S32 Design Studio知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

S32 Design Studio Knowledge Base

讨论

排序依据:
IVT - short for Image Vector Table, is an image with a set of pointers to other images which are required at boot by the embedded BootROM. This video will explain using S32V chip how IVT tool works and covers create and flash SDK's PIT example.
查看全文
The Image Vector Table (IVT) image is a set of pointers to other images which are required by the BootROM. It typically contains the following images, though not all are required to create a valid IVT image: DCD Self-Test DCD HSE Application Bootloader The IVT Tool enables configuration and generation of the IVT image as specified in the BootROM reference manual. Prerequisites Before using the IVT Tool, it will be useful to have already generated the binary image from your application project, it will be an input to the IVT. It may also be necessary to include a DCD image, for example, to initialize the SRAM. For application bootloader image, follow the steps in HOWTO: Generate S-Record/Intel HEX/Binary file, selecting 'Raw binary' option. For DCD image, follow the steps in HOWTO: Use DCD Tool To Create A Device Configuration Data Image . Procedure With desired project open in project explorer (C/C++ perspective), switch to IVT perspective. Click on 'Open IVT'. In the Boot Configuration section, check that the correct Boot Target is selected. For the demonstration here, M7_0 is the correct selection. Check the 'Interface selection' section. If your intended boot device is SD, MMC or eMMC, then change the setting from QuadSPI Serial Flash. If your intended boot device is QuadSPI AND you do not have a QuadSPI parameter file to specify, then uncheck the box for 'Configure QuadSPI parameters'. QuadSPI parameters change some flash registers' settings away from the default setting and are generally required for larger memory sizes (for ex. applications over 1 MB in size, for some supported devices). From the Image Table section, depending on your configuration, turn off all unused images. For the demonstration here, the following will be changed to Reserved: Self-Test DCD, Self-Test DCD (backup), DCD (backup), Application bootloader (backup). The following images will remain enabled: DCD, Application bootloader. In DCD section of the Image Table, click 'Browse File' and select the DCD binary file. Some of the fields may become red shaded after the file is loaded. This is OK as it is showing the memory layout is no longer aligned. This will be resolved in a later step.  Scroll down to the Application bootloader section, again use  'Browse File' and select the application binary. When the application boot image is loaded, the tool processes the file to check if it contains the header for the application bootloader image. If the header is not found, it means that the file is only the raw code (the bin generated by S32 Design Studio) and it will be necessary to provide the values for RAM start & entry addresses (code length is automatically calculated), as noted with the expanded view and red shading. To set the RAM start pointer and entry pointer addresses, from to the C/C++ perspective: From Project Explorer on the C/C++ perspective, open the linker file (in this case: hello_world\Project_Settings\Linker_Files\<device_name>_common_ram.ld) and locate the RAM start address and enter it in both the RAM start pointer AND RAM entry pointer fields in the IVT Tool. Use copy and paste to add the values to the Application Boot Image settings. Since the application binary file which was loaded for this example is just a raw binary file, it is necessary to generate the full application bootloader image. The Export Image function takes the values entered for the RAM start & entry pointers and the automatically calculated Code length, then generates the Application bootloader header. This header is added to the raw binary file producing a new image, the full application bootloader image file. Within the Application bootloader section, click 'Export Image' and enter a meaningful name for the image file. In addition to being a necessary source component of the IVT image, this file can more easily be shared or re-used to as an input to other IVT images. After the file has been generated, you will notice that the address settings section has collapsed. This is because it has replaced the file you originally selected with the newly generated one and the tool has recognized that the file contains the required header information. Before the Blob image can be generated, all of the images must be properly aligned within the memory map. You will likely also see error messages regarding segment overlaps, but even without this error it is good to check that the alignment is correct. In the Automatic Align section, if you have a dedicated area of the memory you can specify the start address and then click 'Align'. If you don't have a dedicated area, then use the default automatic align start address of 0x0 (QSPI), or 0x1000 (SD, MMC, eMMC). Click 'Align' to automatically align the images to this address. Upon successful completion of the alignment, all of the red shading will be removed. Click 'Export Blob Image' to generate the blob image file. This is what will be flashed to the target. Now that the Blob Image is generated, the 'Flash Image' button could be used to program the image to the target over serial connection, or use the S32 Flash Tool.
