NXP Designs Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

NXP Designs Knowledge Base

Discussions

Sort by:
Overview The LCD reference design is developed using the Kinetis KL28Z through the standalone peripheral module FlexIO. The polling method is used to copy data from SRAM or flash to FlexIO's shifter buffer. Image Kinetis board is powered by an Arm ®  Cortex ® -M0, providing up to 96 MHz CPU performance besides supporting ultra-low power. KL28Z's FlexIO emulates 8080 interface, and drives a 320x240 TFT LCD module. DAM or displaying applications, such as HMI, can be built based on this demo. The refresh rate is up to 128 fps with 16-bit width data bus and 48MHz core clock. Features Features the Kinetis KL2828Z512 Board, the interaction between a LCD display by FlexIO, a highly configurable module capable of emulating a wide range of different communication protocols. The important feature of this peripheral is that it enables the user to build their own peripheral directly in the MCU. Developed using Kinetis Software Development Kit (SDK), comprehensive software support for Kinetis MCUs and drivers for each MCU peripheral, middleware, real-time OS and example applications designed to simplify and accelerate application development on Kinetis MCUs. Block Diagram Board Design Resources
View full article
Overview The Sub-GHz Remote Control Dimmer reference design based on the MKW01Z128 MCU operates in a custom IEEE 802.15.4 star network for home automation applications. Users can control various RGB bulbs connected to a network using the KW01-RCD-RD board as a remote control. Controlled devices are USB-KW019032 boards, and each board simulates an RGB bulb in a GUI. Features Low-cost MKW01Z128 sub-1GHz wireless node solution with an FSK, GFSK, MSK or OOK modulation-capable transceiver Reference design area with small footprint, low-cost RF node Unbalanced input/output port Flexible RF-Front End for different bands operation Programmable output power from -18 dBm to +13 dBm in 1dB steps (RFIO output) Integrated dual band chip antenna for 800MHz and 900MHz ISM bands Micro-miniature coaxial connector (MMCX) for conducted RF measurements Block Diagram Board Design Resources
View full article
Overview This NXP® reference design of a 3-phase sensorless PMSM vector control drive with a sliding mode observer (SMO) is targeted mainly for compressor control and other consumer and industrial applications. This cost-effective solution uses the NXP MC56F8013 device dedicated for motor control. Software written in C-code using some library algorithms Available for the MC56F8013 and MC56F8346 digital signal controllers Hardware-based on the NXP universal motor control h/w modules Features The system is designed to drive a three-phase PM synchronous motor. Application features are: 3-phase sensorless PMSM speed vector control (FOC) Sliding mode observer with adaptive velocity estimation Based on NXP ®  MC56F8013 (resp. 56F8346) controller Running on a 3-phase high voltage (230/115V) power stage FreeMASTER software control interface and monitor Block Diagrams Design Resources
View full article
  Overview The Altimeter Barometer Reference Design is used for directly measuring the barometric pressure, determining altitude and making simple weather predictions. The barometer pressure readings are achieved using the compensated MPX2102A pressure sensor, a HCXX series of Flash microcontroller unit (MCU), and an LCD display. This reference design enables the user to evaluate a pressure sensor for barometer, personal weather station and altimeter applications. This design can be used for altimetry features in wrist watches, cell phones, GPS systems and other electronic devices. In addition, many systems require barometric pressure data to correct system response errors. This application note describes the reliability and accuracy that our sensors can provide in a barometer or altimeter system. Archived content is no longer updated and is made available for historical reference only.   Features Demonstrates barometric pressure and altitude Pressure Sensor: MPXM2102A MPAK Package Sensitivity: 0.4 mV / kPa Pressure Rating: 100kPa (Max) Microprocessor: MC68HC908QT4 4.0K Bytes of in-application reprogrammable Flash and 128 Bytes of RAM High performance, easy to use, HC08 CPU 4 Channel 8-bit analog to digital converter 8-pin DIP or SOIC packages       Design Resources
View full article
Overview This reference design is based on 32-bit DSC MC56F84789, to demo a micro-step stepper motor control solution. This reference design jump-starts your ability to leverage the NXP ®  DSCs' advanced feature sets via complete software, tools and hardware platform. Two phases four wires stepper motor Motor self-adaptive function, auto motor parameters identification and control system adjustment Rated peak current selection by switch, the maximum current is up to 8 A Speed ratio: 1 : 1000 with position and speed closed loop control Current PID regulator Micro-step resolution selection by switch, the maximum resolution is up to 25600 steps/rev The maximum speed is up to 3000RPM with loading capability Pulse command mode: single pulse plus direction control Maximum 1 MHz pulse command input Smooth filter function for pulse command, enabled by switch Stop with half rated current FreeMASTER software control interface and monitor Features MC56F84789 Micro-Step Stepper Motor Control MAPS-56F84000 EVK Board MAPS-MC-LV3PH Motor Control Power Stage Block Diagram Design Resources
