无线连接知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

Wireless Connectivity Knowledge Base

讨论

排序依据:
The RF parameters for KW01 can be changed by firmware using the KW01 connectivity software. Frequency band: The operational frequency band can be changed in app_preinclude.h file stored in Source folder. You can select the operational frequency band for your application only setting "1" to the desired band and "0" for the unused bands. In the same file also the default phy mode can be selected: Center frequency, channel spacing, number of channels, bit rate, frequency deviation, filter bandwidth, and other RF parameters: Most common RF parameters can be changed in declaration of "phyPibRFConstants" on PhyPib.c file. Search for your operational band and phy mode. For example for US ISM band in phy mode 1: Then change the desired parameters. If you want to change, for example, FDev: select "Fdev_25000", then go to declaration and change it from one of the predefined list of values: Regards, Luis Burgos.
查看全文
Hello community, This time I bring to you a document which explains what are the ZigBee Test Client commands and how to use it. Before to read this guide, I widely recommend to take a look into the document Running a demo with BeeKit (802.15.4 MAC, SMAC and ZigBee BeeStack). This guide requires the BeeKit Wireless Connectivity Toolkit​ and the Test Tool for Connectivity Products applications.     I hope you find this guide useful. Enjoy this guide! Any feedback is welcome. Best regards, Earl Orlando Ramírez-Sánchez Technical Support Engineer NXP Semiconductors
查看全文
       This document will address the JN5169 CMET setup and JN5169 connection setup with IQxel-MW. We also show the EVM and packet error rate results.
查看全文
The KW40Z connectivity software stack has several demo application available, and one of them is the OTAP client. This application allows the user to reprogram the device in a wireless fashion. This can be done by both using another device with an OTAP server application, or with the Kinetis BLE Toolbox mobile application, using the OTAP tool. To create a binary file for the KW40Z, follow these next steps: Using IAR Embedded Workbench, open the application you want to send through OTAP. Right click the main project, and open the Options... menu.                                                                                                                                              In the options menu, go to the Output Converter submenu. In the Output Converter submenu, check the "Generate additional output" box, and choose Motorola as the Output format.                                                                                                                                                                            In the options menu, go to the Linker submenu. Now, in the Config tab, replace the symbols in the Configuration file symbol definitions box with these: gUseNVMLink_d=1 gUseBootloaderLink_d=1 gUseInternalStorageLink_d=0 __ram_vector_table__=1                                                                                                                                                                                              In the Linker submenu, go to the Input tab. In the Keep symbols box, add the symbol 'bootloader' (without the quotes). In the Input tab, in the Raw binary image box, in the File option, add the following path: $PROJ_DIR$\..\..\..\..\..\..\..\framework\Bootloader\Bin\BootloaderOTAP_KW40Z4.bin In the Raw binary image box, add the following options to the Symbol, Section and Align boxes: Symbol: bootloader Section: .bootloader Align: 4                                                                                                                                                                                                                         Press OK. Compile the project. The output file (*.srec) should be in the main project folder, inside the debug folder.                                                      You can now use this binary file to reprogram your device with OTAP.
查看全文
What you need: USB-KW40Z boards (at least 3 recommended) Kinetis KW40Z Connectivity Software Kinetis Protocol Analyzer Adapter Wireshark Consult the USB-KW40Z getting started guide for an in depth tutorial on how to program the boards with the sniffer software and how to install and use the Kinetis Protocol Analyzer Adapter and Wireshark. For best performance at least 3 boards are needed to continuously monitor all 3 BLE advertising channels: 37, 38 and 39. If you have more then it’s even better. Having less than 3 sniffer boards will lead to the BLE sniffer setup missing some advertising packets and connection events. If only 1 or 2 boards are present they will have to jump between the 3 advertising channels. After the initial setup is complete make sure the boards are plugged into USB ports and then start the Kinetis Protocol Analyzer Adapter software. Immediately after the application is started it will start looking for the sniffers: After the sniffers are detected the application window should look like the screenshot below. There should be a separate row shown for each sniffer board which is plugged in (3 in the example below – COM32, COM34, and COM33). Set each sniffer on a different advertising channel and (37, 38 and 39) and if you’re looking to sniff a specific device enable the Address Filter checkbox and enter the device’s address in the adjacent field as shown in the screenshot below. Use the same device address for all sniffer devices. Press the “shark fin” button in the upper right of the window to start Wireshark. After Wireshark starts select the PCAP IF shown in the Kinetis Protocol Analyzer Adapter window and start capturing packets. Local Area Connection 2 is the PCAP IF in the example. Wireshark will start showing the captured packets and the sniffers will catch Connection Request packets sent to the target device on any of the advertising channels. Useful tip: You can use the btle.advertising_header.length != 0 or btle.data_header.length != 0 filter in Wireshark to filter out empty BLE packets.
查看全文
MyWirelessAPP Demo Beacon(End device) code for RTS development
查看全文
Hello everyone, Over The Air Programming (OTAP) NXP's custom Bluetooth LE service provides the developer a solution to upgrade the software that the MCU contains. It removes the need for cables and a physical link between the OTAP client (the device that is reprogrammed) and the OTAP server (the device that contains the software update). This post explains how to run the OTAP Client Software that comes within the FRDM-KW36 package: Reprogramming a KW36 device using the OTAP Client Software. As it is mentioned in the last post, the OTAP Client can reprogram the KW36 while it is running, with new software using Bluetooth LE. However, this implementation for most of the applications is not enough since once you have reprogrammed the new image, the KW36 can not be reprogramed a second time using this method. For these applications that require to be updated many times using Bluetooth LE during run-time, we have created the following application note, that comes with a functional example of how to implement the OTAP Client software, taking advantage of this service. You can download the software clicking on the link in blue and the documentation is in the link in green. Please visit the following link: DOCUMENTS and Application Notes for KW36 In the "DOCUMENTS" section, you can found more information of the KW36. In the "Application Note" section, you can found more software and documentation of interesting topics like this.        Best Regards.
查看全文
Introduction This document describes the hardware considerations for the schematic and layout of the MKW36A512VFT4 device. This MCU is packaged into a 48-pin HVQFN - 7x7 mm, dissimilar to MKW36Z512VHT4 which comes packaged into a 48-pin LQFN - 7x7 mm (the last one takes part of FRDM-KW36).   Pin Layout  The MKW36A512VFT4 MCU is pin to pin compatible with the MKW36Z512VHT4 (FRDM-KW36) MCU, except for the DCDC pins. The following figure shows the distribution of the pins in the MKW36A512VFT4 MCU (left), compared with the MKW36Z512VHT4 (FRDM-KW36 MCU, right). Surely, this is the most important consideration for MKW36A512VFT4, since you can not simply move the FRDM-KW36 layout on your design. Minimum BOM The following figures show the minimum BOM necessary for each DCDC mode in KW36. For more information about DCDC modes and hardware guidelines, please visit: MKW4xZ/3xZ/3xA/2xZ DC-DC Power Management Bypass Mode   Buck Auto-Start Mode   Buck Manual-Start Mode     Layout Recommendations The footprint and layout are critical for RF performance, hence if the recommended design is followed exactly in the RF region of the PCB, sensitivity, output power, harmonic and spurious radiation, and range, you will succeed. For more information of layout recommendations, please visit Hardware Design Considerations for MKW35A/36A/35Z/36Z Bluetooth Low Energy Devices. The footprint recommended for the MKW36A512VFT4 is shown in the figure below. NXP prefers to use a top layer thickness of no less than 8-10 mils. The use of a correct substrate like the FR4 with a dielectric constant of 4.3 will assist you in achieving a good RF design. Other recommendations during EMC certification stages are: - Specific attention must be taken on 4 pins PTC1, 2, 3 & 4 if they are used on the application. - 4 decoupling capacitors of 3pF are mandatory on those pins and be positioned as close as possible. - Wires from those 4 pins must be underlayer. - NXP recommends putting the vias under the package in case the customer HW design rules allow it. Some recommendations for a good Vdd_RF supply layout are: - Vdd_RF1 and Vdd_RF2 lines must have the same length as possible, linked to pointA (‘Y’ connection). - 12pF decoupling capacitor from Vdd_RF wire must be connected to the Ground Antenna. The purpose is to get the path as short as possible from Vdd_RF1/Vdd_RF2 to the ground antenna. - 12pF decoupling capacitor from the Vdd_RF3 pin must be as close as possible. Return to ground must be as short as possible. So vias (2 in this below picture) must be placed near to the decoupling capacitor to get close connection to the ground layer. The recommended RF stage is shown in the following figure. The MKW36A512VFT4 has a single-ended RF output with a 2 components matching network composed of a shunt capacitor and a series inductor. Both elements transform the device impedance to 50 ohms. The value of these components may vary depending on your board layout. Avoid routing traces near or parallel to RF transmission lines or crystal signals. Maintain a continuous ground under an RF trace is critical to keep unaltered the characteristic impedance of the transmission line. Avoid routing on the ground layer that will result in disrupting the ground under RF traces. For more information about RF considerations please visit: Freescale IEEE 802.15.4 / ZigBee Package and Hardware Layout Considerations.
