NXP Designs Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

NXP Designs Knowledge Base

Discussions

Sort by:
Demo Implementation of CarPlay on an NXP Processor highlighting Siri control, with Linux OS Features: CarPlay head unit implementation developed and available from NXP Professional Services, just one of many available functions for auto infotainment. Available for several NXP processors running Linux, including the i.MX6D and i.MX6Q, and the SABRE for Automotive Infotainment Development system. _______________________________________________________________________________________________________ Featured NXP Products: NXP Software for Apple Carplay|NXPhttp://www.nxp.com/products/software-and-tools/run-time-software/professional-services-software-technology/nxp-software-technology-for-carplay:SOFTWARE-APPLE-CARPLAY Professional Services Software Technology|NXP i.MX6Q|i.MX 6Quad Processors|Quad Core|NXP SABRE-2|Automotive-Infotainment|i.MX6|NXP _______________________________________________________________________________________________________
View full article
Demo HomeKit accessory example and development system implementing a HomeKit controlled chicken coop door with NFC chicken identification, based on the Kinetis K64 microcontroller (MCU), HomeKit SDK, and Arcturus Networks IoT system Features: The Arcturus Networks uCMK64-IoT board is a 60x60mm module for developing secure IoT devices that require a combination of connectivity and control. Includes Ethernet and Wi-Fi connectivity. HomeKit Software Development Kit (SDK) from NXP offers support for home automation applications using Apple HomeKit technology, delivering exceptional performance and advanced security. NXP Kinetis K64 120MHz MCU based on the ARM® Cortex®-M4 core, 256 KB SRAM, 1 MB Flash, and with a rich suite of analog, communication, timing and control peripherals. NXP NFC Controller PN7120, full NFC solution for easy integration into any OS environment, with integrated firmware and NCI interface designed for contactless communication at 13.56 MHz. ________________________________________________________________________________________________________ Featured NXP Products: HomeKit Software Development Kit (SDK)|NXP Arcturus Networks Inc. | uCMK64-IoT ARM Cortex-M4 Cores|Kinetis K6x MCUs|NXP Full NFC Forum-compliant controller with integrated|NXP ________________________________________________________________________________________________________
View full article
Demo Running NXP’s i.MX6SX application processor, Earthquake warning system proof of concept is able to warn citizen about Earthquake. Data are gathered from local sensor, remote sensors based on K64F NXP’s controllers and seismology servers from Internet. Features: Give citizens warning against Earthquakes Runs on the NXP i.MX6SX application processor with Linux® OS. Presents i.MX6SX asymmetrical architecture features, where data are measured locally by Cortex-M4 with FreeRTOS and displayed and presented by Cortex-A9 core with Linux® OS. Cortex-M4 can measure in real-time and monitor Linux part. Cortex-A9 can sleep to save power and be waked up by the quake detected by Cortex-M4. Communication between cores via RPMsg. Remote sensor’s accelerometer data are measured running K64F microcontrollers Seismology server’s data are displayed and analysed ___________________________________________________________________________________________________________________________ Featured NXP Products: Product Link Freedom Development Platform for Kinetis® K64, K63, and K24 MCUs FRDM-K64F Platform|Freedom Development Board|Kinetis MCUs | NXP  i.MX 6SoloX Processors - Heterogeneous Processing with Arm® Cortex®-A9 and Cortex-M4 cores i.MX 6SoloX Applications Processors | Arm® Cortex®-A9, Cortex-M4 | NXP  __________________________________________________________________________________________________________________________
View full article
NFC-enabled Audio System Tap-to-pair has become a common habit when connecting an NFC-enabled smartphone conveniently to a wireless speaker. Bringing this experience to the next level, even a multi-speaker audio system can be set up with NFC. If all speakers are equipped with an NFC chip, you simply tap one speaker to another to establish the connection. That’s what we call a true wireless stereo system - and it works with any phone, no matter if it is NFC-enabled. The same can be done with NFC-headsets. Features: Tap-to-pair to connect an NFC-enabled smartphone conveniently to a wireless speaker or headphone Easy integration into any OS environment ___________________________________________________________________________________________________________________________ Featured NXP Products: PN7210|NXP http://www.nxp.com/products/:PN7120A0EV NFC multi-speaker and headset audio system Speaker Version Tap-to-pair has