View full article
  Overview Archived content is no longer updated and is made available for historical reference only. The QorIQ ®  P1020EWLAN access point/router is a complete production-ready, bill of materials optimized solution that can support single- or dual-radio 802.11 a/b/g/n/ac devices through MiniPCI or Mini PCI Express ®  interfaces. IEEE ®  802.11N WLAN radios capable of supporting wireless data rates up to 300 Mbps per and the P1020 communication processor is ideal to maximize performance while meeting power and cost budgets Can be powered over a single Ethernet cable in 3 x 3 MIMO mode using a single 802.3af Power over Ethernet (PoE) link Provides complete data and control path processing needs for multiple radio solutions and excellent throughput with best-in-class performance/watt   Features P1020 in 45nm SOI operating at 533-800MHz dual core e500 processor with 256KB L2 cache with ECC 256MB to 512MB DDR3 SDRAM 4 FXS ports 1 FXO port 1 GbE RGMII port 1 GbE SGMII port 1 GbE port connected to RGMII 5-port switch 2 mini-USB 2.0 ports 1 mini-PCI Express connector 1 PCI Express VortiQa ®  software with Stateful Packet Inspection Firewall and NAT - performance optimized IPsec Virtual Private Network (VPN) with Quality of Service (QoS) and Traffic Management (TM) D2 Technologies optimized voice G.711-Alaw G.711-MuLaw G.729AB G.726 Voice Compression G.168 Echo Cancellation Advanced telephony Full Distributed Unicast Conferencing Call forwarding Call Waiting/ Caller ID. IDE and Build Tools CodeWarrior Development Suites for Networked Applications v11.4.0 Design Resources
View full article
Overview This reference design of a 3-phase Permanent Magnet Synchronous Motor (PMSM) sensorless vector control drive and a Brushless DC (BLDC) Motor drive without position encoder coupled to the motor shaft uses the NXP® 56F8013 with Processor Expert® software support. PMSM/BLDC motor are excellent choices for many appliances and industrial applications that require low cost and high-performance variable speed operation This design will employ sensorless FOC to control a PMSM and a sensorless algorithm to control BLDC The hardware design supports both motor types with the algorithms fully implemented digitally via software running on the 56F8013 DSC Features General: For PMSM the motor control algorithm employs Field-Oriented Control (FOC). The power stage switches are controlled by means of Space Vector Pulse Width Modulation (SVPWM) The feedback hardware elements are limited to the motor stator phase currents and the bus voltage. No position information devices or stator flux measurement are used; sensorless speed methods are employed The Motor is capable of forward and reverse rotation and has a speed range of 500rpm to 6000rpm The user controls motion profiles, rotation direction, and speed. The RS-232 communication supports further R&D by enabling the easy tuning of control parameters The motor drive system is designed to create minimal acoustic noise Active power factor correction which reduces the negative effects of the load on the power grid in conducted noise and imaginary power Design is low cost General Benefits: Improved End System Performance Energy savings Quieter operation Improved EMI performance System Cost savings Enhanced Reliability Performance: Input voltage: 85 ~265VAC Input frequency: 45 ~65HZ Rating bus voltage: 350V Rating output power: 500W Switch frequency of PFC switch: 100KHZ Switch frequency of inverter: 10KHZ Power factor: >95% Efficiency: >90% Communications: RS232 port for communication with optoisolation Visual Interface: Multi-segment LED indicators Block Diagram Board Design Resources
View full article
Overview This reference design describes the design of a 3-phase BLDC (Brushless DC) motor drive, which supports the NXP® 56F80X and 56F83XX Digital Signal Controllers (DSCs). The speed-closed loop BLDC drive using an encoder sensor is implemented The system is targeted for applications in both industrial and appliance fields (e.g. washing machines, compressors, air conditioning units, pumps or simple industrial drives required high reliability and efficiency) Features Voltage control of BLDC motor using Encoder sensor Targeted for 56F80X, 56F83XX, and 56F81XX Digital Signal Controllers Running on 3-phase Motor Board Control technique incorporates: Voltage BLDC motor control with speed-closed loop Current feedback loop Both directions of rotation Motoring mode Minimal speed 500 RPM Maximal speed 1000 RPM (limited by power supply) Manual interface (Start/Stop switch, Up/Down push button control, LED indication) FreeMASTER software control interface (motor start/stop, speed set-up) FreeMASTER software monitor Block Diagram Board Design Resources
View full article