查看全文
        Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for S32 Platform v3.2         Austin, Texas, USA Sep 30, 2019    The Automotive Microcontrollers and Processors' Embedded Tools Team at NXP Semiconductors is pleased to announce the release of the S32 Design Studio for S32 Platform v3.2.  Here are some of its major new features: Multiple builds of the GNU tools can be installed. The SDK integration is provided with additional software packages. The SDK packages can be installed and updated with the S32DS Extensions and Updates tool. The GHS toolchain support is provided by the project wizard (available for particular devices). The CMSIS-DAP debugging is supported by particular devices. The UART communication speed of S32 Flash Tool is improved. The latest versions of P&E debugger plug-in and drivers are provided. S32 Debugger provides OS Awareness support for FreeRTOS and OSEK. S32 Debugger provides preliminary support for secure debugging with the Password and Challenge/Response authentication methods. New type of Launch Groups is defined for S32 Debugger, which allows you to create S32 Debugger specific configurations and use the new "Wait for stop on breakpoint" post launch action. The SDK migration support is provided to upgrade an SDK version attached to the project. The S32DS Extensions and Updates tool notifies about dependencies and incompatible packages. The progress bar is displayed for the S32 Debugger flash programmer. S32 Design Studio Versions   S32DS IDE for S32 Platform S32DS IDE for Arm® S32DS IDE for Power Architecture® S32DS IDE for Vision Devices Supported S32V23x S32K1xx MPC56xx S32V234 S32S247TV KEA MPC57xx   S32 Platform Devices MAC57D54H S32R2xx/S32R3xx   Integrated NXP Tools S32 Flash Tool FreeMASTER FreeMASTER DDR stress tool DDR stress tool     Integrated Configuration Tools S32 Configuration Tools Processor Expert Configuration Tool Processor Expert Configuration Tool  DDR configuration tool Pins Wizard Pins Wizard Pins Wizard Clocks configuration Peripheral/Drivers configuration   Peripheral/Drivers configuration   Peripheral/Drivers configuration   DCD/IVT configuration       DDR configuration tool       Integrated NXP Software S32 SDK S32K1 SDK S32 SDK Vision SDK FreeRTOS FreeRTOS FreeRTOS Linux BSP AMMCLib for S32V23x AMMCLib for KEA and S32K AMMCLib for MPC56xx and MPC57xx MCUs   Vision SDK KEA SDK Radar SDK Linux BSP MQX OS/MQX Drivers for MAC57D54H     Compilers: NXP GCC 6.3.1* NXP GCC 6.3.1* NXP GCC 4.9* NXP GCC 6.3.1* GreenHills GreenHills GreenHills   IAR IAR Diab     GCC 4.9*     DEBUGGERS Built-in GDB interface: S32 Debugger/S32 Debug Probe P&E Multilink/Cyclone/OpenSDA P&E Multilink/Cyclone/OpenSDA S32 Debugger/S32 Debug Probe P&E Multilink/Cyclone/OpenSDA Segger J-Link   P&E Multilink/Cyclone/OpenSDA DEBUGGERS supported: Lauterbach Lauterbach Lauterbach Lauterbach   iSystem iSystem   IAR PLS   Host Operating Systems: Microsoft Windows® 7/8/10 64-bit OS (with 32-bit binaries)  – Ubuntu 14.04, 16.04 (64 bit) – Debian 8 (64 bit) – CentOS 7 (64 bit) Microsoft Windows® 7/8/10 32/64-bit OS (with 32-bit binaries)  – Ubuntu 14.04, 16.04 (64 bit) – Debian 8 (64 bit) – CentOS 7 (64 bit) Microsoft Windows® 7/8/10 32/64-bit OS (with 32-bit binaries)  – Ubuntu 14.04, 16.04 (64 bit) – Debian 8 (64 bit) – CentOS 7 (64 bit) Microsoft Windows® 7/8/10 32/64-bit OS (with 32-bit binaries)  – Ubuntu 14.04, 16.04 (64 bit) – Debian 8 (64 bit) – CentOS 7 (64 bit) Vision specific tools : NXP APU Compiler     NXP APU Compiler ISP assembler     ISP assembler ISP and APEX graph tools     ISP and APEX graph tools Radar specific tools :     SPT assembler       SPT Explorer/ SPT graph tool   Complete S32 Design Studio for S32 Platform v3.2 release notes are available here.   Installation To download the installer please visit the S32 Design Studio product page download section or click the direct here.     The installer requires the Activation ID to be entered. You should receive a notification email including the Activation ID after the download of the installation package starts. The installer installs just the base tools/package. In order to start development it is necessary to install at least one Development package. Currently the only application packages available are S32S2xxTV and S32V2xx. The application packages are managed by S32DS Extensions and Updates. Technical Support S32 Design Studio issues are tracked through the S32DS Public NXP Community space. https://community.nxp.com/community/s32/s32ds  
查看全文
There are 2 errors which produce the FNP error 0 message for which we have identified solutions:   1) That activation request yields no right to a license If you receive the following error message following an attempt to activate S32 Design Studio, this is a known issue and we have a solution.     This issue is due to a recent event. On October 1st, 2019, Flexera made this change. Since NXP uses Flexera for product activations, we were affected.   The solution to the issue is to enable support for TLS 1.2 within your Internet Properties.   2) com.acresso.activation.handler.ServerException If you receive the following error message following an attempt to activate S32 Design Studio, this is a known issue and we have a solution. This issue is known to occur on older releases of S32 Design Studio.     The version of FlexNet Publisher (FNP) used to activate the S32 Design Studio on your PC has an issue on some users machines. While we don't fully understand what change is happening to cause this issue, we have determined that an update to the version of FNP will resolve it. We have incorporated a newer version in the 3.5 release of S32 Design Studio.   Attached is a package of files (Activation.7z) which will allow you to update the version of FNP on your machine.   Enter the following command replacing the paths as noted. It should be possible to execute from CMD window located at any path. Make sure to use the ‘/’ instead of ‘\’ and if you have any paths with spaces, then enclose the full path with “.   For 64-bit OS: C:/NXP/S32DS.3.5/jre/bin/java  -Djava.library.path="{path to where you extracted the activation.zip}/Activation/cll/x64"  -jar "{path to where you extracted the activation.zip}/Activation/license.jar" activateUI   For 32-bit OS: C:/NXP/S32DS.3.5/jre/bin/java -Djava.library.path="{path to where you extracted the activation.zip}/Activation/cll/i86" -jar "{path to where you extracted the activation.zip}/Activation/license.jar" activateUI   If you have no existing S32DS installation from which to use Java, then please use the attached package (CLL_FNP.11.18.0.2.zip) and follow the instructions in the included .txt file. This package only works on Windows OS 64-bit.