become a common habit when connecting an NFC-enabled smartphone conveniently to a wireless speaker. Bringing this experience to the next level, even a multi-speaker audio system can be set up with NFC. If all speakers are equipped with an NFC chip, you simply tap one speaker to another to establish the connection. That’s what we call a true wireless stereo system - and it works with any phone, no matter if it is NFC-enabled. Headset version Same use case can be shown with NFC headset, with smartphone being connected to the first headset by simply tapping to the smartphone, and then tap the 2 headset together to share the audio content to the second headset. Features: Speaker Version Traditional push button pairing NFC pairing Action for pairing Push sync button as long as requested in the user manual Touch the 2 speakers together Connection time for bluetooth pairing Usually at least 10 to 30 sec 1 second Connection repeatability Varied from environment Sometimes fails Always repeatable Usual issues Can connect to wrong bluetooth device if there are multiple ones nearby No error possibility Scalability Adding a 3rd speaker or more requires again same manual action As easy as before Unpairing Must follow carefully the user manual, risk is that speaker can stay connected or wrong one be disconnected Touch the 2 speakers together Headset version Share immediately your music with your friend, or neighbour in public transportation, by simply tapping both headset No need to connect your friend or neighbour’s phone to your phone, simply tap both headset Disconnect/unpaired by tapping again both headset
View full article
This demo consists of the Pico 6UL evaluation SOM and Hobbit carrier board from TechNexion running Brillo OS and the Weave application protocol.  An air sensor module from MicroElecronica is attached to the board via the MicroE Clicks expansion header.  The Air Quality sensor module monitors the surrounding environment and an alert is triggered if the quality of the air falls below a predetermined level.  The data is transferred from the board to an external device utilizing the weave protocol that is present on both the Pico6UL and the corresponding android device. The alert is shown via an app on android build on the Weave API.   Features:   Hardware: 1)      Pico i.MX6UL SOM and Hobbit carrier board from TechNexion 2)      Air Quality Click from Mikore http://www.mikroe.com/click/air-quality/       3)       An Android based tablet   Software: 1)      Brillo OS 2)      Weave application protocol 3)      APK file showing UX based on Weave API   _________________________________________________________________________________________________________________   Featured Products: Hardware partners page Google Brillo developers portal Weave
View full article
Demo NXP has developed a whole vehicle multi-layered approach to vehicle security.  This demo will demonstrate the NXP security products in action, and show the 4 steps to securing an automotive electrical architecture, and how these 4 steps provide a barrier to the recent public vehicle hacks.   Features: Try to hack a typical automotive network. Enable and disable NXPs security layers to see how they work to protect the vehicle. Demonstrates various NXP security IP, including: A700x family secured MCUs, MPC5748G connected gateway and HSM/CSE security engines. ___________________________________________________________________________________________________________________________   NXP Recommends MPC5748G|NXP A700x|NXP   ___________________________________________________________________________________________________________________________      
View full article
Demo This demo shows an infotainment and ADAS system based on NXP Ethernet components and is divided in three main parts: Infotainment, Network and ADAS. In the infotainment part, a “Head Unit” ECU plays locally an MPEG movie and also streams it over Ethernet to the second “Rear Seat Unit” ECU. Both ECUs also execute in the backroad the NXP AVB SW stack. This enables the two ECUs to be perfectly synchronized with each other. Therefore the two ECUs can playback the very same video (and audio) frame at the same time on their local displays. In the network part the new Automotive Ethernet Switch (SJA1105EL) and PHYs (TJA1100HN) implement the Ethernet connectivity of the system. The switch executes the AVB “gPTP” synchronization SW that enables the infotainment application described above to operate. In the ADAS part a surround view camera captures a video stream and streams it to a “Cluster” ECU also connected via the automotive Ethernet network. The camera is based on the NXP “MPC5604E ” Salsa processor and on a competitor’s BroadR-Reach PHY. This also shows the interoperability of the TJA1100HN PHY with competitor’s products. Features: All displays are implemented