查看全文
This document describes how to sniff ZigBee packets to identify messages and layers from the ZigBee stack using the MC1322x USB dongle and Wireshark protocol analyzer. --------------------------------------------------------------------------------------------------------- Pre-Requisites If not done yet, download & Install Wireshark protocol analyzer http://www.wireshark.org/download.html Download the Wireshark ZigBee Utility Zip file from Sourceforge http://sourceforge.net/projects/wiresharkzigbee/ Unzip the file in a known location -------------------------------------------------------------------------------------------------------- 1. Install MC1322x dongle Plug-in MC1322xUSB dongle and wait for Windows to install the driver. If the driver was not found, steer Windows manually to the directory         C:\Program Files\Freescale\Drivers If BeeKit is not installed, be aware of the following: The 1322x USB Dongle uses the FTDI serial to USB converter, Virtual COM Port (VCP) driver for Windows, available at www.ftdichip.com/ftdrivers.htm. The FTDI web site offers drivers for other platforms including Windows® (98 through Vista x64 and CE), MAC OS (8 through X) and Linux. Download the appropriate driver and follow the instructions to complete driver installation. 2. Check COM port Once installed, the MC1322xUSB dongle should be listed in the available COM ports in Widows device manager. Verify the board’s drivers were successfully installed and take note of the COM port assigned      3. Run the ZigBee Utility Open a command console and navigate to the directory where Wireshark Zigbee utility files were unzipped. c:\<path> Then start the .exe utility and set the serial port and ZigBee channel to monitor, for instance:     4. Setting Wireshark Start Wireshark and open Capture>Options Dialog Click on “Manage Interfaces” and add a new pipe with ‘\\.\pipe\wireshark’. Save it and start capture. 5. Start sniffing
查看全文
Certification is the process of testing radio hardware to demonstrate that it meets the stated regulations in the country that it will operate in. A certification is needed generally when electronic hardware will be sold in a country, the certification requirements of that country must be met. If you require changes in your certificated hardware that will affects your RF performance, then you need to re-certificate the device. Most common regions and certification's institutes are (it applies for 2.4GHz & SubGHz): FCC for USA IC for Canada ETSI (CE) for Europe ARIB for Japan Other countries generally follow FCC or ETSI standars. The institute in charge of certifications depends on the region. It's the same institute to certificate your device in 2.4GHz or SubGHz in a certain region, the only difference are the articles of each institute to operate in the different frequencies. For operating in the 2.4GHZ band (worldwide): - In the U.S, CFR 47 FCC Part 15 203, 15.209 and 15.247 - In Canada, IC RSS-210 which closely follows FCC Part 15 - In EU, ETSI EN 300, 301 - In Japan, ARIB STD-T66 For SubGHz depends on the frequency you want to operate in. Taking Japan as an example: In Japan you can operate in the 920MHz band or in the 400MHz band for SubGHz. For both frequencies, ARIB is the institute in charge of the certifications but to operate in the 400MHz band the article that you will need is the ARIB STD-T67, and to operate in the 920MHz you will need to certificate your hardware with ARIB STD-T108 article. Freescale's MRB-KW019032 is certificated to operate in the following SubGHz ISM bands: The firmware used to certificate our KW products is the Radio Utility or the Connectivity Test, it allows the user in changing some RF parameters needed to pass the certification process. If you are thinking in certificate a product, contact an expert! There are Telecommunication Certification Body (TCB) companies which can give you guidance in the processes you need to follow to achieve a certification. To know more about FCC certification requirements and processes, refer to the reference manual “Freescale IEEE 802.15.4 / ZigBee Node RF Evaluation and Test Guidelines” in the Freescale's website. Best regards, Burgos. This document was generated from the following discussion: Certifications
查看全文
What is a BLE Beacon? A BLE Beacon is a hardware including a MCU, a BLE radio, an antenna and a power source. Things like Freescale Beacon, iBeacon, AltBeacon or Eddystone are software protocols with their own characteristics. How it works? A BLE Beacon is a non-connectable device that uses Bluetooth Low Energy (BLE or Bluetooth Smart) to broadcast packets that include identifying information and each packet receives the name of Advertising Packet. The packet structure and the information broadcasted by a Beacon depend on the protocol, but, the basic structure is conformed by: UUID. This is a unique identifier that allows identifying a beacon or a group of beacons from other ones. Major number. Used to identify a group of beacons that share a UUID. Minor number. Used to identify a specific beacon that share UUID and Major number. Example UUID Major Minor AAAAAAAA-AAAA-AAAA-AAAA-AAAAAAAAAAAA 1 1 These Beacons share the same UUID and Major number, and are differentiated by Minor number. AAAAAAAA-AAAA-AAAA-AAAA-AAAAAAAAAAAA 1 2 AAAAAAAA-AAAA-AAAA-AAAA-AAAAAAAAAAAA 2 1 This Beacon shares the same UUID as the previous ones, but has a different Major number, so it belongs to a different group. BBBBBBBB-BBBB-BBBB-BBBB-BBBBBBBBBBBB 1 1 This Beacon is completely different from the previous ones, since it doesn’t share the same UUID. These packets need to be translated or interpreted in order to provide the beacon a utility. There are applications that can interact with beacons, usually developed to be used with smartphones and/or tablets. These applications require being compliant with the protocol used by the beacon in order to be able to perform an action when a beacon is found. Use Cases Beacons can be used on different places to display different content or perform different actions, like: Restaurants, Coffee Shops, Bars Virtual Menu Detailed information Food source Suggested wine pairings Museums Contextual information. Analytics Venue check-in (entry tickets) Self-guided tours. Educational excursions Event Management and Trade Shows Frictionless Registration Improved Networking Sponsorship Navigation and Heat Mapping Content Delivery Auto Check-in Stadiums Seat finding and seat upgrading Knowing the crowded locations Promotions, offers and loyalty programs Sell Merchandise Future implementations Retail and Malls Shopping with digital treasure hunts Gather digital up-votes and down-votes from visitors Allow retailers to join forces when it comes to geo-targeted offers Use time-sensitive deal to entice new shoppers to walk in Help in navigation Engage your customers with a unified mall experience.
查看全文
In this document we will be seeing how to create a BLE demo application for an adopted BLE profile based on another demo application with a different profile. In this demo, the Pulse Oximeter Profile will be implemented.  The PLX (Pulse Oximeter) Profile was adopted by the Bluetooth SIG on 14th of July 2015. You can download the adopted profile and services specifications on https://www.bluetooth.org/en-us/specification/adopted-specifications. The files that will be modified in this post are, app.c,  app_config.c, app_preinclude.h, gatt_db.h, pulse_oximeter_service.c and pulse_oximeter_interface.h. A profile can have many services, the specification for the PLX profile defines which services need to be instantiated. The following table shows the Sensor Service Requirements. Service Sensor Pulse Oximeter Service Mandatory Device Information Service Mandatory Current Time Service Optional Bond Management Service Optional Battery Service Optional Table 1. Sensor Service Requirements For this demo we will instantiate the PLX service, the Device Information Service and the Battery Service. Each service has a source file and an interface file, the device information and battery services are already implemented, so we will only need to create the pulse_oximeter_interface.h file and the pulse_oximeter_service.c file. The PLX Service also has some requirements, these can be seen in the PLX service specification. The characteristic requirements for this service are shown in the table below. Characteristic Name Requirement Mandatory Properties Security Permissions PLX Spot-check Measurement C1 Indicate None PLX Continuous Measurement C1 Notify None PLX Features Mandatory Read None Record Access Control Point C2 Indicate, Write None Table 2. Pulse Oximeter Service Characteristics C1: Mandatory to support at least one of these characteristics. C2: Mandatory if measurement storage is supported for Spot-check measurements. For this demo, all the characteristics will be supported. Create a folder for the pulse oximeter service in  \ConnSw\bluetooth\profiles named pulse_oximeter and create the pulse_oximeter_service.c file. Next, go to the interface folder in \ConnSw\bluetooth\profiles and create the pulse_oximeter_interface.h file. At this point these files will be blank, but as we advance in the document we will be adding the service implementation and the interface macros and declarations. Clonate a BLE project with the cloner tool. For this demo the heart rate sensor project was clonated. You can choose an RTOS between bare metal or FreeRTOS. You will need to change some workspace configuration.  