MPC5xxx知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

MPC5xxx Knowledge Base

标签

讨论

排序依据:
******************************************************************************** * Detailed Description: * * Example shows MCU's temperature measurement with the help of TSENS. * Calibartion constants for TSENS0 and TSENS1 are read from Test Flash and * ADC0/ADC1 is set to measure Vbg and TSENS outputs. * Calculated internal temperature can be desplayed on the Terminal. * * EVB connection: * *   Route LINFlexD_0 TXD/RXD (PB2/PB3) signals to the main board RS-232 transceiver *   Daughtercard: *   J17.11–12 ON  .. Connect LINFlexD_0 TXD (PB2) to main board. *   J17.8–9 ON .. Connect LINFlexD_0 RXD (PB3) to main board. * *   Motherboard *   J14 - SCI_RX ON *   J13 - SCI_TX ON *   J25 - SCI_PWR ON * * See results on PC terminal (19200, 8N1, None). You should get following text * (with different values for sure) * * TSENS0/TSENS1 temperature measurement * press any key to continue... * * Calibration constants read from Test Flash * * TSENS0                           TSENS1 * * K1 = 429                         K1 = -220 * K2 = -5785                       K2 = -5767 * K3 = -12800                      K3 = -12736 * K4 = 45                          K4 = 45 * *      K1 * Vbg_code * 2^-1 + K2 * TSENS_code * 2^3 * T = ------------------------------------------------------------------------- / 4 - 273.15 [degC] *     [K3 * Vbg_code * 2^2 + K4 * TSENS_code] * 2^-10 * * Vbg0_code      = 1502               Vbg1_code      = 1502 * TSENS0_code = 2002               TSENS1_code = 1988 * * TSENS0 temp = 34.57 degC         TSENS1 temp = 36.78 degC * * ------------------------------------------------------------------------------ * Test HW:  MPC57xx * Maskset:  1N65H * Target :  RAM, internal_FLASH * Fsys:     200 MHz PLL with 40 MHz crystal reference * Terminal: 19200, 8N1, None ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * * Simple LINFlex UART mode transmit and receive without interrupts (polled UART) * TXFIFO and RXFIFO macro is used to select between buffer and FIFO mode * * EVB connection: * *   Route LINFlexD_0 TXD/RXD (PB2/PB3) signals to the main board RS-232 transceiver *   Daughtercard: *   J17.11–12 ON  .. Connect LINFlexD_0 TXD (PB2) to main board. *   J17.8–9 ON .. Connect LINFlexD_0 RXD (PB3) to main board. * *   Motherboard *   J14 - SCI_RX ON *   J13 - SCI_TX ON *   J25 - SCI_PWR ON * * See results on PC terminal (19200, 8N1, None). * * ------------------------------------------------------------------------------ * Test HW:  MPC57xx * Maskset:  1N65H * Target :  RAM, internal_FLASH * Fsys:     200 MHz PLL with 40 MHz crystal reference * Terminal: 19200, 8N1, None ********************************************************************************
查看全文
******************************************************************************** Detailed Description:  Example shows MCU's temperature measurement with the help of TSENS.  Calibration constants for TSENS0 are read from Test Flash and  SARADC_B is set to measure Vbg and TSENS outputs.  Calculated internal temperature can be displayed on the Terminal.  EVB connection:    Motherboard    J14 - SCI_RX ON    J13 - SCI_TX ON    J25 - SCI_PWR ON    See results on PC terminal (19200, 8N1, None). You should see following text  (with different values for sure)  TSENS - temperature measurement  press any key to continue...  TSENS's calibration constants read from Test Flash  TSCA = 184  TSCB = 21    T = (232 + TSCA * 2^-6) * TSENS_code / VBG_code - (273 + TSCB * 2^-4) [degC]  ----------------------------------------------------------------------------  VBG_code   =  251  TSENS_code =  339  TSENS temp = 42.91 degC  ------------------------------------------------------------------------------  Test HW:  MPC5777M  Maskset:  0N50N  Target :  RAM, internal_FLASH  Fsys:     600 MHz PLL1 with 40 MHz crystal reference  Terminal: 19200baud, 8N1 ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * Application performs basic initialization, setup PLL to maximum allowed freq., * initializes interrupts, blinking one