with NXP i.MX6 processor, and a full implementation of the NXP Ethernet AVB Stack running on Linux. The camera is based on an NXP Salsa processor (MPC5304EKIT) . The Switch board that connects all displays and the camera uses the NXP SJA1105EL Automotive Ethernet switch and the TJA1100HN BroadR-Reach Ethernet PHY ______________________________________________________________________________________________________________ Featured NXP Products: Product Link IEEE 100BASE-T1 compliant Automotive Ethernet PHY Transceiver TJA1100HN | Automotive Ethernet PHY Transceiver | NXP  i.MX 6 Series i.MX 6 Series Applications Processors | Multicore Arm Cortex-A7/A9/M4 | NXP  Audio Video Bridging Software https://www.nxp.com/design/design-services/audio-video-bridging-software:AVB-SOFTWARE?&fsrch=1&sr=4&pageNum=1 Development Kit Enabling Video Over Ethernet with NXP® MPC5604E MCU NXP® MPC5604EKIT:Development Kit | NXP  ___________________________________________________________________________________________________________
View full article
Demo This solution showcases the i.MX 6QuadPlus along with the MMPF0100 Power Management to enable the 2D/3D cluster, infotainment and rear view camera.      Features: High performance smooth 3D graphics based on the i.MX 6QuadPlus applications processor running on Linux. On the fly rendering of the infotainment menu. Seamlessly integrate extremely responsive instruments and highly complex 3D content Optimal usage of the CPU and GPU to achieve high-end graphics on the power effective and system cost effective i.MX Switch between HD video playback and the rear view camera on the secondary display Menu can be blended over the map (BG layer) using transparency   _______________________________________________________________________________________________________________________ Featured NXP Products: Product Link i.MX 6QuadPlus Processor i.MX 6QuadPlus Applications Processors | Quad Arm® Cortex®-A9 with extreme graphics performance and enhanced power manag…  i.MX 6DualPlus Processor i.MX 6DualPlus Applications Processors | Dual Arm Cortex-A9 for extreme graphics performance| 1.2 GHz | NXP  14-Channel Configurable Power Management IC 14-Channel Configurable Power Management IC | NXP  SABRE for Automotive Infotainment Based on the i.MX 6 Series SABRE|Automotive-Infotainment|i.MX6 | NXP    _________________________________________________________________________________________________________________________   Screen shot 1: Cluster with 3D maps Real-Time 3D map (created in Blender): 640 abstract buildings. 20 different building types. 3 “special” buildings. One building type. 5x5 map grid. Dynamic, directional lighting. Calculating and updating car chase camera every frame. Smooth 3D animations even at 30 Hz. This is no video!     Screen shot 2: Secondary Display playing Video or RearView Camera
View full article
Demo Running on NXP’s i.MX 6QuadPlus applications processor, Crank Software’s Movie Kiosk demo is a rich 2D and 3D user interface for previewing movies, purchasing tickets and selecting seats        Features: Runs on the NXP i.MX 6QuadPlus applications processor with Linux® OS.  The i.MX 6QuadPlus delivers 50 percent improvement in both graphics processing & memory utilization. Created with Crank Software Storyboard Suite using direct Photoshop (PSD) and 3ds Max (FBX) content import. Full video background leveraging platform’s video codec and layer blending. Multi-stream-capable HD video engine delivering up to 1080p decode. Integrated 2D and 3D animated content guiding user interactions.  Independent graphics processing units: OpenGL® ES 3.0 3D graphics accelerator with four shaders, 2D graphics accelerator, and dedicated OpenVG™ 1.1 accelerator. 3D Model provides a 1:1 virtual to physical model for theater seat selection _________________________________________________________________________________________________________________________________________ Featured Products: Storyboard Suite | Crank Softwarehttp://www.nxp.com/products/microcontrollers-and-processors/arm-processors/i.mx-applications-processors/i.mx-6-processors/i.mx6qp/i.mx-6quadplus-processor-quad-core-high-performance-advanced-3d-graphics-hd-video-advanced-multimedia-arm-cortex-a9-core:i.MX6QP i.MX6QP|i.MX 6QuadPlus Processors|Quad Core|NXP i.MX6DP|i.MX 6DualPlus Processors|Dual Core|NXP SABRE Board Reference Design|NXP  (Evaluation / Reference board) 14-Channel Configurable Power Management IC|NXP _________________________________________________________________________________________________________________________________________ C53
View full article