In the bluetooth->profiles->interface group, remove the interface file for the heart rate service and add the interface file that we just created. Rename the group named heart_rate in the bluetooth->profiles group to pulse_oximeter and remove the heart rate service source file and add the pulse_oximeter_service.c source file. These changes will be saved on the actual workspace, so if you change your RTOS you need to reconfigure your workspace. To change the device name that will be advertised you have to change the advertising structure located in app_config.h. /* Scanning and Advertising Data */ static const uint8_t adData0[1] = { (gapAdTypeFlags_t)(gLeGeneralDiscoverableMode_c | gBrEdrNotSupported_c) }; static const uint8_t adData1[2] = { UuidArray(gBleSig_PulseOximeterService_d)}; static const gapAdStructure_t advScanStruct[] = { { .length = NumberOfElements(adData0) + 1, .adType = gAdFlags_c, .aData = (void *)adData0 }, { .length = NumberOfElements(adData1) + 1, .adType = gAdIncomplete16bitServiceList_c, .aData = (void *)adData1 }, { .adType = gAdShortenedLocalName_c, .length = 8, .aData = "FSL_PLX" } }; ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ We also need to change the address of the device so we do not have conflicts with another device with the same address. The definition for the address is located in app_preinclude.h and is called BD_ADDR. In the demo it was changed to: #define BD_ADDR 0xBE,0x00,0x00,0x9F,0x04,0x00 ‍‍‍ Add the definitions in ble_sig_defines.h located in Bluetooth->host->interface for the UUID’s of the PLX service and its characteristics. /*! Pulse Oximeter Service UUID */ #define gBleSig_PulseOximeterService_d 0x1822 /*! PLX Spot-Check Measurement Characteristic UUID */ #define gBleSig_PLXSpotCheckMeasurement_d 0x2A5E /*! PLX Continuous Measurement Characteristic UUID */ #define gBleSig_PLXContinuousMeasurement_d 0x2A5F /*! PLX Features Characteristic UUID */ #define gBleSig_PLXFeatures_d 0x2A60 ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ We need to create the GATT database for the pulse oximeter service. The requirements for the service can be found in the PLX Service specification. The database is created at compile time and is defined in the gatt_db.h.  Each characteristic can have certain properties such as read, write, notify, indicate, etc. We will modify the existing database according to our needs. The database for the pulse oximeter service should look something like this. PRIMARY_SERVICE(service_pulse_oximeter, gBleSig_PulseOximeterService_d) CHARACTERISTIC(char_plx_spotcheck_measurement, gBleSig_PLXSpotCheckMeasurement_d, (gGattCharPropIndicate_c)) VALUE_VARLEN(value_PLX_spotcheck_measurement, gBleSig_PLXSpotCheckMeasurement_d, (gPermissionNone_c), 19, 3, 0x00, 0x00, 0x00) CCCD(cccd_PLX_spotcheck_measurement) CHARACTERISTIC(char_plx_continuous_measurement, gBleSig_PLXContinuousMeasurement_d, (gGattCharPropNotify_c)) VALUE_VARLEN(value_PLX_continuous_measurement, gBleSig_PLXContinuousMeasurement_d, (gPermissionNone_c), 20, 3, 0x00, 0x00, 0x00) CCCD(cccd_PLX_continuous_measurement) CHARACTERISTIC(char_plx_features, gBleSig_PLXFeatures_d, (gGattCharPropRead_c)) VALUE_VARLEN(value_plx_features, gBleSig_PLXFeatures_d, (gPermissionFlagReadable_c), 7, 2, 0x00, 0x00) CHARACTERISTIC(char_RACP, gBleSig_RaCtrlPoint_d, (gGattCharPropIndicate_c | gGattCharPropWrite_c)) VALUE_VARLEN(value_RACP, gBleSig_RaCtrlPoint_d, (gPermissionFlagWritable_c), 4, 3, 0x00, 0x00, 0x00) CCCD(cccd_RACP) ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ For more information on how to create a GATT database you can check the BLE Application Developer’s Guide chapter 7. Now we need to make the interface file that contains all the macros and declarations of the structures needed by the PLX service. Enumerated types need to be created for each of the flags field or status field of every characteristic of the service. For example, the PLX Spot-check measurement field has a flags field, so we declare an enumerated type that will help us keep the program organized and well structured. The enum should look something like this: /*! Pulse Oximeter Service - PLX Spotcheck Measurement Flags */ typedef enum { gPlx_TimestampPresent_c = BIT0, /* C1 */ gPlx_SpotcheckMeasurementStatusPresent_c = BIT1, /* C2 */ gPlx_SpotcheckDeviceAndSensorStatusPresent_c = BIT2, /* C3 */ gPlx_SpotcheckPulseAmplitudeIndexPresent_c = BIT3, /* C4 */ gPlx_DeviceClockNotSet_c = BIT4 } plxSpotcheckMeasurementFlags_tag; ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ The characteristics that will be indicated or notified need to have a structure type that contains all the fields that need to be transmitted to the client. Some characteristics will not always notify or indicate the same fields, this varies depending on the flags field and the requirements for each field. In order to notify a characteristic we need to check the flags in the measurement structure to know which fields need to be transmitted. The structure for the PLX Spot-check measurement should look something like this: /*! Pulse Oximeter Service - Spotcheck Measurement */ typedef struct plxSpotcheckMeasurement_tag { ctsDateTime_t timestamp; /* C1 */ plxSpO2PR_t SpO2PRSpotcheck; /* M */ uint32_t deviceAndSensorStatus; /* C3 */ uint16_t measurementStatus; /* C2 */ ieee11073_16BitFloat_t pulseAmplitudeIndex; /* C4 */ uint8_t flags; /* M */ }plxSpotcheckMeasurement_t; ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ The service has a configuration structure that contains the service handle, the initial features of the PLX Features characteristic and a pointer to an allocated space in memory to store spot-check measurements. The interface will also declare some functions such as Start, Stop, Subscribe, Unsubscribe, Record Measurements and the control point handler. /*! Pulse Oximeter Service - Configuration */ typedef struct plxConfig_tag { uint16_t serviceHandle; plxFeatures_t plxFeatureFlags; plxUserData_t *pUserData; bool_t procInProgress; } plxConfig_t; ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ The service source file implements the service specific functionality. For example, in the PLX service, there are functions to record the different types of measurements, store a spot-check measurement in the database, execute a procedure for the RACP characteristic, validate a RACP procedure, etc. It implements the functions declared in the interface and some static functions that are needed to perform service specific tasks. To initialize the service you use the start function. This function initializes some characteristic values. In the PLX profile, the Features characteristic is initialized and a timer is allocated to indicate the spot-check measurements periodically when the Report Stored Records procedure is written to the RACP characteristic. The subscribe and unsubscribe functions are used to update the device identification when a device is connected to the server or disconnected. bleResult_t Plx_Start (plxConfig_t *pServiceConfig) { mReportTimerId = TMR_AllocateTimer(); return Plx_SetPLXFeatures(pServiceConfig->serviceHandle, pServiceConfig->plxFeatureFlags); } ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ All of the services implementations follow a similar template, each service can have certain characteristics that need to implement its own custom functions. In the case of the PLX service, the Record Access Control Point characteristic will need many functions to provide the full functionality of this characteristic. It needs a control point handler, a function for each of the possible procedures, a function to validate the procedures, etc. When the application makes a measurement it must fill the corresponding structure and call a function that will write the attribute in the database with the correct fields and then send an indication or notification. This function is called RecordMeasurement and is similar between the majority of the services. It receives the measurement structure and depending on the flags of the measurement, it writes the attribute in the GATT database in the correct format. One way to update a characteristic is to create an array of the maximum length of the characteristic and check which fields need to be added and keep an index to know how many bytes will be written to the characteristic by using the function GattDb_WriteAttribute(handle, index, &charValue[0]). The following function shows an example of how a characteristic can be updated. In the demo the function contains more fields, but the logic is the same. static bleResult_t Plx_UpdatePLXContinuousMeasurementCharacteristic ( uint16_t handle, plxContinuousMeasurement_t *pMeasurement ) { uint8_t charValue[20]; uint8_t index = 0; /* Add flags */ charValue[0] = pMeasurement->flags; index++; /* Add SpO2PR-Normal */ FLib_MemCpy(&charValue[index], &pMeasurement->SpO2PRNormal, sizeof(plxSpO2PR_t)); index += sizeof(plxSpO2PR_t); /* Add SpO2PR-Fast */ if (pMeasurement->flags & gPlx_SpO2PRFastPresent_c) { FLib_MemCpy(&charValue[index], &pMeasurement->SpO2PRFast, sizeof(plxSpO2PR_t)); index += sizeof(plxSpO2PR_t); } return GattDb_WriteAttribute(handle, index, &charValue[0]); } ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ The app.c handles the application specific functionality. In the PLX demo it handles the timer callback to make a PLX continuous measurement every second. It handles the key presses and makes a spot-check measurement each time the SW3 pushbutton is pressed. The GATT server callback receives an event when an attribute is written, and in our application the RACP characteristic is the only one that can be written by the client. When this event occurs, we call the Control Point Handler function. This function makes sure the indications are properly configured and check if another procedure is in progress. Then it calls the Send Procedure Response function, this function validates the procedure and calls the Execute Procedure function. This function