LED by interrupt, second LED by software * loop, initializes and display notice via UART terminal and then terminal ECHO. * The example configures the device for maximum performance (OPTIMIZATIONS_ON). * * ------------------------------------------------------------------------------ * Test HW:        MPC5554EVB * MCU:            MPC5554MVR132 * Fsys:           132/112/80/12 MHz * Debugger:       Lauterbach Trace32 *                 PeMicro USB-ML-PPCNEXUS * Target:         RAM, internal_FLASH * Terminal:       19200-8-no parity-1 stop bit-no flow control on eSCI_A * EVB connection: TPU_PORT_37 -> USER_LED_8 *                 TPU_PORT_38 -> USER_LED_7 (to see blinking LEDs)   * ********************************************************************************
查看全文
This example contain Lauterbach programming script for Off-line BIST configuration with 90% coverage. For more details refer to application note AN5427 - Using the Built-in Self-Test (BIST) on the MPC5746R
查看全文
******************************************************************************** * Detailed Description: * * Example gives possible implementation of input signal period/freq measurement. * eTimer channel capture 1 and 2 features are used. CAPT1/CAPT2 capture counter * value on rising/falling edge of input signal. The FIFO is set to 2 entries * and ICF2 is monitored. Free-running mode is used here. * * eTimer channel 0-1 are cascaded to achieve 1sec/1Hz measuring with 32bit counter.   * EVB connection: *   P8.2  - A[1]  .. eTimer0 channel1 input signal *   P8.1  - A[0]  .. GPIO output, used to show measurement period * *   Route LINFlexD_0 TXD/RXD (PB2/PB3) signals to the main board RS-232 transceiver *   Daughtercard: *   J17.11–12 ON  .. Connect LINFlexD_0 TXD (PB2) to main board. *   J17.8–9 ON .. Connect LINFlexD_0 RXD (PB3) to main board. * *   Motherboard *   J14 - SCI_RX ON *   J13 - SCI_TX ON *   J25 - SCI_PWR ON * * connect pulse signal to the P8.2. * See results on PC terminal (19200, 8N1, None). * Change freq/duty of input signal. * * ------------------------------------------------------------------------------ * Test HW:  MPC57xx * Maskset:  1N65H * Target :  internal_FLASH * Fsys:     200 MHz PLL with 40 MHz crystal reference * Terminal: 19200, 8N1, None ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * Application performs basic initialization, setup PLL to maximum allowed freq., * initializes interrupts, blinking one LED by interrupt, * initializes and display notice via UART terminal and then terminal ECHO. * ------------------------------------------------------------------------------ * Test HW:        XPC5607B 176LQFP, XPC56XX EVB MOTHEBOARD Rev.C * MCU:             PPC5607BMLUAM03Y * Fsys:             64/48 MHz * Debugger:      Lauterbach Trace32 *                      PeMicro USB-ML-PPCNEXUS * Target:           RAM, internal_FLASH * Terminal:       19200-8-no parity-1 stop bit-no flow control on LINFLEX_0 * EVB connection: default * ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * Application performs basic initialization, setup PLL to maximum allowed freq., * initializes interrupts, blinking one LED by interrupt, second LED by software * loop, initializes and display notice via UART terminal and then terminal ECHO. * The example configures the device for maximum performance (OPTIMIZATIONS_ON). * For XPC564AKIT324S it initializes EBI for mounted external SRAM. * Its intention is to offer advanced startup code additional to CW stationery. * ------------------------------------------------------------------------------ * Test HW:        XPC564AKIT208S and XPC564AKIT324S * MCU:            SPC5644AMMG1,0M14X and SPC5644AMVZ1,0M14X * Fsys:           150/132/120/12 MHz * Debugger:       Lauterbach Trace32 *                 PeMicro USB-ML-PPCNEXUS * Target:         RAM, internal_FLASH * Terminal:       19200-8-no parity-1 stop bit-no flow control on eSCI_A * EVB connection: default * ********************************************************************************   NOTE: It cannot be used with MPC5642A device, only with MPC5644A and MPC5643A !   For MPC5642A device, use following project instead of attached one: Example XPC5642AKIT PinToggleStationery CW10.6
查看全文