查看全文
Before you can start debugging an S32DS for Vision project for S32V234 Cortex-A53 APEX2/ISP Linux target on the S32V234-EVB, we must first setup the hardware connections and start the Linux BSP OS. 1) Connect (1) S32V234 USB Micro B port to (2) USB A port on your PC. This allow you to connect to the Linux BSP OS via a terminal program to issue commands and to obtain the IP address. 2) Insert microSDHC card (with U-boot, Linux kernel, devicetree, and root file system loaded*) into (3) the S32V234 SD card slot   3) Connect (1) Ethernet port on S32V234 daughter card to (2) LAN**. This will allow S32DS to communicate with the Linux BSP OS for flashing and GDB debugging.   4) Connect the power supply to (3) S234V234 EVB 5) Turn on the (4) power switch, this will start the Linux BSP OS *Instructions for preparing the SD card are provided in the VisionSDK document: ..\S32DS_Vision_v2.0\S234DS\s234v234_sdk\docs\vsdk\S32V234-EVB_SetupGuide.pdf or refer to https://community.nxp.com/docs/DOC-335023  **Ensure PC is connected to LAN as well (either hardwired or wireless)
查看全文
Sometimes you would like to share sources between projects and - even better - between platforms. Let's say that we are developing software with the very same functionality for S32K144 and MPC5744P. In this case, we can identify platform independent functions - generic, platform specific functions - not related to MCU itself, but related to the way some peripheral works (for example different ADC result range) - and MCU dependent functions like clock init. In attachment is a very simple SDK which can be shared with S32K144 and MPC5744P (each in different S32DS editions).  Unzip my_sdk.zip archive (for example C:\NXP folder). You can import example projects, but instead let's start from the beginning. Create a new S32DS Application project and choose MCU: You can use default project configurations and click through to finish: Right click on project name -> Properties and select SDKs -> Add Complete the Name, Version and Description fields in New SDK dialog and click on Change button next to Location field. In Change SDK Location dialog, leave Define new variable setting selected, click Browse and find the my_sdk path: Now we can select files (sources, headers...) from selected SDK, you can select all available files. If you select a folder, then all files in that folder will be selected as well. Don't forget to select header files too: If you choose Copy - the files will be copied into project folder and you can do local changes. Without this option (default) - changes will be shared between all projects depended on this particular SDK. The ability to individually select the files to be included from the SDK as well as to copy into the project folder, provides much flexibility to customize SDK usage in your projects. Click on OK, then Attach/Detach... to attach this SDK into your project:  If you like to use your SDK for newly created projects (as an option in SDK select list) - click on Make global button: Now you can see changes in your project: As well, the SDK can be viewed in SDK Explorer (Window -> Show View -> Other...), where functions and macros are available for drag and drop functionality into your code: Platform specific code is filtered by preprocessor-defined macro. So - let's define if we are working with S32K144 or MPC5744P. Right click on project name -> Properties -> C/C++ Build -> Settings -> <Standard S32DS C Compiler OR name of your compiler> -> Preprocessor: We are done - now we can use SDK functions - S32K144:  and MPC5744P (enabling interrupts is default part of empty project for MPC5744P - that's only difference):
查看全文
        Product Release Announcement Automotive Processing S32 Design Studio for S32 Platform v3.3         Austin, Texas, USA Sep 22, 2019   The Automotive Processing's Software Development Tools Engineering Team at NXP Semiconductors is pleased to announce the release of the  S32 Design Studio v3.3 Here are some of major features: Eclipse Neon 4.6 Framework GNU tools: GCC version 6.3.1 20170509, build 1620 revision g01b30c3 GCC version 9.2.0 20190812, build 1649 revision gaf57174 NPW support for GCC 9.2 toolchain (available for selected devices only) S32 Configuration Tool framework 1.1 update 1 with the Pin, Clock, Peripheral, DCD, IVT, DDR and QuadSPI Configuration tools  The wizards for creating application, library projects and projects from project examples for the supported processor families The S32DS Extensions and Updates tool S32 Trace Tool S32 Debugger support PEMicro® debugger support Lauterbach Trace32® support Green Hills compiler support S32 Flash Tool Peripheral Registers view and EmbSys Registers view SDK management Support for importing MCAL configuration to a custom SDK Support for migration: project with GCC 6.3.1 toolchain to GCC 9.2 toolchain S32DS for ARM  projects for S32K1 device