will call one of the 4 possible procedures. It can call Report Stored Records, Report Number of Stored Records, Abort Operation or Delete Stored Records. When the project is running, the 4 LEDs will blink indicating an idle state. To start advertising, press the SW4 button and the LED1 will start flashing. When the device has connected to a client the LED1 will stop flashing and turn on. To disconnect the device, hold the SW4 button for some seconds. The device will return to an advertising state. In this demo, the spot-check measurement is made when the SW3 is pressed, and the continuous measurement is made every second. The spot-check measurement can be stored by the application if the Measurement Storage for spot-check measurements is supported (bit 2 of Supported Features Field in the PLX Features characteristic). The RACP characteristic lets the client control the database of the spot-check measurements, you can request the existing records, delete them, request the number of stored records or abort a procedure. To test the demo you can download and install a BLE Scanner application to your smartphone that supports BLE. Whit this app you should be able to discover the services in the sensor and interact with each characteristic. Depending on the app that you installed, it will parse known characteristics, but because the PLX profile is relatively new, these characteristics will not be parsed and the values will be displayed in a raw format. In Figure 1, the USB-KW40Z was used with the sniffer application to analyze the data exchange between the PLX sensor and the client. You can see how the sensor sends the measurements, and how the client interacts with the RACP characteristic. Figure 1. Sniffer log from USB-KW40Z
查看全文
FreeRTOS keeps track of the elapsed time in the system by counting ticks. The tick count increases inside a periodic interrupt routine generated by one of the timers available in the host MCU. When FreeRTOS is running the Idle task hook, the microcontroller can be placed into a low power mode. Depending on the low power mode, one or more peripherals can be disabled in order to save the maximum amount of energy possible. The FreeRTOS tickless idle mode allows stopping the tick interruption during the idle periods. Stopping the tick interrupt allows the microcontroller to remain in a deep power saving state until a wake-up event occurs. The application needs to configure the module (timer, ADC, etc…) that will wake up the microcontroller before the next FreeRTOS task needs to be executed. For this purpose, during the execution of vPortSuppressTicksAndSleep, a function called by FreeRTOS when tickless idle is enabled, the maximum amount of time the MCU can remain asleep is passed as an input parameter in order to properly configure the wake-up module. Once the MCU wakes up and the FreeRTOS tick interrupt is restarted, the number of tick counts lost while the MCU was asleep must be restored. Tickless mode is not enabled by default in the Connectivity Software FreeRTOS demos. In this post, we will show how to enable it. For this example, we will use QN9080x to demonstrate the implementation. lowpower‌ freertos tickless‌ tickless‌ Changes where implemented in the following files: \framework\LowPower\Source\QN908XC\PWR.c \framework\LowPower\Interface\QN908XC\PWR_Interface.h \freertos\fsl_tickless_generic.h \source\common\ApplMain.c The following file was removed from the project fsl_tickless_qn_rtc.c PWR.C and PWR_Interface.h Changes in this files are intended to prepare the QN9080 for waking up using the RTC timer. Other parts, like MKW41Z, might enable other modules for this purpose (like LPTMR) and changes on this files might not be necessary. *** PWR.c *** Add the driver for RTC. This is the timer we will use to wake up the QN908x /*Tickless: Add RTC driver for tickless support */ #include "fsl_rtc.h"‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Add local variables uint64_t mLpmTotalSleepDuration;        //Tickless uint8_t mPWR_DeepSleepTimeUpdated = 0;  //Tickless: Coexistence with TMR manager‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Add private functions uint32_t PWR_RTCGetMsTimeUntilNextTick (void);         //Tickless void PWR_RTCSetWakeupTimeMs (uint32_t wakeupTimeMs);   //Tickless void PWR_RTCWakeupStart (void);                        //Tickless‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Make the following changes in PWR.C. All the required changes are marked as comments with "Start" where the change starts, and with "End where the change ends" #if (cPWR_UsePowerDownMode && (cPWR_EnableDeepSleepMode_1 || cPWR_EnableDeepSleepMode_2 || cPWR_EnableDeepSleepMode_3 || cPWR_EnableDeepSleepMode_4)) static void PWR_HandleDeepSleepMode_1_2_3_4(void) { #if cPWR_BLE_LL_Enable     uint8_t   power_down_mode = 0xff;     bool_t    enterLowPower = TRUE;     __disable_irq(); /****************START***********************************/     /*Tickless: Configure wakeup timer */     if(mPWR_DeepSleepTimeUpdated){       PWR_RTCSetWakeupTimeMs(mPWR_DeepSleepTimeMs);       mPWR_DeepSleepTimeUpdated = FALSE;        // Coexistence with TMR Manager     }         PWR_RTCWakeupStart(); /*****************END**************************************/     PWRLib_ClearWakeupReason();     //Try to put BLE in deep sleep mode     power_down_mode = BLE_sleep();     if (power_down_mode < kPmPowerDown0)     {         enterLowPower = false; // BLE doesn't allow deep sleep     }     //no else - enterLowPower is already true     if(enterLowPower)     { /****************START**************************/         uint32_t freeRunningRtcPriority; /****************END****************************/         NVIC_ClearPendingIRQ(OSC_INT_LOW_IRQn);         NVIC_EnableIRQ(OSC_INT_LOW_IRQn);         while (SYSCON_SYS_STAT_OSC_EN_MASK & SYSCON->SYS_STAT) //wait for BLE to enter sleep         {             POWER_EnterSleep();         }         NVIC_DisableIRQ(OSC_INT_LOW_IRQn);         if(gpfPWR_LowPowerEnterCb != NULL)         {             gpfPWR_LowPowerEnterCb();         } /* Disable SysTick counter and interrupt */         sysTickCtrl = SysTick->CTRL & (SysTick_CTRL_ENABLE_Msk | SysTick_CTRL_TICKINT_Msk);         SysTick->CTRL &= ~(SysTick_CTRL_ENABLE_Msk | SysTick_CTRL_TICKINT_Msk);         ICSR |= (1 << 25); // clear PendSysTick bit in ICSR, if set /************************START***********************************/         NVIC_ClearPendingIRQ(RTC_FR_IRQn);         freeRunningRtcPriority = NVIC_GetPriority(RTC_FR_IRQn);         NVIC_SetPriority(RTC_FR_IRQn,0); /***********************END***************************************/         POWER_EnterPowerDown(0); //Nighty night! /************************START**********************************/         NVIC_SetPriority(RTC_FR_IRQn,freeRunningRtcPriority); /************************END************************************/         if(gpfPWR_LowPowerExitCb != NULL)         {             gpfPWR_LowPowerExitCb();         }         /* Restore the state of SysTick */         SysTick->CTRL |= sysTickCtrl;         PWRLib_UpdateWakeupReason();     }     __enable_irq(); #else     PWRLib_ClearWakeupReason(); #endif /* cPWR_BLE_LL_Enable */ } #endif /* (cPWR_UsePowerDownMode && cPWR_EnableDeepSleepMode_1) */ ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ void PWR_SetDeepSleepTimeInMs(uint32_t deepSleepTimeMs) { #if (cPWR_UsePowerDownMode)     if(deepSleepTimeMs == 0)     {         return;     }     mPWR_DeepSleepTimeMs = deepSleepTimeMs; /****************START******************/     mPWR_DeepSleepTimeUpdated = TRUE; /****************END*********************/ #else     (void) deepSleepTimeMs; #endif /* (cPWR_UsePowerDownMode) */ }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Add/replace the following function definitions at the end of the file /*--------------------------------------------------------------------------- * Name: PWR_GetTotalSleepDurationMS * Description: - * Parameters: - * Return: - *---------------------------------------------------------------------------*/ uint32_t PWR_GetTotalSleepDurationMS(void) {     uint32_t time;     uint32_t currentSleepTime;     OSA_InterruptDisable();     currentSleepTime = RTC_GetFreeRunningInterruptThreshold(RTC);     if(currentSleepTime >= mLpmTotalSleepDuration){     time = (currentSleepTime-mLpmTotalSleepDuration)*1000/CLOCK_GetFreq(kCLOCK_32KClk);     }     else{     time = ((0x100000000-mLpmTotalSleepDuration)+currentSleepTime)*1000/CLOCK_GetFreq(kCLOCK_32KClk);     }     OSA_InterruptEnable();     return time; } /*--------------------------------------------------------------------------- * Name: PWR_ResetTotalSleepDuration * Description: - * Parameters: - * Return: - *---------------------------------------------------------------------------*/ void PWR_ResetTotalSleepDuration(void) {     OSA_InterruptDisable();     mLpmTotalSleepDuration = RTC_GetFreeRunningCount(RTC);     OSA_InterruptEnable(); } /*--------------------------------------------------------------------------- * Name: PWR_RTCGetMsTimeUntilNextTick * Description: - * Parameters: - * Return: Time until next tick in mS *---------------------------------------------------------------------------*/ uint32_t PWR_RTCGetMsTimeUntilNextTick (void) {     uint32_t time;     uint32_t currentRtcCounts, thresholdRtcCounts;     OSA_InterruptDisable();     currentRtcCounts = RTC_GetFreeRunningCount(RTC);     thresholdRtcCounts = RTC_GetFreeRunningResetThreshold(RTC);     if(thresholdRtcCounts > currentRtcCounts){     time = (thresholdRtcCounts-currentRtcCounts)*1000/CLOCK_GetFreq(kCLOCK_32KClk);     }     else{     time = ((0x100000000-currentRtcCounts)+thresholdRtcCounts)*1000/CLOCK_GetFreq(kCLOCK_32KClk);     }     OSA_InterruptEnable();     return time; } /*--------------------------------------------------------------------------- * Name: PWR_RTCSetWakeupTimeMs * Description: - * Parameters: wakeupTimeMs: New wakeup time in milliseconds * Return: - *---------------------------------------------------------------------------*/ void PWR_RTCSetWakeupTimeMs (uint32_t wakeupTimeMs){     uint32_t wakeupTimeTicks;     uint32_t thresholdValue;     wakeupTimeTicks = (wakeupTimeMs*CLOCK_GetFreq(kCLOCK_32KClk))/1000;     thresholdValue = RTC_GetFreeRunningCount(RTC);     thresholdValue += wakeupTimeTicks;     RTC_SetFreeRunningInterruptThreshold(RTC, thresholdValue); } /*--------------------------------------------------------------------------- * Name: PWR_RTCWakeupStart * Description: - * Parameters: - * Return: - *---------------------------------------------------------------------------*/ void PWR_RTCWakeupStart (void){   if(!