (connected to the INT1 and INT2 of the MMA8652FC) for falling edge interrupts */      SIM_SCGC5 |= SIM_SCGC5_PORTD_MASK;       // Turn on clock to Port D module      PORTD_PCR5 |= (0|PORT_PCR_ISF_MASK|      // Clear the interrupt flag                           PORT_PCR_MUX(0x1)|  // PTD5 is configured as GPIO                           PORT_PCR_IRQC(0xA));// PTD5 is configured for falling edge interrupts        SIM_SCGC5 |= SIM_SCGC5_PORTA_MASK;       // Turn on clock to Port A module      PORTA_PCR5 |= (0|PORT_PCR_ISF_MASK|      // Clear the interrupt flag                           PORT_PCR_MUX(0x1)|  // PTA5 is configured as GPIO                           PORT_PCR_IRQC(0xA));// PTA5 is configured for falling edge interrupts        /* Enable PORTD interrupt on NVIC */      NVIC_ICPR |= 1 << ((INT_PORTD - 16)%32);      NVIC_ISER |= 1 << ((INT_PORTD - 16)%32);      /* Enable PORTA interrupt on NVIC */      NVIC_ICPR |= 1 << ((INT_PORTA - 16)%32);      NVIC_ISER |= 1 << ((INT_PORTA - 16)%32);     2. The MMA8652FC is an intelligent, low-power, three-axis, capacitive micromachined accelerometer with 12 bits of resolution.   At the beginning of the initialization, all registers are reset to their default values by setting the RST bit of the CTRL_REG2 register. The Normal and Low Power modes are set in the same register. The MODS[1:0] bits select which Oversampling mode is to be used. The Oversampling modes are available in both WAKE Mode MOD[1:0] and also in the SLEEP Mode SMOD[1:0].   Then the MMA8652FC is initialized as shown below:        I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG2, 0x40);        // Reset all registers to POR values      Pause(0x631);        // ~1ms delay      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, XYZ_DATA_CFG_REG, 0x00); // +/-2g range with ~0.977mg/LSB              /* Power Mode Configuration */      If LOW power mode is selected:      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG2, 0x1B);        // Low Power mode        If NORMAL power mode is selected:      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG2, 0x00);        // Normal mode     3. As I mentioned, one of the main features of the MMA8652FC is the Auto-WAKE/SLEEP mode.   The advantage of using the Auto-WAKE/SLEEP is that the system can automatically transition to a higher sample rate (higher current consumption) when needed, but spends the majority of the time in the SLEEP mode (lower current) when the device does not require higher sampling rates.   • Auto-WAKE refers to the device being triggered by one of the interrupt functions to transition to a higher sample rate. This may also interrupt the processor to transition from a SLEEP mode to a higher power mode. • SLEEP mode occurs after the accelerometer has not detected an interrupt for longer than the user-definable timeout period.       At the ASLP_COUNT register, you can set the minimum time period of inactivity required to switch the part between Wake and Sleep status, in this case, 5 seconds.   The Auto-WAKE/SLEEP mode, therefore, is configured as follow:        read_reg = I2C_ReadRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG2);      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG2, read_reg|0x04);  // Auto-SLEEP enable      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, ASLP_COUNT_REG, 0x10);      // 5 seconds (16 * 320ms)      read_reg = I2C_ReadRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG4);      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG4, read_reg|0x80);  // Enable AutoSleep interrupt, INT2 - PTD5      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG1, 0xC1);           // ODR=800Hz and Sleep mode ODR=1.56Hz, Active mode     4. The device can be configured to generate inertial wake-up interrupt signals from any combination of the configurable embedded functions, enabling the MMA8652FC to monitor inertial events while remaining in a low-power mode during periods of inactivity.   The Interrupts that can WAKE the device from SLEEP are: Tap Detection, Orientation Detection, Motion/Freefall, and Transient Detection.       