******************************************************************************** * Detailed Description: * * * This example shows usage of FlexPWM and Sine Wave generator (SGEN) modules. * The setting is selected in the way to have a PWM output signal synhronized with * SGEN output signal. This is necessary for resolver usage in motor control appls. * * See attached Excel sheet for calculation of parammeters used here (AUX0_clk_DIV0, * AUX0_clk_DIV1, SGEN_IOFREQ, PWM_PRESCALER, PWM_MODULO). * * This example is set for 2.44140625 kHz SGEN/PWM frequency. * * * ------------------------------------------------------------------------------ * Test HW:  MPC57xx * Maskset:  1N65H * Target :  internal_FLASH * Fsys:     200 MHz PLL with 40 MHz crystal reference * * EVB connection: * * P20.1 - D[7] .. SGEN output *          connected to FEC PHY's MIIMODE input on motherboard, *          to see full amplitude remove J26    * * P8.12    - A[11] .. FlexPWM A[0] output * P8.11    - A[10] .. FlexPWM B[0] output * * ********************************************************************************
查看全文
This simple example shows usage of the FlexPWM module on the TRK board. If a PWM output is connected to the LED you can see its dimming.   Regards, Petr   ******************************************************************************** * Detailed Description: * * This example shows usage of FlexPWM module. * The Submodule0 is set to generate independent PWMA and PWMB signals and vary * its duty cycles. The PWMX is also enabled as output and is set for fixed 50% * duty. *   * You can remove LED_EN jumpers and connect FlexPWM A an B outputs to LEDs to see * its dimming. * * ------------------------------------------------------------------------------ * Test HW: TRK-MPC5604P * Maskset:  0M36W * Target : internal_RAM * Terminal: no * Fsys:     64 MHz with 8 MHz XOSC reference * Debugger: IDCPPCNEXUS * * TRK board connection: * * P4.10 - D[9]  .. FlexPWM X[0] output * P1.11 - A[10] .. FlexPWM B[0] output * P1.12 - A[11] .. FlexPWM A[0] output * *   ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * Purpose of the example is to show how to generate Multi-bit or Single-bit * ECC error in internal SRAM (user must choose it in the option at the end of * main function). * Error Injection Module is used to generate a non-correctable (or single-bit) * ECC error in RAM. The bad data is accessed then, so the IVOR1 exception (or * ERM combined interrupt service routine) is generated and handled. * Example also offers useful macros for EIM and ERM modules. * The example displays notices in the terminal window (USBtoUART bridge J21) * (19200-8-no parity-1 stop bit-no flow control on eSCI_A). * No other external connection is required. * * ------------------------------------------------------------------------------ * Test HW:         MPC5777C-512DS Rev.A + MPC57xx MOTHER BOARD Rev.C * MCU:             PPC5777CMM03 2N45H CTZZS1521A * Fsys:            PLL1 = core_clk = 264MHz, PLL0 = 192MHz * Debugger:        Lauterbach Trace32 * Target:          internal_FLASH * Terminal:        19200-8-no parity-1 stop bit-no flow control on eSCI_A * EVB connection:  eSCI_A is USBtoUART bridge (connector J21) * ********************************************************************************
查看全文
This example follows application notes AN3283 and AN4365. It is intended for users who develop own JTAG programmer. It shows how to implement basic functions: - enter debug mode during reset - enable external debug mode - OnCE access to GPR, SPR and memory - Nexus access to memory The example is written in PRACTICE script language using Trace32 debugger from Lauterbach (www.lauterbach.com). Low level functions for JTAG are used, so users can see sequences of ‘0’s and ‘1’s which are sent to JTAG interface. Used commands are described in this document: www2.lauterbach.com/pdf/general_ref_j.pdf This example was tested on MPC5607B device and VLE instruction set was used for OnCE access.