Overview The Sensorless High-Speed SR Motor Control Reference Design based on the NXP® low-cost MC56F8013 digital signal controller (DSC) deals with a 2-phase switch reluctance (SR) motor sensorless drive for vacuum cleaners and other air movement applications. The application is a speed-open loop SR drive without any position or speed sensor needs Uses a sensorless control method based on current peak detection and a patented start-up algorithm (Patent No. US6448736 B1) The control technique allows the SR motor more than 100 000 RPM The application is primarily for vacuum cleaners, although it can be used for any application with a high-speed drive (50 000 RPM) Features High-speed 2-phase SR motor sensorless control based on a current peak detection Designed for vacuum cleaner applications Capable of running SR motors at more than 100.000 RPM (tested with SR motor designed for 60 000 RPM) Single direction rotation enabled by asymmetric of 2-phase SR motor Speed open loop Start-up from any position using alignment and patented algorithm (Patent No. US6448736 B1) Start-up time and maximum speed depends on SR motor parameters Manual interface and FreeMASTER control page for monitoring, control and tuning Block Diagram Design Resources
View full article
Overview Human Fall Detection using 3-axis Accelerometer provides an implementation of human activity/fall detection mainly targeted for medical and security applications.This reference design is based on the 3-Axis accelerometer MMA7260Q, RF transceiver MC13192 and the Digital Signal Controller56F8013. The idea is to provide information that helps determine if a person has suffered an accident (if the person has fallen and to provide information related to the fall to determine the magnitude and characteristics of the accident. This application could result extremely useful to the police, firemen, and elderly people. Human Fall Detection using 3-axis Accelerometer is a modular architecture. The user is able to use Digital Signal Processing capability, wireless/serial communication interfaces, 3-axis sensing, external memory for data storage, plus the ability to reprogram the board with different applications with a JTAG interface. Archived content is no longer updated and is made available for historical reference only. Features Three-axis low g accelerometer (MMA7260Q). 2.4 GHz RF transceiver data modem for 802.15.4 applications (MC13192). Digital Signal Controller (56F8013). 9V Battery Operation, Serial communication Interface (RS-232),2 LED’s, 1 Buzzer and 2 Push-Buttons. The Hardware for the Parallel Port to JTAG/EOnCE adapter can be found at: AXIOM MAN and the hardware for the Parallel to JTAG/OnCE Interface providing low cost migration path from the DSP56F800DEMO board to your target hardware  at SEG13LLC. Design Resources
View full article
Overview This reference design showcases how the NXP® MC56F84789 digital signal controller (DSC) operates two motors and interleaved PFC in a single MCU. Sensorless algorithms eliminate expensive position sensors The compressor and fan employ 3-phase Permanent Magnet Synchronous Motors (PMSMs), which provide a quieter, more efficient, flexible and reliable operation Implemented with a back EMF observer, based on NXP Embedded Software Motor Control Libraries and specifically tailored for air conditioning fans and compressors The demo also provides the communication to a Kinetis® K70 MCU touch graphic LCD for added HMI experience Features Sensorless control of two PMSMs using Back-EMF observer Interleaved PFC control Power stage with processor daughter card Supply voltage 90 - 240 V AC, 40-70 Hz Compressor control 1200 - 4500 RPM Fan control 500 - 2000 RPM Rotor alignment method used Over-current protection and over-voltage protection Hot and cold side temperature control RS232 communication with remote graphic-touch LCD control Block Diagram Design Resources
View full article
Overview The NXP ®  S12G automotive HVAC platform reference solution uses the scalable S12G 16-bit MCU family with MC33905, MC33932 and MC33937 analog devices to drive stepper, DC and BLDC motors and provide a feature-rich solution for automotive HVAC applications. Consists of a central control board with (HMI, a motor control board, flap and blower motors Enables basic functions of an auto HVAC using temperature, light, humidity and air quality sensing interfaces with configurable automatic climate control software algorithm to efficiently control vehicle climate Reduces overall design effort, shortens time to market and can be tailored for both 12V and 24V systems Features Three types of motor control sensorless BLDC DC stepper motor Automatic climate control Supports multiple temperature zones Ultra low power mode, can be woken up by HMI or LIN CAN bus CAN and LIN communication interfaces 3x3 matrix keypad and two encoder knob inputs 4x37 segment LCD and adjustable backlighting Sensor interfaces for temperature, light, humidity and air quality available Two logic relay interfaces to compressor defrost module Real-time clock and date display, adjustment for calendar Extensible with touch keyboard or touchscreen board Suitable for both 12 volt and 24 volt HVAC systems Block Diagram Design Resources