In this project, the TAP (Pulse) or Transient interrupts are used to wake up the device from the SLEEP. In order to get more information about the TAP detection, please click here.   The MMA8652FC is configured as below:        If Transient interrupt is selected:      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, TRANSIENT_THS_REG, 0x84);         // Set threshold to 252mg (4 x 63mg )      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, TRANSIENT_COUNT_REG, 0x02);       // Set debounce timer period to 40ms (low power mode) / 2.5ms (normal mode)-Table 66      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, TRANSIENT_CFG_REG, 0x17);         // Enable transient detection for X and Y axis, latch enabled         I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG3, 0x40);                 // Wake from Transient interrupt, Push-pull, active low interrupt      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG4, 0x20);                 // Enable Transient detection interrupt      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG5, 0x20);                 // Transient interrupt routed to INT1 - PTA5          If TAP interrupt is selected:      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, PULSE_CFG_REG, 0x15);             // Enable X, Y and Z Single Pulse      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, PULSE_THSX_REG, 0x20);            // Set X Threshold to 2.016g      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, PULSE_THSY_REG, 0x20);            // Set Y Threshold to 2.016g      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, PULSE_THSZ_REG, 0x2A);            // Set Z Threshold to 2.646g      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, PULSE_TMLT_REG, 0x28);            // Set Time Limit for Tap Detection to 25 ms      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, PULSE_LTCY_REG, 0x28);            // Set Latency Time to 50 ms. During this time interval, all pulses are ignored          I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG3, 0x10);                 // Wake from Pulse interrupt, Push-pull, active low interrupt      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG4, 0x08);                 // Pulse detection interrupt enabled      I2C_WriteRegister(MMA8652FC_I2C_ADDRESS, CTRL_REG5, 0x08);                 // Pulse interrupt routed to INT1 - PTA5     5. As I mentioned above, the TAP (Pulse) or Transient interrupts are used to wake up the device from the SLEEP. Besides, if Auto-SLEEP interrupt is enabled, then transitioning from ACTIVE mode to Auto-SLEEP mode (or vice versa) generates an interrupt.   In this project, the Auto-SLEEP, the TAP (Pulse) or the Transient interrupts are enable. The MKL25Z128 responds to these interrupts reading the INT_SOURCE (0x0C) register, in order to determine the appropriate sources of the interrupt.   Every source of interrupt has its own way to clear the interrupt flag. Please refer to the comments of each ISR:        Transient interrupt handler      void PORTA_IRQHandler()      {         PORTA_PCR5 |= PORT_PCR_ISF_MASK;                // Clear the PTC interrupt         int_source = I2C_ReadRegister(MMA8652FC_I2C_ADDRESS, INT_SOURCE_REG); // Clear interrupt Source Register           if(int_source&0x20)  // Transient interrupt ?         {            i = I2C_ReadRegister(MMA8652FC_I2C_ADDRESS, TRANSIENT_SRC_REG); // Read the TRANSIENT_SRC register to clear the SRC_TRANS flag in the INT_SOURCE register             transient_int = 1;         }      }        TAP interrupt handler      void PORTA_IRQHandler()      {         PORTA_PCR5 |= PORT_PCR_ISF_MASK;                // Clear the PTC interrupt flag         int_source = I2C_ReadRegister(MMA8652FC_I2C_ADDRESS, INT_SOURCE_REG); // Clear interrupt Source Register            if(int_source&0x08)  // Pulse interrupt ?         {            i = I2C_ReadRegister(MMA8652FC_I2C_ADDRESS, PULSE_SRC_REG); // Read the PULSE_SRC register to clear the SRC_TRANS flag in the INT_SOURCE register             pulse_int = 1;         }      }        Auto WAKE/SLEEP interrupt handler      void PORTD_IRQHandler()      {          PORTD_PCR5 |= PORT_PCR_ISF_MASK;                // Clear the PTD interrupt flag             int_source = I2C_ReadRegister(MMA8652FC_I2C_ADDRESS, INT_SOURCE_REG); // Clear interrupt Source Register             if (int_source&0x80) // Auto Sleep/Wake interrupt ?          {             i = I2C_ReadRegister(MMA8652FC_I2C_ADDRESS, SYSMOD_REG);      // Read the SYSMOD register to clear the SRC_ASLP flag in the INT_SOURCE register             sleep_int = 1;          }      }     6. At this point, the configuration of the MCU and the accelerometer is done. The RGB LED contained on the FRDM-KL25Z board is configured in order to help showing the behavior of the application. This behavior is configured as follow:        #if TRANSIENT_DETECTION                    if (transient_int){                             transient_int = 0;                 TURN_BLUE_ON(); TURN_RED_OFF();}      #elif TAP_DETECTION                    if (pulse_int){                 pulse_int = 0;                 TURN_BLUE_ON(); TURN_RED_OFF();}      #endif                    if (sleep_int){                  sleep_int = 0;                  TURN_RED_ON(); TURN_BLUE_OFF();}     7. In summary, the FRDM-KL25Z will be interfacing with the MMA8652FC. The power mode will be set and the interrupts will be enabled. The macros at the top of the source code will allow us to select between the different power modes, the different embedded functions and to select the Auto-WAKE/SLEEP function.   If the Auto-WAKE/SLEEP function is enabled, the MMA8652FC will go into the SLEEP mode (ODR=1.56Hz) after 5 seconds of inactivity. The RED LED will be set. When an interrupt from the embedded functions is generated, the MMA8652FC will be awakened (ODR=800Hz) and so on. The BLUE LED will be set.        /* Select the Power Mode - Table 101 from datasheet */      #define NORMAL_MODE        1      #define LOW_POWER_MODE     0         /* Select the Embedded Function */      #define TRANSIENT_DETECTION       1      #define TAP_DETECTION             0        /* Auto-WAKE/SLEEP Function */      #define AUTO_SLEEP   1     8. The Table 5 from the datasheet shows the expected current consumption in regard with the power mode and ODR selected:   As I mentioned before, the Sleep mode allow us to change between different Output Data Rates (ODR) dynamically so we can reduce the current consumption.   In order to verify if the accelerometer is consuming the current mentioned on the datasheet, I measured the MMA8652FC current consumption using the project mentioned.   Please refer to the results below:           9. The advantage of using the Auto-WAKE/SLEEP mode is that the system can automatically transition to a higher sample rate (higher current consumption) when needed, but spends the majority of the time in the SLEEP mode (lower current) when the device does not require higher sampling rates.   In the manner we have come to expect of the MMA8652FC, the current consumption decreases when the ODR is changed from 800Hz to 1.56Hz, in both normal and low power mode.   The information mentioned on the datasheet is now confirmed.     Please find attached the complete source code.   I hope you find useful and funny this sample project. Any suggestion will be appreciated.   You are invited to take part of the NXP community where you can post all your questions and you may find useful material for your projects.   Best Regards, David
查看全文
The attached is a copy of a presentation given 24 June 2014 at the Sensors Expo Conference in Rosemont IL.
查看全文
This is the 9 December 2014 build of Vibration Monitoring program written by Mark Pedley in the Sensors Solutions Division systems/algorithms team.  It is compatible with Freescale FRDM-KL25Z/KL26Z/KL46Z/K64F Freedom development platforms.  You can flash your board using the File->Flash pull-down menu.    The application contains an option for controlling motor bias and feedback via optional motor control shield to be discussed in an upcoming Freescale blog.  Use the View->Motor Controls pull-down to enable those functions.