(RTC->CNT2_CTRL & RTC_CNT2_CTRL_CNT2_EN_MASK)){     RTC->CNT2_CTRL |= 0x52850000 | RTC_CNT2_CTRL_CNT2_EN_MASK | RTC_CNT2_CTRL_CNT2_WAKEUP_MASK | RTC_CNT2_CTRL_CNT2_INT_EN_MASK;   }   else{     RTC->CNT2_CTRL |= 0x52850000 | RTC_CNT2_CTRL_CNT2_WAKEUP_MASK | RTC_CNT2_CTRL_CNT2_INT_EN_MASK;   } } ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍  *** PWR_Interface.h *** Add the following function declarations at the end of the file /*--------------------------------------------------------------------------- * Name: PWR_GetTotalSleepDurationMS * Description: - * Parameters: - * Return: - *---------------------------------------------------------------------------*/ uint32_t PWR_GetTotalSleepDurationMS(void); /*--------------------------------------------------------------------------- * Name: PWR_ResetTotalSleepDuration * Description: - * Parameters: - * Return: - *---------------------------------------------------------------------------*/ void PWR_ResetTotalSleepDuration(void); #ifdef __cplusplus } #endif #endif /* _PWR_INTERFACE_H_ */ ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ FSL_TICKLESS_GENERIC The following changes have the purpose of preparing the system for recovering the missed ticks during the low power period. Make the following changes in fsl_tickless_generic.h. All the required changes are marked as comments with "Start" where the change starts, and with "End where the change ends" /* QN_RTC: The RTC free running is a 32-bit counter. */ #define portMAX_32_BIT_NUMBER (0xffffffffUL) #define portRTC_CLK_HZ (0x8000UL) /* A fiddle factor to estimate the number of SysTick counts that would have occurred while the SysTick counter is stopped during tickless idle calculations. */ #define portMISSED_COUNTS_FACTOR (45UL) /* * The number of SysTick increments that make up one tick period. */ /****************************START**************************/ #if configUSE_TICKLESS_IDLE == 1     static uint32_t ulTimerCountsForOneTick; #endif /* configUSE_TICKLESS_IDLE */ /************************END*********************************/ /* * Setup the timer to generate the tick interrupts. */ void vPortSetupTimerInterrupt(void); #ifdef __cplusplus } #endif #endif /* FSL_TICKLESS_GENERIC_H */ ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ ApplMain.c This is the main application file. Here is where we will call the proper APIs to enter the MCU in low power mode and perform the tick recovery sequence. Include RTC and FreeRTOS header files needed /*Tickless: Include RTC and FreeRTOS header files */ #include "fsl_rtc.h" #include "fsl_tickless_generic.h" #include "FreeRTOS.h" #include "task.h"‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ QN9080 includes several low power modes. Sleep mode maintains most of the modules active. Power Down modes turn off most of the modules but allow the user to configure some modules to remain active to wake the MCU up when necessary. Using tickless FreeRTOS involves having to wake-up by some timer before the next ready task has to execute. For QN908x this timer will be the RTC which requires the 32.768kHz oscillator to remain active. We will change the Connectivity Software Power Lib to use Deep Sleep mode 3 (Power Down mode 0 for QN908x) which maintains the 32.768kHz oscillator on. This change is implemented in the main_task function. #if !defined(MULTICORE_BLACKBOX)         /* BLE Host Stack Init */         if (Ble_Initialize(App_GenericCallback) != gBleSuccess_c)         {             panic(0,0,0,0);             return;         } #endif /* MULTICORE_BLACKBOX */ /*************** Start ****************/ #if (cPWR_UsePowerDownMode)     PWR_ChangeDeepSleepMode(3); #endif /*************** End ****************/     }         /* Call application task */     App_Thread( param ); }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   Also, tickless FreeRTOS requires a special Idle function which takes as an input parameter the amount of RTOS ticks the MCU can remain asleep before the next task needs to be executed. The following changes disable the default Idle function provided in the Connectivity Software demos when the tickless mode is enabled. /************************************************************************************ ************************************************************************************* * Private prototypes ************************************************************************************* ************************************************************************************/ #if (cPWR_UsePowerDownMode || gAppUseNvm_d) #if (mAppIdleHook_c)     #define AppIdle_TaskInit()     #define App_Idle_Task() #else #if (!configUSE_TICKLESS_IDLE)     static osaStatus_t AppIdle_TaskInit(void);     static void App_Idle_Task(osaTaskParam_t argument); #endif // configUSE_TICKLESS_IDLE #endif #endif‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ /************************************************************************************ ************************************************************************************* * Private memory declarations ************************************************************************************* ************************************************************************************/ /******************************** Start ******************************/ #if ((cPWR_UsePowerDownMode || gAppUseNvm_d) && !configUSE_TICKLESS_IDLE) /******************************** End ******************************/ #if (!mAppIdleHook_c) OSA_TASK_DEFINE( App_Idle_Task, gAppIdleTaskPriority_c, 1, gAppIdleTaskStackSize_c, FALSE ); osaTaskId_t gAppIdleTaskId = 0; #endif #endif  /* cPWR_UsePowerDownMode */‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ #if !gUseHciTransportDownward_d         pfBLE_SignalFromISR = BLE_SignalFromISRCallback; #endif /* !gUseHciTransportDownward_d */ /**************************** Start ************************/ #if ((cPWR_UsePowerDownMode || gAppUseNvm_d) && !configUSE_TICKLESS_IDLE) /**************************** End ************************/ #if (!mAppIdleHook_c)         AppIdle_TaskInit(); #endif #endif‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ /***************************START**************************/ #if (cPWR_UsePowerDownMode && !configUSE_TICKLESS_IDLE) /******************************END***************************/ static void App_Idle(void) {     PWRLib_WakeupReason_t wakeupReason;     if( PWR_CheckIfDeviceCanGoToSleep() )     {         /* Enter Low Power */         wakeupReason = PWR_EnterLowPower(); #if gFSCI_IncludeLpmCommands_c         /* Send Wake Up indication to FSCI */         FSCI_SendWakeUpIndication(); #endif #if gKBD_KeysCount_c > 0         /* Woke up on Keyboard Press */         if(wakeupReason.Bits.FromKeyBoard)         {             KBD_SwitchPressedOnWakeUp();             PWR_DisallowDeviceToSleep();         } #endif     }     else     {         /* Enter MCU Sleep */         PWR_EnterSleep();     } } #endif /* cPWR_UsePowerDownMode */ #if (mAppIdleHook_c) void vApplicationIdleHook(void) { #if (gAppUseNvm_d)     NvIdle(); #endif /*******************************START****************************/ #if (cPWR_UsePowerDownMode && !configUSE_TICKLESS_IDLE) /*********************************END*******************************/     App_Idle(); #endif } #else /* mAppIdleHook_c */ /******************************* START ****************************/ #if ((cPWR_UsePowerDownMode || gAppUseNvm_d) && !configUSE_TICKLESS_IDLE) /******************************* END ****************************/ static void App_Idle_Task(osaTaskParam_t argument) {     while(1)     {   #if gAppUseNvm_d         NvIdle(); #endif         #if (cPWR_UsePowerDownMode)         App_Idle(); #endif         /* For BareMetal break the while(1) after 1 run */         if (gUseRtos_c == 0)         {             break;         }     } } ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Once the default Idle function has been disabled, the special Idle function must be implemented. Add the following code at the end of the ApplMain.c file. /*Tickless: Implement Tickless Idle */ #if (cPWR_UsePowerDownMode && configUSE_TICKLESS_IDLE) extern void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime ) {     uint32_t time_ms = xExpectedIdleTime * portTICK_PERIOD_MS;     uint32_t tmrMgrExpiryTimeMs;     ulTimerCountsForOneTick = 160000;//VALUE OF THE SYSTICK 10 ms #if (cPWR_UsePowerDownMode)     PWRLib_WakeupReason_t wakeupReason;         //TMR_MGR: Get next timer manager expiry time     tmrMgrExpiryTimeMs = TMR_GetFirstExpireTime(gTmrAllTypes_c);     // TMR_MGR: Update RTC Threshold only if RTOS needs to wakeup earlier     if(time_ms<tmrMgrExpiryTimeMs){       PWR_SetDeepSleepTimeInMs(time_ms);     }         PWR_ResetTotalSleepDuration();     if( PWR_CheckIfDeviceCanGoToSleep() )     {         wakeupReason = PWR_EnterLowPower();                 //Fix: All the tick recovery stuff should only happen if device entered in DSM         xExpectedIdleTime = PWR_GetTotalSleepDurationMS() / portTICK_PERIOD_MS;     // Fix: ticks = time in mS asleep / mS per each tick (portTICK_PERIOD_MS)         /* Restart SysTick so it runs from portNVIC_SYSTICK_LOAD_REG         again, then set portNVIC_SYSTICK_LOAD_REG back to its standard         value. The critical section is used to ensure the tick interrupt         can only execute once in the case that the reload register is near         zero. */         portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;         portENTER_CRITICAL();         portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;         vTaskStepTick( xExpectedIdleTime );         portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;         portEXIT_CRITICAL(); #if gKBD_KeysCount_c > 0         /* Woke up on Keyboard Press */         if(wakeupReason.Bits.FromKeyBoard)         {           KBD_SwitchPressedOnWakeUp();           PWR_DisallowDeviceToSleep();         } #endif     }     else     {       /* Enter MCU Sleep */       PWR_EnterSleep();     } #endif /* cPWR_UsePowerDownMode */ } #endif  //cPWR_UsePowerDownMode && configUSE_TICKLESS_IDLE ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ From the previous function, the value of ulTimerCountsForOneTick is used to restore the count of the RTOS tick timer after waking up. This value depends on the RTOS Tick interval defined in FreeRTOSConfig.h and is calculated using the following formula: SYST_RNR  =  F_Systick_CLK(Hz) * T_FreeRTOS_Ticks(ms) Where:       F_Systick_CLK(Hz) = AHB or 32KHz of the SYST_CSR selection       T_FreeRTOS_Ticks(ms) = tick count value. FreeRTOSConfig.h Finally, on the FreeRTOSConfig.h file, make sure that configUSE_TICKLESS_IDLE is set to 1 * See http://www.freertos.org/a00110.html. *----------------------------------------------------------*/ #define configUSE_PREEMPTION                    1 #define configUSE_TICKLESS_IDLE                 1 //<--- /***** Start *****/ #define configCPU_CLOCK_HZ                      (SystemCoreClock) #define configTICK_RATE_HZ                      ((TickType_t)100) #define configMAX_PRIORITIES                    (18) #define configMINIMAL_STACK_SIZE                ((unsigned short)90)‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Testing Tickless RTOS In order to test if tickless support was successfully added, an example application that toggles an LED is implemented. This application configures an RTOS timer to toggle the LED once every 500mS and enter the MCU in DSM3 during the idle time. The Power Profiling demo was used for this purpose. power_profiling.c Make sure you have included the following header files #include "FreeRTOS.h" #include "task.h"‍‍‍‍ Create an RTOS task for blinking the LED every 500mS. First, declare the task function, task ID and the task itself. void vfnTaskLedBlinkTest(void* param); //New Task Definition OSA_TASK_DEFINE(vfnTaskLedBlinkTest, 1, 1, 500, FALSE ); osaTaskId_t gAppTestTask1Id = 0; // TestTask1 Id‍‍‍‍‍‍ Create the new task inside the BleApp_Init function void BleApp_Init(void) {     PWR_AllowDeviceToSleep();     mPowerState = 0;   // Board starts with PD1 enabled     /******************* Start *****************/     gAppTestTask1Id = OSA_TaskCreate(OSA_TASK(vfnTaskLedBlinkTest), NULL); //Task Creation     /*******************  End  *****************/ }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Finally, add the task function definition at the end of the file. void vfnTaskLedBlinkTest(void* param) {     uint16_t wTimeValue = 500; //500ms     while(1)     {         LED_BLUE_TOGGLE();         vTaskDelay(pdMS_TO_TICKS(wTimeValue));     } }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ We can monitor the power consumption in MCUXpresso IDE, with the Power Measurement Tool. With it, we can see the current that is been consumed and prove that the implementation is working as the expected. Configure the Power Measurement Tool Consumed current
查看全文
Introduction In some applications, is it necessary to keep updated the software running in many MCU's that take part in the system, fortunately, Over The Air Programming, it's a custom Bluetooth LE service developed to send "over the air" software updates for the KW MCU series. FRDM-KW36 SDK already provides the "otap_client" software, that can be used together with the "otap_bootloader" such as it is described in the following community post: Reprogramming a KW36 device using the OTAP Client Software to reprogram the KW36. This example can be modified to store code for another MCU and later send the software update to this device as depicted in the figure below. This post guides you on modifying the OTAP client software to support software updates for other MCU's. Preparing the OTAP client software The starting point of the following modifications is supposing that there is no need to perform over the air updates for the KW36 MCU, so the use of the "otap_bootloader" is obsolete and will be removed in this example. In other words, KW36 will be programmed only with the "otap_client" code. Open the MCUXpresso settings window (Project->Properties->"C/C++ Build->MCU settings") and configure the following fields. Save the changes. For external storage: For internal storage: Locate the "app_preinclude.h" file, and set the storage method, as follows: For external storage: #define gEepromType_d       gEepromDevice_AT45DB041E_c For internal storage: #define gEepromType_d        gEepromDevice_InternalFlash_c Locate the "main_text_section.ldt" linker script into the "linkscripts" folder, and delete it from the project.  Search in the project for "OTA_SetNewImageFlag();" and "ResetMCU();" functions in the "otap_client.c" file (source->common->otap_client->otap_client.c) and delete or comment. (For reference, there are 4 in total). Locate the following code in "OtaSupport.h" (framework->OtaSupport->Interface) and delete or comment. extern uint16_t gBootFlagsSectorBitNo;‍‍‍‍‍‍ void OTA_SetNewImageFlag(void);‍‍‍‍‍‍‍ Locate the following code in "OtaSupport.c" (framework->OtaSupport->Source) and delete or comment. extern uint32_t __BootFlags_Start__[]; #define gBootImageFlagsAddress_c ((uint32_t)__BootFlags_Start__)‍‍‍‍‍‍‍‍‍‍‍‍ #if !gEnableOTAServer_d || (gEnableOTAServer_d && gUpgradeImageOnCurrentDevice_d) /*! Variables used by the Bootloader */ #if defined(__IAR_SYSTEMS_ICC__) #pragma location = "BootloaderFlags" const bootInfo_t gBootFlags = #elif defined(__GNUC__) const bootInfo_t gBootFlags __attribute__ ((section(".BootloaderFlags"))) = #elif defined(__CC_ARM) volatile const bootInfo_t gBootFlags __attribute__ ((section(".BootloaderFlags"))) = #else #error "Compiler unknown!" #endif { {gBootFlagUnprogrammed_c}, {gBootValueForTRUE_c}, {0x00, 0x02}, {gBootFlagUnprogrammed_c}, #if defined(CPU_K32W032S1M2VPJ_cm4) && (CPU_K32W032S1M2VPJ_cm4 == 1) {PLACEHOLDER_SBKEK}, {BOOT_MAGIC_WORD} #endif }; #endif /* !gEnableOTAServer_d || (gEnableOTAServer_d && gUpgradeImageOnCurrentDevice_d) */‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ uint16_t gBootFlagsSectorBitNo; gBootFlagsSectorBitNo = gBootImageFlagsAddress_c/(uint32_t)((uint8_t*)FSL_FEATURE_FLASH_PFLASH_BLOCK_SECTOR_SIZE);‍‍‍‍ gBootFlagsSectorBitNo = gBootImageFlagsAddress_c/(uint32_t)((uint8_t*)FSL_FEATURE_FLASH_PAGE_SIZE_BYTES);‍‍‍‍ void OTA_SetNewImageFlag(void) { #if (gEepromType_d != gEepromDevice_None_c) && (!gEnableOTAServer_d || (gEnableOTAServer_d && gUpgradeImageOnCurrentDevice_d)) /* OTA image successfully written into the non-volatile storage. Set the boot flag to trigger the Bootloader at the next CPU Reset. */ union{ uint32_t value; uint8_t aValue[FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE]; }bootFlag; #if defined(CPU_K32W032S1M2VPJ_cm4) && (CPU_K32W032S1M2VPJ_cm4 == 1) uint8_t defaultSBKEK[SBKEK_SIZE] = {DEFAULT_DEMO_SBKEK}; #endif uint32_t status; if( mNewImageReady ) { NV_Init(); bootFlag.value = gBootValueForTRUE_c; status = NV_FlashProgramUnaligned((uint32_t)&gBootFlags.newBootImageAvailable, sizeof(bootFlag), bootFlag.aValue); if( (status == kStatus_FLASH_Success) && FLib_MemCmpToVal(gBootFlags.internalStorageAddr, 0xFF, sizeof(gBootFlags.internalStorageAddr)) ) { bootFlag.value = gEepromParams_StartOffset_c + gBootData_ImageLength_Offset_c; status = NV_FlashProgramUnaligned((uint32_t)&gBootFlags.internalStorageAddr, sizeof(bootFlag), bootFlag.aValue); } #if defined(CPU_K32W032S1M2VPJ_cm4) && (CPU_K32W032S1M2VPJ_cm4 == 1) if( status == kStatus_FLASH_Success ) { /* Write the default SBKEK for secured OTA */ status = NV_FlashProgramUnaligned((uint32_t)&gBootFlags.sbkek, SBKEK_SIZE, defaultSBKEK); } #endif if( status == kStatus_FLASH_Success ) { mNewImageReady = FALSE; } } #endif }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   At this point, the FRDM-KW36 can receive and store any image for any MCU and can request a further software update from the OTAP server device.    Adding API's to reprogram the "MCU X" on OTAP client software Once the software update has been downloaded from the OTAP Server into the OTAP Client, the developer should request the software update from the OTAP Client to the "MCU X" through a serial protocol such as UART, SPI, CAN, etc. You should develop the API's and the protocol according to the requirements for your system to send the software update to the "MCU X" (as well as the bootloader for the MCU X). The handling your protocol can be integrated into the OTAP client code replacing "ResetMCU()" (The same code removed in step 4) in the code by "APISendSoftwareUpdateToMCUX()" for instance, since at this point the image was successfully sent over the air and stored in the memory of the KW36. 