to S32DS 3.3, including SDK* * available with S32K1 package, not yet released Release is available for download on NXP web and from S32DS 3.3. Please make sure that you get new activation ID for this version. Support for S32S247TV and S32V23x is available on public update site and release location. S32V23x support: S32SDK S32V234 RTM 1.0.1  S32 Configuration tools - Pins, CLocks, Peripheral (installed with SDK package) S32 Debugger (with S32 Debug Probe) support for ARM cores S32 Trace for A53 cores GCC version 6.3.1 20170509, build 1574 S32 Flash Tool support AMMCLIB 1.1.20 P&E and Lauterbach debuggers support Note: Vision Extension package 1.0.0 is not compatible with S32 Design Studio 3.3, if you need to work with VSDK and Vision tools - it is recommended to stay on S32DS 3.2 untill a new version of Vision Extension package is released   S32S247TV support: Support for S32S247TV new project wizards, GCC 6.3.1 and GHS compilers S32SDK S32S247TV EAR 0.8.1  S32 Configuration tools - Pins, CLocks, Peripheral, DCD, IVT (installed with SDK package) S32 Debugger (with S32 Debug Probe) support  S32 Flash Tool support Lauterbach support P&E and Lauterbach debuggers support S32 Design Studio Versions   S32DS IDE for S32 Platform S32DS IDE for Arm® S32DS IDE for Power Architecture® S32DS IDE for Vision Devices Supported S32V23x S32K1xx MPC56xx S32V234 S32S247TV KEA MPC57xx   S32 Platform Devices MAC57D54H S32R2xx/S32R3xx   Integrated NXP Tools S32 Flash Tool FreeMASTER FreeMASTER DDR stress tool DDR stress tool     Integrated Configuration Tools S32 Configuration Tools Processor Expert Configuration Tool Processor Expert Configuration Tool  DDR configuration tool Pins Wizard Pins Wizard Pins Wizard Clocks configuration Peripheral/Drivers configuration   Peripheral/Drivers configuration   Peripheral/Drivers configuration   DCD/IVT configuration       DDR configuration tool       Integrated NXP Software S32 SDK S32K1 SDK S32 SDK Vision SDK FreeRTOS FreeRTOS FreeRTOS Linux BSP AMMCLib for S32V23x AMMCLib for KEA and S32K AMMCLib for MPC56xx and MPC57xx MCUs   Vision SDK KEA SDK Radar SDK Linux BSP MQX OS/MQX Drivers for MAC57D54H     Compilers: NXP GCC 6.3.1* NXP GCC 9.2 NXP GCC 6.3.1* NXP GCC 4.9* NXP GCC 6.3.1* GreenHills GreenHills GreenHills   IAR IAR Diab     GCC 4.9*     DEBUGGERS Built-in GDB interface: S32 Debugger/S32 Debug Probe P&E Multilink/Cyclone/OpenSDA P&E Multilink/Cyclone/OpenSDA S32 Debugger/S32 Debug Probe P&E Multilink/Cyclone/OpenSDA Segger J-Link   P&E Multilink/Cyclone/OpenSDA DEBUGGERS supported: Lauterbach Lauterbach Lauterbach Lauterbach   iSystem iSystem   IAR PLS   Host Operating Systems: Microsoft Windows® 7/8/10 64-bit OS (with 32-bit binaries)  – Ubuntu 14.04, 16.04 (64 bit) – Debian 8 (64 bit) – CentOS 7 (64 bit) Microsoft Windows® 7/8/10 32/64-bit OS (with 32-bit binaries)  – Ubuntu 14.04, 16.04 (64 bit) – Debian 8 (64 bit) – CentOS 7 (64 bit) Microsoft Windows® 7/8/10 32/64-bit OS (with 32-bit binaries)  – Ubuntu 14.04, 16.04 (64 bit) – Debian 8 (64 bit) – CentOS 7 (64 bit) Microsoft Windows® 7/8/10 32/64-bit OS (with 32-bit binaries)  – Ubuntu 14.04, 16.04 (64 bit) – Debian 8 (64 bit) – CentOS 7 (64 bit) Vision specific tools : NXP APU Compiler     NXP APU Compiler ISP assembler     ISP assembler ISP and APEX graph tools     ISP and APEX graph tools Radar specific tools :     SPT assembler       SPT Explorer/ SPT graph tool   Complete S32 Design Studio for S32 Platform v3.3 release notes are attached.   Installation To download the installer please visit the S32 Design Studio product page download section or click the direct here.     The installer requires the Activation ID to be entered. You should receive a notification email including the Activation ID after the download of the installation package starts. The installer installs just the base tools/package. In order to start development it is necessary to install at least one Development package. Currently the only development packages available are S32S2xxTV and S32V2xx. The application packages are managed by S32DS Extensions and Updates. Technical Support S32 Design Studio issues are tracked through the S32DS Public NXP Community space. https://community.nxp.com/community/s32/s32ds  
查看全文
This Example demonstrates an alternative way to multi-core projects. This is basically a single eclipse project that generates the single elf file for dual core MCU (MPC5777C) See the project structure below where the sources for each core are separated into a core specific source folder: Main core0 [e200z7_0] performs basic initialization (Clocks, ports..) Each core initializes the interrupt controller in order to service interrupts generated by PIT (Periodic Interrupt Timer): Core 0 (e200z7_0) services PIT channel 0 interrupts generated once per second. Core 1 (e200z7_1) services PIT channel 2 interrupts generated once per two seconds.