Demo   Resonant Power Supply Video from IEEE.TV   The TEA19161T is a resonant / LLC half bridge converter and the TEA19162T is a PFC converter. Combining these two IC’s together with the SR controller TEA1995T at the secondary side results in a high efficient converter over the whole output power range. These demos show 2 examples of a resonant power supply; one with an output power of 240 W (12V / 20A), and another with an output power of 90 W (19.5V / 4.6A). Both showing a very low component count and small design. The resonant supplies operate in normal mode for high and medium power levels, in low power mode at medium and low power levels and in burst mode at (very) low power levels. Low power mode and burst mode operation provides a reduction of power losses, resulting in a higher efficiency at lower output power levels. Power levels for switching over from one mode to another mode can be selected by the end customer by adjusting component values. The efficiency at high power is well above 90%. No load power consumption is well below 75 mW. At 250mW output power the input power is only 360mW, which is well below the 500 mW required to be compliant with EUP lot6 power saving specification, soon becoming mandatory for consumer electronics sold in Europe.   Features: Full digital output voltage regulation and burst mode control Easy and low-cost application with cycle-by-cycle capacitive voltage control Very high efficiency over wide load range Special low power mode enabling high efficiency at 0–30% load Extremely low no-load stand-by power (< 75 mW), saves auxiliary supply cost ___________________________________________________________________________________________________________________________   Featured NXP Products:   Resonant power supply control IC|NXP GreenChip Synchronous Rectifier controller|NXP ______________________________________________________________________________________________________________________   Desktop PC Supply. 12v, 20A (240W)                                                   Ultra Slim 90W Adaptor. 19.5V / 4.6A (90W)              C17
View full article
This demo shows a use case of the NXP QN9021 in the Zepp Bluetooth Smart sports sensor to send sensor data to smartphone app for data analysis and provide feedback to users     Features: Zepp Bluetooth Smart sports sensors are designed to monitor performance with a smartphone app for baseball, golf and tennis. Zepp allows you to get to know your swing or stroke inside and out through instant 3D and video analysis. Users can learn from the pros; capture your personal mechanics and compare your swing side-by-side to many of the world’s greatest athletes _________________________________________________________________________________________________________________________   Featured NXP Products: Ultra low power Bluetooth LE system-on-chip s|NXP _________________________________________________________________________________________________________________________   Other Helpful links: ZEPP _________________________________________________________________________________________________________________________
View full article
Demo Owner: Rick Dumont This demonstration shows 2 examples of AC/DC solutions for efficient fast battery charging. Firstly a slim 25W USB PD + QC adapter built with NXP latest chipset solution. The adapter will demonstrate a fully USB PD (Power Delivery) and QC (Quick Charge) compliant solution charging a true PD device (Apple macbook air / Google Pixel notebook or Google SP) or a QC smartphone (e.g. Samsung S6 edge). Secondly a compact 33W Direct Charging adapter built with NXP latest chipset solution. The adapter will demonstrate a fully compliant direct charging solution charging a true HiSilicon FSP device, supporting the FSP charging protocol like a Huawei smartphone Furthermore will be demonstrated the system configuration and debug features of the secondary controller by using NXP Graphical User Interface (GUI) and control board. Features: Best-in-Class overall efficiency – meets all DOE & EU-CoC regulations Smallest form factor / highest power density due to high efficiency High integration level & very low BOM cost - minimum number of external components Very flexible system due to on-chip DSP and memory – Fully meets USB-PD, QC, FSP/SCP protocols Main functionality (V & I & protections) configurable by programmability of key system parameters All protections integrated in hardware – OVP, OCP, OPP, OTP, various short circuit conditions Low cost and suitable packages for both reflow and wave soldering Optional tamper resistant authentication chip allowing own eco-system specific accessories _________________________________________________________________________________________________________________________________________ Featured NXP Products: 25W USB PD & QC reference application, including a:      - TEA1936 primary controller (DCM/QR)      - TEA1993 synchronous rectification controller      - TEA1905 secondary USB PD and QC controller 33W Direct Charge reference application, including a:      - TEA1936 primary controller (DCM/QR)      - TEA1998 synchronous rectification controller      - TEA1901 secondary Direct Charge controller NXP GUI w/ control board _________________________________________________________________________________________________________________________________________ C08