查看全文
The image below shows the different types of devices in a Thread Network. Router Routers provide routing services to network devices. Routers also provide joining and security services for devices trying to join the network. Routers are not designed to sleep. Routers can downgrade their functionality and become REEDs (Router-eligible End Devices). A Router can become a Leader and start a Thread network. Border Router A Border Router is a type of Router that provides connectivity from the 802.15.4 network to adjacent networks on other physical layers (for example, Wi-Fi and Ethernet). Border Routers provide services for devices within the 802.15.4 network, including routing services for off-network operations. There may be one or more Border Routers in a Thread Network. The Border Router also serves as an interface point for the Commissioner when the Commissioner is on a non-Thread Network; it requires a Thread interface and may be combined in any device with other Thread roles except the Joiner. Leader A Router or Border Router can assume a Leader role for certain functions in the Thread Network. This Leader is required to make decisions within the network. For example, the Leader assigns Router addresses and allows new Router requests. The Leader role is elected and if the Leader fails, another Router or Border Router assumes the Leader role. It is this autonomous operation that ensures there is no single point of failure. Router-eligible End Device REEDs have the capability to become Routers but due to the network topology or conditions these devices are not acting as Routers. These devices do not generally forward messages or provide joining or security services for other devices in the Thread Network. The Thread Network manages REEDs becoming Routers if necessary without user interaction. Sleepy End Device Sleepy end devices are host devices. They communicate only through their Parent Router and cannot forward messages for other devices References: Thread Whitepapers available at http://threadgroup.org 
查看全文
I´m going to explain how configure the RTC_CLKOUT pin and the different outputs that you can get with the KW40Z board. First it must be clear that the next configuration are based to use any demo of the KW40Z_Connectivity_Software_1.0.1 and also must to use the IAR Embedded Workbench. Now that you have all the software installed follow the next instructions. Configure the pin In the Reference Manual you will realize that each pin has different ways to configure it, in our case the pin that we are going to use is the PTB3 with a MUX = 7. The mux 7 is the RTC_CLKOUT. Figure 1. PTB3 mux configuration The KSDK have many functions that initializes the ports and the different peripherals. The configure_rtc_pins() function initialize the RTC_CLKOUT pin, you can find it in the pin_mux.h file. You must add the two functions in the hardware_init() function, that is declared in hardware_init.c file. The hardware_init() function must be like show next: void hardware_init(void) {      ...      ...      NV_ReadHWParameters(&gHardwareParameters); configure_rtc_pins(0); } Enable the RTC module. Now that the pin is already configure, you have to initialize the RTC module and the 32 KHz oscillator. You must understand that the RTC module can work with different clock sources (LPO,EXTAL_32K and OSC32KCLK) and it can be reflected through the RTC_CLKOUT pin. The register that change the clock source is the SIM_SOPT1 with OSC32KOUT(17-16) and OSC32KSEL(19-18) these are the names of the register bits. The OSC32KOUT(17-16) enable/disable the output of ERCLK32K on the selected pin in our case is the PTB3. You can configure with two options. 00     ERCLK32K is not output. 01     ERCLK32K is output on PTB3. The OSC32KSEL(19-18) selects the output clock, they have 3 option like show in the next image. Figure 2. Mux of the register SIM_SOPT1 The follow table show the different outputs that you can get in the RTC_CLKOUT pin, you only have to modify the OSC32KOUT and OSC32KSEL in the register SIM_SOPT1. Figure 3. Output of RTC_CLKOUT pin. Like the configuration of the pin, KSDK have function that initialize the RTC module and the 32 KHz oscillator. The RTC_DRV_Init(0) function initialize the RTC module and is declared in fsl_rtc_driver.h file, the BOARD_InitRtcOsc() function enable the RTC oscillator and is in the board.h file, the RTC_HAL_EnableCounter() enable the TCE(Timer Counter Enable) that is in the fsl_rtc_hal.h file and finally the SIM_SOPT1_OSC32KOUT() enable/disable the ERCLK32K for the RTC_CLKOUT(PTB3) and SIM_SOPT1_OSC32KSEL() selects the output clock. To enable the RTC module copy the next code: RTC_Type *rtcBase = g_rtcBase[0];//The RTC base address BOARD_InitRtcOsc(); RTC_DRV_Init(0); RTC_HAL_EnableCounter(rtcBase, true); SIM_SOPT1 = SIM_SOPT1_OSC32KOUT(0)|SIM_SOPT1_OSC32KSEL(0);      //Your RTC_CLKOUT is 1Hz with this configuration NOTE: Don’t forget to add the header necessary in the file that you are using. Enjoy it! :smileygrin:
查看全文
The MCU in the KW40/30Z has various available very low power modes. In these power modes, the chip goes to sleep to save power, and it is not usable during this time (it can however receive different kinds of interruptions that could wake it up). The very low power modes supported by the microcontroller are: The KW40Z connectivity software stack has 6 predetermined deep sleep modes. These deep sleep modes have different configurations for the microcontroller low power mode, the BLE Link Layer state and in which ways the device can be awaken. These predetermined DSM (Deep Sleep Modes) are: * VLLS0 if DCDC is bypassed. VLLS1 with either Buck or Boost. ** Available in Buck mode only. Having said that, if you want the lowest possible consumption by the MCU, while also being able to wake up your application automatically with a timer (achieved with VLSS1), there is no DSM available. You can, however, create your own Deep Sleep Mode with low power timers enabled. Please note that VLSS1 has the lowest possible consumption when using a DCDC converter. When in bypass mode, the lowest possible consumption is achieved with VLSS0. To create your Deep Sleep Mode, you should start with the function that will actually handle the board going into deep sleep. This should be done in the PWR.c file, along with the rest of the DSM handler functions. This function is quite similar to the ones already made for the other deep sleep modes. Link layer interruptions, timer settings and the low power mode for the MCU are handled here. /* PWR.c */ #if (cPWR_UsePowerDownMode) static void PWR_HandleDeepSleepMode_7(void) {   #if cPWR_BLE_LL_Enable   uint16_t bleEnabledInt; #endif   uint8_t clkMode;   uint32_t lptmrTicks;   uint32_t lptmrFreq;     PWRLib_MCU_WakeupReason.AllBits = 0;   #if cPWR_BLE_LL_Enable    if(RSIM_BRD_CONTROL_BLE_RF_OSC_REQ_STAT(RSIM)== 0) // BLL in DSM   {     return;   bleEnabledInt = PWRLib_BLL_GetIntEn();   PWRLib_BLL_ClearInterrupts(bleEnabledInt);      PWRLib_BLL_DisableInterrupts(bleEnabledInt); #endif     if(gpfPWR_LowPowerEnterCb != NULL)   {     gpfPWR_LowPowerEnterCb();   }     /* Put the device in deep sleep mode */ #if cPWR_DCDC_InBypass    PWRLib_MCU_Enter_VLLS0(); #else   PWRLib_MCU_Enter_VLLS1(); #endif     if(gpfPWR_LowPowerExitCb != NULL)   {     gpfPWR_LowPowerExitCb();   }   #if cPWR_BLE_LL_Enable    PWRLib_BLL_EnableInterrupts(bleEnabledInt);        #endif      PWRLib_LPTMR_ClockStop();   } #endif /* #if (cPWR_UsePowerDownMode) */ ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Remember to add this function to the deep sleep handler function array: /* PWR.c */ const pfHandleDeepSleepFunc_t maHandleDeepSleep[]={PWR_HandleDeepSleepMode_1,                                                     PWR_HandleDeepSleepMode_2,                                                     PWR_HandleDeepSleepMode_3,                                                     PWR_HandleDeepSleepMode_4,                                                     PWR_HandleDeepSleepMode_5,                                                     PWR_HandleDeepSleepMode_6,                                                     PWR_HandleDeepSleepMode_7                                                    }; ‍‍‍‍‍‍‍‍‍‍ This function should allow your device to go to sleep. It does the strictly necessary things before the device goes to sleep: disables link layer interruptions, gets the configuration for the low power timer and it starts the timer. Please note that when the board is in either Buck or Boost DCDC mode, only VLSS1 is supported. When the device is in bypass mode, VLSS0 can be chosen. Now that the deep sleep handler is done, there are some changes that have to be made to have a proper execution. In the PWR_Configuration.h file, for example, there is an error message when the parameter cPWR_DeepSleepMode is larger than 6 (the default DSM modes), but, since you have added a new deep sleep mode, this number should be changed to 7: #if (cPWR_DeepSleepMode > 7 )  // default: 6   #error "*** ERROR: Illegal value in