查看全文
PEmicro’s debug configuration allows user to modify JTAG communication shift frequency between debug interface and the target. By default, this frequency is set to a maximum value of 5000KHz, to take advantage of the fastest run control and FLASH programming experience: At the same time, not every PowerPC processor might be able to support highest debug shift frequencies with all PEmicro debug interfaces. For example, debug frequency for MPC5634M board used in conjunction with Multilink Universal FX RevC , needs to be lowered to 4000Khz in order to succeed. Hence, if debug session fails to successfully start up or fails on FLASH programming, lowering a debug shift frequency by a factor of 2 or 4 is the first trouble shooting recommendation. To get to PEmicro’s debug configuration window, one should select “Debug Configuration” from the menu next to a debug icon, and switch over to the Debug tab, within “Debug Configuration” menu pop- up.
查看全文
Build your project and choose Debug Configuration option  On the left side select Launch Group of your choice (Flash/RAM) and press Debug button Wait while debug session is fully started. If you left default startup configuration - all cores has active break-point at the beginning of main() function. You can chose any core for debugging just by clicking on the core's thread. Sometimes are init functions - including startup of other cores - inside main() of boot core (for S32R274 is boot core Z4). In this case you should let boot core perform init sequence first and then try debug other cores. On next picture are all cores halted.  On this picture are core 1 (Z4) and 2 (Z7_0) running - and third one is stopped. You can perform any debug operation on this core (memory/registers view, instruction step...) without effect on other cores.  On the last picture are running cores 1 (Z4) and 3 (Z7_1) and second core (Z7_0) is stopped and any debug operation can be performed on this core. 
查看全文
This document shows the step-by-step process to create a simple 'Blinking_LED' application using the S32K1xx RTD and the S32 Configuration Tools. This example is for the S32K144EVB-Q100 EVB, connected to a PC through USB (OpenSDA) connection. Preparation Setup the software tools Install S32 Design Studio for S32 Platform Install the S32K1xx development package and the S32K1 RTD AUTOSAR 4.4. Both of these are required for the S32 Configuration Tools. Launch S32 Design Studio for S32 Platform Procedure New S32DS Project OR Provide a name for the project, for example 'Blinking_LED_RTD_AUTOSAR'. The name must be entered with no space characters. Expand Family S32K1xx, Select S32K144 Under Toolchain, select NXP GCC 9.2 Click Next Click '…' button next to SDKs Check box next to PlatformSDK_S32K1_2022_02_S32K144_M4F. Click OK Click Finish. Wait for project generation wizard to complete, then expand the project within the Project Explorer view to show the contents. To control the LED on the board, some configuration needs to be performed within the Pins Tool. There are several ways to do this. One simple way by double-click on the MEX file. By default, the Pins tool is then presented. Since the AUTOSAR drivers will be used, click the switch to disable this tool from the Overview tab. Once the Pins tool is disabled, the Config Tools Overview menu appears. Select the Peripherals tool. After the Peripherals tool opens, look to the Components tab. By default, new projects are created with the osif and Port_Ip drivers. Leave the osif driver, but remove the Port_Ip driver.  This will be replaced by AUTOSAR version. Right-click on the Port_Ip box and select Remove. Add the AUTOSAR version of the Port driver. Click on the ‘+’ next to the MCAL box. This will bring up a list of AUTOSAR components. Locate then select ‘Port’ and click OK. Do not worry about the warning message. It is only indicating that the driver is not already part of the current project. The associated driver package will be added automatically. There are a couple of other drivers needed. Click the ‘+’ next to MCAL again and this time select ‘Dio’. Once more, click the ‘+’ and select ‘Mcu’. Select the ‘Dio’ component. Now select the DioConfig tab. Under DioPort_0, change the Dio Port Id to 3. Click ‘+’ next to DioChannel to add a channel. Select the ‘Port’ component. Now select the PortConfigSet tabl. Under PortPin, change the setting for PortPin_0, PortPin Pcr from 0 to 96. Then change the setting PortPin Direction from PORT_PIN_IN to PORT_PIN_OUT. Change the setting PortPin Level Value from PORT_PIN_LEVEL_HIGH to PORT_PIN_LEVEL_LOW. Under UnTouchedPortPin, click ‘+’ and add the following 5 PortPin Pcr numbers: 4, 5, 10, 68, 69 Now select the PortGeneral tab, uncheck ‘Port Ci Port Ip Development Error Detect’. Now the device configurations are complete and the RTD configuration code can be generated. Click ‘Update Code’ from the menu bar. To control the output pin which was just configured, some application code will need to be written. Return to the ‘C/C++’ perspective. If not already open, in the project window click the ‘>’ next to the ‘src’ folder to show the contents, then double click ‘main.c’ file to open it. This is where the application code will be added. Before anything else is done, initialize the mcu driver, the clock tree, and apply PLL as system clock. Insert the following line into main, after the comment 'Write your code here': Mcu_Init(&Mcu_Config_BOARD_InitPeripherals); Mcu_InitClock(McuClockSettingConfig_0); while ( MCU_PLL_LOCKED != Mcu_GetPllStatus() )     {         /* Busy wait until the System PLL is locked */     } Mcu_DistributePllClock(); Mcu_SetMode(McuModeSettingConf_0); Before the pin can be controlled, it needs to be initialized using the configuration information that was generated from the S32 Configuration tools. Initialize all pins using the Port driver by adding the following line: Port_Init(NULL_PTR); Turn the pin on and off with some delays in-between to cause the LED to blink. Make the delays long enough to be perceptible. Within the provided for loop, add the following lines: Dio_WriteChannel(DioConf_DioChannel_DioChannel_0, STD_HIGH); TestDelay(2000000); Dio_WriteChannel(DioConf_DioChannel_DioChannel_0, STD_LOW); TestDelay(2000000); Before the 'main' function, add a delay function as follows: voidTestDelay(uint32 delay); voidTestDelay(uint32 delay) {     staticvolatile uint32 DelayTimer = 0;     while(DelayTimer<delay)     {         DelayTimer++;     }     DelayTimer=0; } Update the includes lines at the top of the main.c file to include the headers for the drivers used in the application: Remove #include "Mcal.h" Add #include "Mcu.h" #include "Port.h" #include "Dio.h" Build 'Blinking_LED_RTD_AUTOSAR'. Select the project name in 'C/C++ Projects' view and then press 'Build'. After the build completes, check that there are no errors. Open Debug Configurations and select 'Blinking_LED_RTD_AUTOSAR_Debug_FLASH'. Make sure to select the configuration which matches the build type performed, otherwise it may report an error if the build output doesn’t exist. Confirm the EVB is connected to the PC via USB cable, then check the Debugger tab settings and ensure that 'OpenSDA Embedded Debug - USB Port' is selected for interface. Click Debug To see the LED blink, click ‘Resume'
查看全文
S32 Platform Download and Install S32 Design Studio for S32 Platform v3.4    S32K1 Migrating S32K1 projects from S32DS for ARM and SDK 3.0.x to S32DS 3.4 and SDK 4.0.2 A demonstration of the use of the Migration wizard in S32 Design Studio 3.4 to migrate S32K1 projects from S32 Design Studio for Arm and S32 SDK 3.0.x to S32 Design Studio 3.4 and S32 SDK 4.0.2   S32G2 Getting Started: Pins Tool Getting Started: DCD Tool Getting Started: IVT Tool Getting Started: DDR Tool   S32R45 Install S32R45 Development Package Install S32R45 Radar Extension Package Creating And Building A Project on the S32R45 for A53, LAX and SPT Cores in S32 Design Studio   S32V2 Create From Example 1 | Create an ISP project from example  A demonstration of how to load an example ISP image processing application project featuring RGB, YUV, and GS8 image formats, in the S32 Design Studio. 2 | Create an APEX2 project from example  A demonstration of how to load an example ORB-based APEX2 image processing application project in the S32 Design Studio. Create New Project 3 | Create a new ISP application  A demonstration of how to create a new Debayer-based ISP image processing application project in the S32 Design Studio. 4 | Create a new APEX2 application  A demonstration of how to create a new APEX2 image processing application project featuring upscaling and downscaling in the S32 Design Studio. Debug 5 | ISP Debugging w/S32 Debug Probe   A demonstration of how to setup and debug an ISP application project using S32 Design Studio, S32 Debugger, and S32 Debug Probe. 6 | APEX2 debugging w/S32 Debug Probe  A demonstration of how to setup and debug an APEX2 application project using S32 Design Studio, S32 Debugger, and S32 Debug Probe. 7 | APEX2 debugging with Emulator  A demonstration of how to debug an emulated-APEX2 image processing application project in the S32 Design Studio. 8 | Debug a Linux A53 project  A demonstration of how to debug a Linux A53 application project in the S32 Design Studio for Vision version 2.0. The example shown also includes code for APEX, but currently GDB Remote Linux only supports debug of the A53 code.