查看全文
Hi Everyone, As I am often asked for a simple bare metal example code illustrating the use of the accelerometer vector-magnitude function, I have decided to share here one of my examples I created for the FXLS8471Q accelerometer while working with the Freescale FRDM-KL25Z platform and FRDM-FXS-MULT2-B sensor expansion board. This example code complements the Python code snippet from the AN4692. The FXLS8471Q is set for detection of a change in tilt angle exceeding 17.25° from the horizontal plane. Once an event is triggered, an interrupt will be generated on the INT1 pin: void FXLS8471Q_Init (void) {      FXLS8471Q_WriteRegister(A_VECM_THS_MSB_REG, 0x84);            // Threshold value set to 300mg or ~17.25°    FXLS8471Q_WriteRegister(A_VECM_THS_LSB_REG, 0xCC);          FXLS8471Q_WriteRegister(A_VECM_CNT_REG, 0x01);                // Debounce timer period set to 80ms          FXLS8471Q_WriteRegister(A_VECM_INITX_MSB_REG, 0x00);    FXLS8471Q_WriteRegister(A_VECM_INITX_LSB_REG, 0x00);    FXLS8471Q_WriteRegister(A_VECM_INITY_MSB_REG, 0x00);    FXLS8471Q_WriteRegister(A_VECM_INITY_LSB_REG, 0x00);    FXLS8471Q_WriteRegister(A_VECM_INITZ_MSB_REG, 0x10);          // Set Z-axis to 1g  as a reference value    FXLS8471Q_WriteRegister(A_VECM_INITZ_LSB_REG, 0x00);          FXLS8471Q_WriteRegister(A_VECM_CFG_REG, 0x78);                // Event latch enabled, A_VECM_INITX/Y/Z used as initial reference, acceleration vector-magnitude detection feature enabled          FXLS8471Q_WriteRegister(CTRL_REG4, 0x02);                     // Acceleration vector-magnitude interrupt enabled    FXLS8471Q_WriteRegister(CTRL_REG5, 0x02);                     // Acceleration vector-magnitude interrupt routed to INT1 - PTA5          FXLS8471Q_WriteRegister(CTRL_REG1, 0x29);                     // ODR = 12.5Hz, Active mode } In the ISR, only the interrupt flag is cleared and the  INT_SOURCE (0x0C) register is read in order to clear the SRC_A_VECM status bit and deassert the INT1 pin, as shown on the screenshot below. void PORTA_IRQHandler() {    PORTA_PCR5 |= PORT_PCR_ISF_MASK;                              // Clear the interrupt flag    IntSource = FXLS8471Q_ReadRegister(INT_SOURCE_REG);           // Read the INT_SOURCE register to clear the SRC_A_VECM bit   } Attached you can find the complete source code. If there are any questions regarding this simple example code, please feel free to ask below. Your feedback or suggestions are also welcome. Regards, Tomas
查看全文
Hello Freescale Community, Most of the new Freescale Sensors in our portfolio come in very small packages, some of them as small as 2x2x1mm, which is awesome! However, one of the problems that we detected last year is that many customers struggle in the evaluation stage of the project due to the small packages. They should either, buy an evaluation board or spend valuable time designing and manufacturing a PCB just for testing our devices. Our goal with this project is to share with our community the Freescale Sensors Breakout Boards we designed for this specific purpose, so you can easily manufacture your own sensor boards or modify our designs to fit  your specific application. This way you can easily evaluate Freescale sensors. The boards were designed to be used in a prototype board (DIP style pins) and they can communicate to any MCU thru IIC or SPI (depending on the sensor). These designs were made using Eagle Layout 6.5, if you want to modify the designs you can do it with the free version of Eagle CAD (for non-commercial purposes), or you can send the gerber files (included in the zip files) to your preferred PCB manufacturer. The following designs are available: + Altimeter: MPL3115A2 Breakout Board + Accelerometer: MMA845x Breakout Board MMA865x Breakout Board MMA8491 Breakout Board FXLN83xx Breakout Board FXLS8471 Breakout Board MMA690x Breakout Board + Accelerometer + Magnetometer (6-DOF): FXOS8700 Breakout Board + Gyroscope: FXAS2100x Breakout Board The above .ZIP files, contains the following design information: - Schematic Source File (.SCH) - Schematic (.PDF) - Layout Source File (.BRD) - Layout Images (.jpg) - Gerber Files (GTL, GBL, GTS, GBS, GTO, GBO, GKO, XLN). - PCB Render Image (.png created in OSH park) - BOM (.xls) Additional content: If you want to modify our designs, please download the attached library file "Freescale_Sensors_v2.lbr" and add it to your Eagle Library repository. We'll be more than glad to respond to your questions and please, let us know what you think. -Freescale Sensor's Support team.