cPWR_DeepSleepMode" #endif ‍‍‍ Other changes that have to be made are the Low Leakage Wake Up unit and the deep sleep mode configurations. To change the LLWU configuration, you should add a case for the new deep sleep mode in the PWRLib_ConfigLLWU() function: /* PWRLib.c */ void PWRLib_ConfigLLWU( uint8_t lpMode ) {   switch(lpMode)   {   case 1:     LLWU_ME = gPWRLib_LLWU_WakeupModuleEnable_BTLL_c | gPWRLib_LLWU_WakeupModuleEnable_LPTMR_c;   break;   case 2:     LLWU_ME = gPWRLib_LLWU_WakeupModuleEnable_BTLL_c;   break;   case 3:     LLWU_ME = gPWRLib_LLWU_WakeupModuleEnable_LPTMR_c | gPWRLib_LLWU_WakeupModuleEnable_DCDC_c;   break;   case 4:   case 5:     LLWU_ME = gPWRLib_LLWU_WakeupModuleEnable_DCDC_c;    break;   case 6:     LLWU_ME = 0;   break;   case 7: /* The new deep sleep mode can be awaken through a Low Power Timer timeout */     LLWU_ME = gPWRLib_LLWU_WakeupModuleEnable_LPTMR_c;   break;   } }  } #endif /* #if (cPWR_UsePowerDownMode) */ ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Once this case has been added, you should change the function that calls PWRLib_ConfigLLWU(), PWRChangeDeepSleepMode(): /* PWR.c */ bool_t PWR_ChangeDeepSleepMode (uint8_t dsMode) { #if (cPWR_UsePowerDownMode)   if(dsMode > 7) //Since you’ve added an extra DSM, this is now 7 (default: 6)   {      return FALSE;   }    PWRLib_SetDeepSleepMode(dsMode); PWRLib_ConfigLLWU(dsMode); #if (cPWR_BLE_LL_Enable)    PWRLib_BLL_ConfigDSM(dsMode);   PWRLib_ConfigRSIM(dsMode); #endif    return TRUE;   #else   return TRUE; #endif  /* #if (cPWR_UsePowerDownMode) */ } ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Now, since you’ll be using a Low Power Timer, you should modify the maLPModeUseLPTMR[] constant in the PWRLib.c file, indicating that you will use a low power timer: /* PWRLib.c */ const uint8_t maLPModeUseLPTMR[]={0,1,1,1,0,0,1,1}; //We add the last 1. default: {0,1,1,1,0,0,1} ‍‍‍ You should add a case for your new low power mode in the PWRLib_ConfigRSIM(). Here you will handle the BLE link layer whilst the device is in low power mode. This function can be found in the PWRLib.c file: /* PWRLib.c */ void PWRLib_ConfigRSIM( uint8_t lpMode ) {   switch(lpMode)   {   case 1:   case 2:       RSIM_BWR_CONTROL_STOP_ACK_OVRD_EN(RSIM, 0);       RSIM_CONTROL |= RSIM_CONTROL_BLE_RF_OSC_REQ_EN_MASK | RSIM_CONTROL_BLE_RF_OSC_REQ_INT_EN_MASK | RSIM_CONTROL_BLE_RF_OSC_REQ_INT_MASK;     break;   case 3:   case 4:   case 5:       RSIM_CONTROL &= ~(RSIM_CONTROL_STOP_ACK_OVRD_EN_MASK | RSIM_CONTROL_BLE_RF_OSC_REQ_EN_MASK | RSIM_CONTROL_BLE_RF_OSC_REQ_INT_EN_MASK);       RSIM_CONTROL |= RSIM_CONTROL_BLE_RF_OSC_REQ_INT_MASK;     break;   case 6:       RSIM_CONTROL &= ~(RSIM_CONTROL_STOP_ACK_OVRD_EN_MASK  | RSIM_CONTROL_BLE_RF_OSC_REQ_INT_EN_MASK);       RSIM_CONTROL |= RSIM_CONTROL_BLE_RF_OSC_REQ_INT_MASK | RSIM_CONTROL_BLE_RF_OSC_REQ_EN_MASK;     break;   case 7: //@PNN       RSIM_CONTROL &= ~(RSIM_CONTROL_STOP_ACK_OVRD_EN_MASK | RSIM_CONTROL_BLE_RF_OSC_REQ_EN_MASK | RSIM_CONTROL_BLE_RF_OSC_REQ_INT_EN_MASK);       RSIM_CONTROL |= RSIM_CONTROL_BLE_RF_OSC_REQ_INT_MASK;     break;   } } ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Your low power mode awaken by a low power timer should now be ready. To change the deep sleep mode and the time the device will be in deep sleep mode before it is awaken, use these functions in your application: PWR_ChangeDeepSleepMode(7);                                     /* Change deep sleep mode */ PWR_SetDeepSleepTimeInMs(YOUR_DEEP_SLEEP_TIME_IN_MS);           /* Time the device will spend on deep sleep mode */ PWR_AllowDeviceToSleep();                                      /* Allows the device to go to deep sleep mode */ PWR_DisallowDeviceToSleep();                                   /* Does not allows the device to go to deep sleep mode */ ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍
查看全文
Introduction The FRDM-KW36 includes an RSIM (Radio System Integration Module) module with an external 32 MHz crystal oscillator. This clock source reference is mainly intended to supply the Bluetooth LE Radio peripheral, but it can be used as the main clock source of the MCU as well. This oscillator includes a set of programmable capacitors to support crystals with different load capacitance needs. Changing the value of these capacitors can modify the frequency the oscillator provides, that way, the central frequency can be tuned to meet the wireless protocol standards. This configurable capacitance range is from C1: 5.7pF - C2: 7.1pF to C1: 22.6pF - C2: 28.2pF and it is configured through the BB_XTAL_TRIM field at the ANA_TRIM. The KW36 comes preprogrammed with a default load capacitance value. However, since there is variance in devices due to tolerances and parasite effects, the correct load capacitance should be checked by verifying that the optimal central frequency is attained.  You will need a spectrum analyzer to measure the central frequency. To find the most accurate value for the load capacitance, it is recommended to use the Connectivity Test demo application. Adjusting Frequency Example Program the KW36 Connectivity Test software on the device. This example can be found in wireless_examples -> genfsk -> conn_test folder from your SDK package. Baremetal and FreeRTOS versions are available. In case that FRDM-KW36 board is being used to perform the test, you should move the 10pF capacitor populated in C55 to C57, to direct the RF signal on the SMA connector. Connect the board to a serial terminal software. When you start the application, you will be greeted by the NXP logo screen:  Press the enter key to start the test. Then press "1" to select "Continuous tests": Finally, select "6" to start a continuous unmodulated RF test. At this point, you should be able to measure the signal in the spectrum analyzer. You can change the RF channel from 0 to 127 ("q" Ch+ and "w" Ch- keys), which represents the bandwidth from 2.360GHz to 2.487GHz, stepping of 1MHz between two consecutive channels. To demonstrate the trimming procedure, this document will make use of channel 42 (2.402GHz) which corresponds to the Bluetooth LE channel 37. In this case, with the default capacitance value, our oscillator is not exactly placed at the center of the 2.402GHz, instead, it is slightly deflected to 2.40200155 GHz, as depicted in the following figure: The capacitance can be adjusted with the "d" XtalTrim+ and "f" XtalTrim- keys. Increasing the capacitance bank means a lower frequency. In our case, we need to increase the capacitance to decrease the frequency. The nearest frequency of 2.402 GHz was 2.40199940 GHz  Once the appropriate XTAL trim value has been found, it can be programmed as default in any Bluetooth LE example, changing the mXtalTrimDefault constant located in the board.c file: static const uint8_t mXtalTrimDefault‍ = 0x36;‍‍‍
查看全文
This document provides the calculation of the Bluetooth Low Power consumption linked to the setting of the Kinetis.   The Power Profile Calculator is build to provide the power consumption of your application. It's a mix between real measurements in voltage and temperature. The process is not taken into account which may create some variation.   DISCLAIMER: This excel workbook is provided as an estimation tool for NXP customers and is based on power profile measurements done on a set of randomly selected parts. A specific part may exhibit deviation from the nominal measurements used on this tool.   This document is the summary of all the information available in the AN12180 Power Consumption Analysis - FRDM-KW36 available in the NXP web page.   Several parameters could be fill-in: Buck or bypass mode (DCDC) Supply Voltage (2.4V to 3.6V) Temperature (-40°C to +105°C) Processor configuration (20MHz, 32MHz or 48MHz) 2 different deep sleep modes (LLS3 or VLLS2) Different Tx output power (0dBm, +3.5dBm or +5dBm) Possibility to set the Advertising interval, connection interval, scan interval and active scan windows duration Fix the Bluetooth Packet sizes in Advertising and Connection  Tx/Rx payload.   One optional information is to provide an idea of the duration life time on typical batteries.
查看全文
Regarding to the "Reprogramming a KW36 device using the OTAP Client Software" and "Reprogramming a KW35 device using the OTAP Client Software" documents, there are some additional steps to debug the OTAP client software in the specific case when you use MCUXpresso together with a P&E micro debug probe. Just before to program the OTAP client project (the second software), the user must do the following: Open the "Debug Configurations" view clicking on the green bug as depicted below. Go to the "Debugger" perspective and search the "Advanced Options" button. Enable the "Preserve this range (Memory Range 0)" checkbox, and edit the textbox "From: 0" To: 1fff" for the KW36 device or "From: 0 To: 3fff" for the KW35 device. After to flash the device, disconnect and connect again. If everything it's OK, the RGB LED must blink (If you are using an FRDM board). Then, test the demo as described in the document.
查看全文