查看全文
This instruction details the steps to create an image vector table, then subsequently generate a blob image which can be written to external flash on the S32G274A EVB. For this, the 'hello_world_s32g274a' example project from the S32G274 SDK installed to S32 Design Studio IDE. This instruction shows the process for QSPI, however, SD, MMC, and eMMC are also supported. The Image Vector Table (IVT) image is a set of pointers to other images which are required by the BootROM. It typically contains the following images, though not all are required to create a valid IVT image: DCD Self-Test DCD HSE Application Bootloader The IVT Tool enables configuration and generation of the IVT image as specified in the BootROM reference manual. Prerequisites Before using the IVT Tool, it will be useful to have already generated the binary image from your application project, it will be an input to the IVT. For application bootloader image, follow the steps in HOWTO: Generate S-Record/Intel HEX/Binary file, selecting 'Raw binary' option. For DCD image, follow the steps in HOWTO: Use DCD Tool To Create A Device Configuration Data Image . Procedure With desired project open in project explorer (C/C++ perspective), switch to IVT perspective. Click on 'Open IVT'. In the Boot Configuration section, check that the correct Boot Target is selected. For the demonstration here, M7_0 is the correct selection. Check the 'Interface selection' section. If your intended boot device is SD, MMC or eMMC, then change the setting from QuadSPI Serial Flash. If your intended boot device is QuadSPI AND you do not have a QuadSPI parameter file to specify, then uncheck the box for 'Configure QuadSPI parameters'. QuadSPI parameters change some flash registers' settings away from the default setting and are generally required for larger memory sizes (for ex. applications over 1 MB in size, for some supported devices).  From the Image Table section, depending on your configuration, turn off all unused images. For the demonstration here, the following will be changed to Reserved: Self-Test DCD, Self-Test DCD (backup), DCD (backup), Application bootloader (backup). The following images will remain enabled: DCD, Application bootloader. In DCD section of the Image Table, click 'Browse File' and select the DCD binary file. Some of the fields may become red shaded after the file is loaded. This is OK as it is showing the memory layout is no longer aligned. This will be resolved in a later step. In Application bootloader section of the Image Table, click 'Browse File' icon and select the image as noted in the Prerequisites section. When the application boot image is loaded, the tool processes the file to check if it contains the header for the application bootloader image. If the header is not found, it means that the file is only the raw code (the bin generated by S32 Design Studio) and it will be necessary to provide the values for RAM start & entry addresses (code length is automatically calculated), as noted with the expanded view and red shading. To set the RAM start pointer and entry pointer addresses, from to the C/C++ perspective: Open the linker file and locate the RAM start address and enter it in both the RAM start pointer AND RAM entry pointer fields in the IVT Tool. Use copy and paste to add the values to the Application Boot Image settings. The length must be adjusted since it is not 8 byte aligned. Since 14020 / 8  = 1752.5, we will round up to 1753. Then, 1753 * 8 = 14024, so we will enter 14024. Since the application binary file which was loaded is just a raw binary file, it is necessary to generate the full application bootloader image. The Export Image function takes the values entered for the RAM start & entry pointers and Code length, then generates the Application bootloader header. This header is added to the raw binary file producing a new image, the full application bootloader image file. Within the Application bootloader section, click 'Export Image' and enter a meaningful name for the image file. In addition to being a necessary source component of the IVT image, this file can more easily be shared or re-used to as an input to other IVT images. After the file has been generated, you will notice that the address settings section has collapsed to represent that this information is now included in the application bootloader image which will be used to generate the Blob image file. Click 'Export Blob Image' to generate the blob image file. This is what will be flashed to the target. Now that the Blob Image is generated, the 'Flash Image' button could be used to program the image to the target over serial connection, use the S32 Flash Tool, or over the JTAG connection using the Flash Programmer within the S32 Debugger (QSPI only).
查看全文
1. Click on the "S32 Design Studio for ARM" icon OR, from the Start menu, NXP S32 Design Studio -> S32 Design Studio for ARM -> S32 Design Studio for ARM 2. Select workspace: a. Use the default one, or b. Specify a new one Note: If you check the box "Use this as the default and do not ask again", this prompt will not appear the next time you launch S32 Design Studio for ARM. However, if later you should decide you want this to appear again, simply uncheck the box "Prompt for workspace on startup" from within the Preferences dialog window General -> Startup and Shutdown -> Workspaces. The Preferences dialog window can be opened from the Eclipse menu bar Window -> Preferences. 3. Click OK. 4. Create a new project. Go to the Eclipse menu bar and select File -> New -> New S32DS Project 5. Enter a project name. Example: FirstProject (must not contain spaces) 6. Select processor. Example: expand 'Family S32K1xx' folder, then select S32K144. 7. Click Next. 8. Select Debugger Support and Library Support. If supported, also select SDK: a. SDK for GCC b. Automotive Math and Motor Control Library Set for GCC c. FreeMASTER Serial Communication Driver 9. Click Finish 10. The new project wizard will generate the new project and then the indexer will run. It is recommended to wait until all processes complete before proceeding with any further actions.