查看全文
Hi Everyone,   As I am often asked for a simple bare metal example code illustrating the use of the accelerometer transient detection function, I have decided to share here one of my examples I created for the FXLS8471Q accelerometer while working with the NXP FRDM-KL25Z platform and FRDM-FXS-MULT2-B sensor expansion board.   This example code complements the Python code snippet from the AN4693. The FXLS8471Q is set for detection of an “instantaneous” acceleration change exceeding 315mg for a minimum period of 40 ms on either the X or Y axes. Once an event is triggered, an interrupt will be generated on the INT1 pin:   void FXLS8471Q_Init (void) { FXLS8471Q_WriteRegister(TRANSIENT_THS_REG, 0x85); // Set threshold to 312.5mg (5 x 62.5mg ) FXLS8471Q_WriteRegister(TRANSIENT_COUNT_REG, 0x02); // Set debounce timer period to 40ms FXLS8471Q_WriteRegister(TRANSIENT_CFG_REG, 0x16); // Enable transient detection for X and Y axis, latch enabled FXLS8471Q_WriteRegister(CTRL_REG4, 0x20); // Acceleration transient interrupt enabled FXLS8471Q_WriteRegister(CTRL_REG5, 0x20); // Route acceleration transient interrupt to INT1 - PTA5 FXLS8471Q_WriteRegister(CTRL_REG1, 0x29); // ODR = 12.5Hz, Active mode } ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍     In the ISR, only the interrupt flag is cleared and the TRANSIENT_SRC (0x1E) register is read in order to clear the SRC_TRANS status bit and deassert the INT1 pin, as shown on the screenshot below.   void PORTA_IRQHandler() { PORTA_PCR5 |= PORT_PCR_ISF_MASK; // Clear the interrupt flag IntSource = FXLS8471Q_ReadRegister(TRANSIENT_SRC_REG); // Read the TRANSIENT_SRC register to clear the SRC_TRANS flag in the INT_SOURCE register EventCounter++; } ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍       Attached you can find the complete source code. If there are any questions regarding this simple example code, please feel free to ask below. Your feedback or suggestions are also welcome.   Regards, Tomas
查看全文
"Android as a Platform for Sensor Fusion Education and Evaluation" presented at 2013 Sensors Expo & Conference by Michael Stanley.
查看全文
Hi Everyone,   If you are interested in a simple bare metal example code illustrating the use of the FXLS8471Q orientation detection function, please find below one of my examples I created for the FXLS8471Q accelerometer while working with the NXP FRDM-KL25Z platform and FRDMSTBC-A8471 board.   This example code complements the code snippet from the  AN4068.   void FXLS8471Q_Init (void) { FXLS8471Q_WriteRegister(CTRL_REG1, 0x00); // Standby mode FXLS8471Q_WriteRegister(PL_CFG_REG, 0x40); // Enable orientation detection FXLS8471Q_WriteRegister(PL_BF_ZCOMP_REG, 0x43); // Back/Front trip point set to 75°, Z-lockout angle set to 25° FXLS8471Q_WriteRegister(P_L_THS_REG, 0x14); // Threshold angle = 45°, hysteresis = 14° FXLS8471Q_WriteRegister(PL_COUNT_REG, 0x05); // Debounce counter set to 100ms at 50Hz FXLS8471Q_WriteRegister(CTRL_REG3, 0x00); // Push-pull, active low interrupt FXLS8471Q_WriteRegister(CTRL_REG4, 0x10); // Orientation interrupt enabled FXLS8471Q_WriteRegister(CTRL_REG5, 0x10); // Route orientation interrupt to INT1 - PTD4 FXLS8471Q_WriteRegister(CTRL_REG1, 0x21); // ODR = 50Hz, Active mode }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍     In the ISR, only the interrupt flag is cleared and the PL_STATUS (0x10) register is read in order to:   - Clear the SRC_LNDPRT flag in the INT_SOURCE register and deassert the INT1 pin, as shown on the screenshot below. - Get orientation information. 0x82 in this example corresponds to "Portrait down" orientation.   void PORTD_IRQHandler() { PORTD_PCR4 |= PORT_PCR_ISF_MASK; // Clear the interrupt flag PL_Status = FXLS8471Q_ReadRegister(PL_STATUS_REG); // Read the PL_STATUS register to clear the SRC_LNDPRT flag in the INT_SOURCE register }‍‍‍‍‍‍‍‍‍‍       Attached you can find the complete source code. If there are any questions regarding this simple example code, please feel free to ask below.    Regards, Tomas
查看全文
clicktaleID