查看全文
******************************************************************************** * Detailed Description: * Purpose of the example is to show how to generate Multi bit ECC error in * internal SRAM or FLASH (user must choose it in the option at the end of main * function) and how to handle this error with respect to constraints given by * MPC5643L architecture (ECSM/RGM/FCCU relation and ECC error handling through * reset). The example is only possible to run in internal_FLASH target. Power- * -on-reset is required after downloading the code into MCU's flash. The example * displays notices in the terminal window (setting specified below). No other * external connection is required. * ------------------------------------------------------------------------------ * Test HW:         xPC564xLKIT, PPC5643L Cut3 silicon * Target :         internal_FLASH * Fsys:            120 MHz PLL0 * Debugger:        Lauterbach Trace32 *                  PeMicro USB-ML-PPCNEXUS * Terminal:        19200-8-no parity-1 stop bit-no flow control via LINFlex0 * EVB connection:  default * ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * ADC end of conversion event is triggering DMA transfer which automatically * moves ADC measurement results of ADC_1 channel_0 into buffer ADC_reseult. * ------------------------------------------------------------------------------ * Test HW:  MPC57xx * Maskset:  1N65H * Target :  internal_FLASH * Fsys:     200 MHz PLL with 40 MHz crystal reference * ******************************************************************************** Revision History: 1.0     Mar-11-2015     b21190(Vlna Peter)  Initial Version 1.1    Feb-21-2017     b21190(Vlna Peter)  ADC triggering DMA *******************************************************************************/
查看全文
******************************************************************************** * Detailed Description: * Application performs basic initialization, setup PLL to maximum allowed freq., * initializes interrupts, blinking one LED by interrupt, second LED by software * loop, initializes and display notice via UART terminal and then terminal ECHO. * The example configures the device for maximum performance (OPTIMIZATIONS_ON). * For XPC567XKIT516 it initializes EBI for mounted external SRAM device. * * ------------------------------------------------------------------------------ * Test HW:         XPC567XKIT516 - MPC5674ADAT516 Rev.C, MPC567XEVBFXMB Rev.B * MCU:             PPC5674FMVYA264 * Terminal:        19200-8-no parity-1 stop bit-no flow control on eSCI_A * Fsys:            264/200/150/60 MHz * Debugger:        Lauterbach Trace32 *                  PeMicro USB-ML-PPCNEXUS * Target:          RAM, internal_FLASH * EVB connection:  ETPUC0(J24-0) -> USER_LED_8 (J5-8) *                  ETPUC1(J24-1) -> USER_LED_7 (J5-7)(to see blinking LEDs) * ********************************************************************************
查看全文
This example enters the MCU into STANDBY0 low power mode and wakes up to backup SRAM. The WKPU6 (PE[0]pin) is used to wake up the MCU.   Regards, Petr   ******************************************************************************** * Detailed Description: * * On the EVB use KEY2 to enter Standby. * Use KEY1 to wake up from Standby to a code in backup SRAM. * * In RUN mode the LED1 blinks very fast, second core toggels LED3 * In STANDBY all LEDs are off. * The wakeup code blinks LED1 and LED2 slowly. * * The macro WKP_CORE is used to select which core is used after MCU wakes up. * When z4 core is selected, it is also necessary to set the MMU otherwise exception * is generated when uncovered memory area is accessed. * This is not needed for z0 core due to lack of the MMU.  * * * ------------------------------------------------------------------------------ * Test HW:  XPC56xxMB2 + XPC564xB/C, SPC5646C 0N32E silicon * Target :  internal_FLASH * Fsys:     120 MHz PLL0 ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * Enable external interrupt on pin PA[3]. * If falling edge is detected, interrupt is triggered and LED1 on PE[4] is * toggled. * * Connect external signal to PA[3] or connect push button by wire. * * ------------------------------------------------------------------------------ * Test HW:  TRK-MPC5606B, SPC5606B 0N32E * Target :  internal_FLASH, RAM * Fsys:     64 MHz PLL with 8 MHz crystal reference * ********************************************************************************