查看全文
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for ARM® 2018.R1  Update 9          What is new? S32K1xx SDK RTM 3.0.0 supporting S32K116, S32K118, S32K142, S32K144, S32K146, and S32K148  (S32K1xx SDK release notes) AMMCLIB version 1.1.15  (AMMCLIB S32K14x release notes) Segger J-Link drivers v6.42a (J-Link release notes) This is a cumulative update - it includes all the content of previous updates (Update 1, Update 2, Update 3, Update 4, Update 5, Update 6, Update 7, Update 8) Installation instructions The update is available for online (via Eclipse Updater) or offline installation (direct download link)  installation:  go to menu "Help" -> "Install New Software..." dialog  select predefined update site "S32DesignStudio - http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_ARM_2018.R1/updatesite" select all available items and click "Next" button   offline installation:   go to S32 Design Studio for ARM product page -> Downloads section or use direct link to download the update archive zip file Start S32DS and go to "Help" -> "Install New Software..." Add a new "Archive" repository and browse to select the downloaded update archive .zip file you downloaded in the previous step Select all available items and click "Next" button.   This will starts the update installation process.
查看全文
  The S32 Debugger included within the S32 Design Studio for S32 Platform IDE provides the capability to access the flash programming capabilities of the S32 Debug Probe via the S32 Debugger. Note: currently only QSPI flashing is supported. Preparation Install S32 Design Studio IDE  Install the Development Package for the device you are debugging. In this case, the S32G2xx development package. This package is important as the S32 Debugger support component contains the device-specific Python scripts required for performing the flash programming operations. Open the application project containing the application to be programmed to the flash memory device. Follow the steps in HOWTO: Generate S-Record/Intel HEX/Binary file , selecting the 'Raw Binary' option. Build the project, generating the binary executable. This will be our application binary input to the IVT Tool. The IVT Tool must be used to generate the BLOB image which can be programmed to flash memory device and loaded to the RAM by the BootROM. Follow the steps in HOWTO: Use IVT Tool To Create A BLOB Image S32G274A. The resulting BLOB image file is what can be flashed to the device.   Procedure Open Debug Configuration menu Select 'S32 Debugger Flash Programmer', then right-click and select New. Enter an name for the new configuration and click Add... to add the file to be flashed. Click Browse... to select the project from the workspace where the application binary is located Select the project and click OK By default, the ELF file is found. Click Search in project to select the binary file. Select the .bin file and click OK Now we must enter the base address. Typically, this could be 0, but you may have other requirements. Click OK. Just the memory required by the new image needs to be cleared, so only check the box 'Erase all flash memory' if truly needed. Now we are ready to configure the debugger connection settings. Click on the Debugger tab. Starting from the top and working our way down, click on Select device. Select the device and click OK The correct Initialization script will automatically be set. Set the Debug Probe Connection settings to match your setup. When done, click Apply To start the flashing, click Debug When complete, the Debug perspective will show at terminated thread.   Happy flashing with GDB!   Note, to debug this application since it will be subsequently started by the BootROM: use 's32gxx_attach.py' in the Initialization script field on the debugger tab of the Debug Configurations menu Make the following adjustments on the Startup tab within the Debug Configurations menu: Uncheck "Load image"  Check "Set program counter at:" and enter the value "Reset_Handler"  
查看全文
Pin muxing is the process of assigning a peripheral function to a physical pin. This video will explain how fast and easy is to a configured pin muxing using Pins Tool from S32 Configuration Tool suite. Example is a UART project from S32V microcontroller SDK.
查看全文
By defalut is SDK code in examples linked into project. Unfortunately there is no GUI config option, but this settings can be changed in ProcessorExpert.pe file - located in project's root folder.  First of all - backup your project. Locate SDK folder in project and delete all content. When done - close your project.  Open ProcessorExpert.pe file located in project's root folder in any text editor (it is XML file), locate <ProjectStaticFilesGenerationMode> tag and change value from LINKED to STANDALONE: Save changes and open again your project in S32DS. Generate processor expert code:  Now - all SDK code is copied into workspace:  There are also linked files in Project_Settings. Easiest way is just create an empty non SDK project and copy linker script and startup assembly to your project:  Make sure, that Linker uses your copied linker script file: 
查看全文
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for ARM® 2018.R1  Update 10          What is new? S32K1xx SDK RTM-SR 3.0.1 introducing support for three new pin variants: S32K142 - 48LQFP, S32K144 - 48LQFP, S32K148 - 100LQFP and for two new TJA devices: TJA1101HN (NXP) Production and TJA1102HN (NXP) Production  (S32K1xx SDK release notes) This is a cumulative update - it includes all the content of previous updates (Update 1, Update 2, Update 3, Update 4, Update 5, Update 6, Update 7, Update 8, Update 9 ) Installation instructions The update is available for online (via Eclipse Updater) or offline installation (direct download link)  installation:  go to menu "Help" -> "Install New Software..." dialog  select predefined update site "S32DesignStudio - http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_ARM_2018.R1/updatesite" select all available items and click "Next" button   offline installation:   go to S32 Design Studio for ARM product page -> Downloads section or use direct link to download the update archive zip file Start S32DS and go to "Help" -> "Install New Software..." Add a new "Archive" repository and browse to select the downloaded update archive .zip file you downloaded in the previous step Select all available items and click "Next" button.   This will starts the update installation process.
查看全文