View full article
NXQ1TXH5 One-Chip Qi Low Power Wireless Charging Transmitter     Demo Owner: Rick Dumont   The NXQ1TXH5 is a one-chip low power Qi transmitter, and it enables an ultra-low cost wireless charging transmitter dramatically reducing application cost while still providing latest WPC version 1.2 Qi compliant performance. The NXQ1TXH5 demo is provided in a small form-factor on which Qi enabled phones can be charged. The demonstration shows the extremely low component count, which is interesting for professionals to understand, and at the same time showing a real-life eye-catching form-factor that draws non-technically skilled person attention. The demonstration challenges people to actually charge their phone and experience charging without wires.   Features: Ultra low component count solution. Reducing application cost by 30-50% compared to other solutions Easy to layout on 2-sided PCB Excellent EMI behaviour without additional external filtering Ultra low standby power of 10 mW meeting 5-start smartphone charger standby rating High efficiency of 75% Excellent thermal behaviour due to NXPs proprietary low RDSon power silicon technology _________________________________________________________________________________________________________________________________________   Featured NXP Products: Product Link NXQ1TXH5: One-chip 5 V Qi wireless transmitter https://www.nxp.com/products/power-management/wireless-power/one-chip-5-v-qi-wireless-transmitter:NXQ1TXH5?&lang_cd=en NXQ1TXL5: Low-cost one-chip 5 V Qi wireless transmitter NXQ1TXL5: Low-cost one-chip 5 V Qi wireless transmitter | NXP  NXQ1TXH5 WPC 1.2 Qi-compliant wireless charger demo board NXQ1TXH5 WPC 1.2 Qi-compliant wireless charger demo board | NXP    _________________________________________________________________________________________________________________________________________    
View full article
Timing Attack demo The Timing Attack demo shows the importance of securely implementing a PIN verification. If a PIN verification is implemented with operations which are not time-invariant - for example an if-else construction - it is possible to identify when an incorrect PIN digit is being compared by observing the timing information of the corresponding EM side-channel measurement. By iterating through all possible values of a PIN digit the correct character will be identified in a maximum of 10 attempts.   To make the PIN query secure, a time-invariant comparison has to be implemented. For example, a bitwise XOR comparison and subsequent OR operation for all PIN digits, ensures the same time is taken for all possible comparisons. This scheme is illustrated in         the block diagram.                      Simple Power Analysis demo The RSA-Algorithm implemented in the Simple Power Analysis demo application is reduced to a simple 8-Bit implementation for illustrative purposes. The physical smart card interface used is contact-based.   By monitoring the voltage drop across a shunt resistor it is possible to measure the power consumption of an RSA operation on a digital oscilloscope. Observation of the resulting measurements reveal that it is possible to visually distinguish  single square operations from square and multiply operations. By iteratively logging this sequence of operations, the bits of the exponent, that is the secret key, can be directly identified.   By using countermeasures like the square and always multiply algorithm, the decoding of the exponent bits can be prevented and the key protected. The square and always multiply algorithm is illustrated in the block diagram.           Fault Attack demo The Fault Attack demo shows what can happen at software execution, if a flashlight is fired on a decapsulated chip which has no security measures.   With simple tools – a mechanical grinding tool and some chemical etchant - it is possible to expose the surface of the chip and crudely inject photons into the sensitive silicon substrate.   In this case the flashlight causes a skip in the execution of the PIN verification code if the flash is discharged close to the surface at the correct moment.   In normal function expiration the UserPin is either correct or incorrect and access to the data is granted or denied accordingly. With a successful flashlight attack it doesn’t matter which value for UserPin is entered - after several tries the attacker skips the query and has access to the secret data.                     RFID Relay Attack demo TheRFID Relay Attack demo demonstrates a new paradigm in relay attacks in the context of software emulated smartcards on mobile devices. Previous conditions about proximity of the attacker to the victim and the time when the victim is approached, are negated. With a software emulated smartcard on a mobile device an attacker can intercept and relay the transaction of a potential victim remotely. This new attack paradigm greatly enhances the value of this attack for criminals, and consequently will result in greater malware development efforts.   Additional Information on the individual attacks:     C03