查看全文
******************************************************************************** * Detailed Description:   * Example shows MCU's temperature measurement with the help of TSENS. * Calibration constants for TSENS are read from TSENS registers and * eQADC is set to measure Vbg and TSENS outputs. eQADC calibration is also done. * Calculated internal temperature can be displayed on the Terminal. * * See results on PC terminal (19200, 8N1, None). You should see following text * (with different values for sure) * *    fsys = 150MHz * *    TSENS temperature calculation * *    Calibration constants read from TSENS registers * *    T_LOW = 25 *    T_HIGH = 145 *    TSENS_CODE_T_LOW = 5441 *    TSENS_CODE_T_HIGH = 7305 *    VBG_CODE_T_LOW = 4010 * * *                 (TSENS_CODE_T*beta - TSENS_CODE_T_LOW)*(T_HIGH - T_LOW) *    T = T_LOW - --------------------------------------------------------- [degC] *                       (TSENS_CODE_T_HIGH - TSENS_CODE_T_LOW) * * *    VBG_CODE_T (ch45)  = 3959 => beta = 1.01288 *    TSENS_CODE_T (ch128) = 5608 * *    Temp = 31.80 degC *    * ------------------------------------------------------------------------------ * Test HW:        XPC564AKIT208S and XPC564AKIT324S * MCU:            SPC5644AMMG1,0M14X and SPC5644AMVZ1,0M14X * Fsys:           150/132/120/12 MHz * Debugger:       Lauterbach Trace32 *                 PeMicro USB-ML-PPCNEXUS * Target:         RAM, internal_FLASH * Terminal:       19200-8-no parity-1 stop bit-no flow control on eSCI_A * EVB connection: default * ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * * Configures the MCANs to transmit and receive a CAN message. * * In this config, MCAN_0 transmits a message. MCAN_1 receives the message. * * MCAN_0 sends message each 1sec. This interval is generated by PIT. * Single TX buffer is used to send n bytes. The message ID is changed for each * transmission. Two standard and 2 extended IDs are sent. * * MCAN_1 is configured to receive a message, SW polling is used. * There are 2 standard and 2 extended ID filter tables defined. Classic filter * configuration is set, means filter ID & mask. * Messages with matched standard ID are received into RXFIFO_0, messages with matched * extended ID then stored in RXFIFO_1. *   * EVB connection: * * J37 and J38 to position 2-3 to connect MCAN1 TX/RX to transceiver * * CAN0-CANH on P15-1 to CAN1-CANH on P14-1 * CAN0-CANL on P15-2 to CAN1-CANL on P14-2 * * * ------------------------------------------------------------------------------ * Test HW:         MPC5777C-512DS Rev.A + MPC57xx MOTHER BOARD Rev.C * MCU:             PPC5777CMM03 2N45H CTZZS1521A * Fsys:            PLL1 = core_clk = 264MHz, PLL0 = 192MHz * Debugger:        Lauterbach Trace32 * Target:          internal_FLASH * Terminal:        19200-8-no parity-1 stop bit-no flow control on eSCI_A *           use USB connector (J21) on minimodule * * EVB connection:  ETPUA30 (PortP P23-15) --> USER_LED_1 (P7-1) *                  ETPUA31 (PortP P23-14) --> USER_LED_2 (P7-2) * ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * * * Initializes the MCU including the FlexCAN peripherals. * Configures the FlexCAN to transmit and receive a CAN message. * * In this config, CAN_0 transmits a message. CAN_1 receives the message. * CAN_0 MB8 is configured to send data. CAN_0 sends message each 1sec. * This interval is generated by PIT. * CAN_1 MB9 is configured to receive a message, SW polling is used. * * to connect FlexCAN0 module (MCU's PB0/PB1 pins) to the motherboard's transceiver * with J5 CAN DB9 connector you have to: * - connect J17 2-6 on daughter board * - connect J17 5-3 on daughter board * This should be done as default   * To connect FlexCAN1 module (MCU's PA14/PA15 pins) to the motherboard's transceiver * with J6 CAN DB9 connector you have to: * - connect J37 2-3 on motherboard * - connect J38 2-3 on motherboard * * Connect CAN0-CANH on P15-1 to CAN1-CANH on P14-1 * Connect CAN0-CANL on P15-2 to CAN1-CANL on P14-2 * Terminate the CAN bus by connecting a 60 ohm resistor between CANH and CANL * ------------------------------------------------------------------------------ * Test HW:  MPC57xx * Maskset:  1N65H * Target :  internal_FLASH * Fsys:     200 MHz PLL with 40 MHz crystal reference * ********************************************************************************
查看全文