View full article
Demo WaRP7 is an open source platform backed by the development community, design and manufacturing capabilities of element14. Features: CPU:  NXP i.MX 7Solo applications processor (Cortex TM -A7/Cortex TM –M4) Memory: 8GB eMMC 5.0 and 4Gb LPDDR3 Connectivity: WiFi, Bluetooth, BLE, USB-OTG, NFC Multimedia I/F: Camera, MIPI Display, Audio Sensors: Accelerometer, Barometer, Gyroscope Power: PMIC, Battery charger  BSP: Linux 3.14, Android 5.1 __________________________________________________________________________________________________________________ Featured NXP Products: i.MX7D: i.MX 7Dual Processors - Heterogeneous Processing with dual ARM® Cortex®-A7 cores and Cortex-M4 core Link WaRP7
View full article
Demo Features IoT Gateway based on phyCORE-i.MX7 phyBOARD-Zeta   NXP Recommends i.MX 7 Series Applications Processors: Multicore, ARM® Cortex®-A7 Core, ARM Cortex-M4 Core   Other Links system-on-module-i.mx7   C23D
View full article
Demo Owner: Nik Jedrzejewski The PICO-IMX7-EMMC from TechNexion is a small footprint SOM equipped with a wide array of high-speed connectivity. ___________________________________________________________________________________________________________________ Featured NXP Products: i.MX 7 Series Applications Processors: Multicore, ARM® Cortex®-A7 Core, ARM Cortex-M4 Core External link Computex 2016
View full article
Demo   The i.MX 7 series is a highly integrated multi-market applications processor designed to enable secure and portable applications within the Internet of Things. The i.MX 7 series is the first device in the market utilizing both the ARM ® Cortex ® -A7 and Cortex-M4 cores for general purpose programmable processing. Its heterogeneous asymmetric architecture provides the ultimate flexibility for customers by enabling a single-chip solution that can run sophisticated operating systems and provide real-time responsiveness. The i.MX 7 series incorporates four independently controlled resource domains for maximum effectiveness and security when partitioning system resources such as memory and peripherals.   Demo / Product Features Advanced Heterogeneous Architecture Up to Dual Cortex-A7 @ 1GHz Cortex-M4 @ 200MHz Unmatched Power Efficiency for Active and Low Power modes Complete Security Infrastructure Secure Boot Crypto H/W Acceleration Internal and External Tamper Detection Enabling Flexible High Speed Connectivity PCI-e v2.1 Dual Gbit Ethernet  with AVB DDR QuadSPI support eMMC 5.0   NXP recommends the following links for additional information i.MX 7 Series Applications Processors: Multicore, ARM® Cortex®-A7 Core, ARM Cortex-M4 Core     C23
View full article
Video   NXP’s Touch Sense Interface (TSI) offers a complete solution to help easily integrate this growing ‘touch’ requirement on your next design. NXP’s touch software, offered as a middleware as part of the MCUXpresso SDK, is optimized to work with the Kinetis KE15Z MCU to deliver an easy-to-implement solution. Product features Advanced EMC robustness, pass IEC61000-4-6 standard test Support both of Self-cap sensor and Mutual-cap sensor, up to 36 touch keys Low BOM cost per touch key, no need for external devices Adjustable touch sensing resolution and sensitivity, high performance for waterproof Low power support NXP recommends the following links for additional information Product Link NXP Touch Solution for Kinetis KE15Z MCU Family NXP Touch-Based User Interface Solutions for Kinetis KE15Z MCU Family | NXP  Touch Module for Freedom Board FRDM-TOUCH|Touch Module for Freedom Board | NXP  Freedom Development Platform for Kinetis® KE1xMCUs FRDM-KE15Z Platform|Freedom Development Board | NXP 
View full article
This demo shows the temperature monitor solution. We will show the logger ADK (starter kit) and various form factors from current customers (pcbs, labels). NHS3100 can be used for all goods where temperature control is essential for the quality guarantee: pharmaceuticals, medical goods, fruits, cut flowers, chemicals, fish and meat. Demo / product features Single chip solution for pharmaceutical and perishable temperature monitoring Easy integration into final design solution (NHS3100 + battery + NFC antenna) Accurate temperature sensors Large logging space NXP Recommends Temperature logger - NHS3100 Smart Pharma
View full article