View full article
Overview This thermostat reference design is an example of how a thermostat can be built taking advantage of the features of the NXP® MC9S08LL MCU, which has a very flexible LCD module that allows driving an 8x24 LCD and power saving modes while keeping track of the time and the LCD information and a 12-bit analog to digital converter. Features Low-power battery (2 AA) operation Small Glass (2-4 uA) Large Glass (7-9 uA) Support for two LCD displays 8x24 mode for greater flexibility 2x26 mode optimized for lowest power Standard HVAC connectivity Temperature sensors Programmable heat/cool temp Block Diagram Board Design Resources
View full article
Overview This reference design deals with the average current mode control of Power Factor Correction (PFC) on the NXP® MC56F8013 digital signal controller (DSC). The application is written for MC56F8013, but can be easy ported into the other members of the MC56F80xx family according to application requirements Both fast current and slow voltage loops are implemented digitally using the DSC and the PFC power switch is controlled directly by the DSC Using direct PFC, we can achieve much better dynamics of the system so the solution is cost-effective The example of such PFC implementation into 3-phase single shunt ACIM vector control is described in this reference design Features Inner current loop Outer voltage loop Direct PFC algorithm Average current control mode 230VAC Input voltage FreeMASTER control interface Part of the system together with HV AC/BLDC Power Stage dedicated for Motor Control Applications Maximal output power 750W Fault protection: Input over-current fault protection Input under-voltage fault protection Input over-voltage fault protection DC-Bus under-voltage fault protection DC-Bus over-voltage fault protection Block Diagram Board Design Resources
View full article
Overview This reference design describes the design of a 3-phase BLDC (Brushless DC) motor drive, which supports the NXP® 56F80X and 56F83XX Digital Signal Controllers (DSCs). The speed-closed loop BLDC drive using a Hall sensor is implemented The system is targeted for applications in both industrial and appliance fields (e.g. washing machines, compressors, air conditioning units, pumps or simple industrial drives required high reliability and efficiency) Features Voltage control of BLDC motor using Hall sensor Targeted for 56F80X, 56F83XX, and 56F81XX Digital Signal Controllers Running on 3-phase Motor Board Control technique incorporates: Voltage BLDC motor control with speed-closed loop Current feedback loop Both directions of rotation Motoring mode Minimal speed 500 RPM Maximal speed 1000 RPM (limited by power supply) Manual interface (Start/Stop switch, Up/Down push button control, LED indication) FreeMASTER software control interface (motor start/stop, speed set-up) FreeMASTER software monitor Block Diagram Board Design Resources
View full article
Overview This NXP® reference design is a speed closed-loop BLDC drive using a sensorless technique that serves as an example of a BLDC motor control design using an NXP K60 MCU. Simple and easy to understand control approach to BLDC, using MQX in a time-critical application. Contains two versions of the application software, one with the MQX RTOS, and the other bare-metal The MQX version contains a web server to demonstrate the benefits of an MQX-based solution Both use the same source code for motor control Features BLDC motor control using the BEMF integration method for position determination Targeted for the TWR-K60N512 controller board Speed closed-loop with speed measurement Adjustable speed ramp Motor mode in both directions of rotation Minimum speed of 400 rpm Maximum speed of 4000 rpm Tested up to 30 rpm with a one-pole pair motor Overvoltage, Undervoltage and overcurrent fault protection FreeMASTER control interface Control via a web server Block Diagram Board Design Resources
View full article
Overview This full digital power AC to DC Switched-Mode Power Supply (SMPS) system includes both digital power control and digital power management. The control feedback or feed-forward loop that regulates the output of the power system is directly controlled by a 56800/E DSC The DSC provides the digital power management function for configuration, tracking, monitoring, protection, guiding supply sequence, and communication capabilities This reference design is a fully digitally controlled high-frequency Switched-Mode Power Supply based on an NXP® 56F8323 device The primary side is the AC-DC converter with power factor correction (PFC) and on the secondary side is a full bridge DC-DC converter Features General: 500-Watt fully digital switched-mode power supply controlled by A 56F8323 with power factor correction A 56F8323 for secondary with phase shifting technique General Benefits: Power applications become more flexible and universal High input power factor lowers power pollution to the power grid Intelligent mode management and fault supervision Operating status is monitored and controlled in real time Lower system and maintenance cost Performance: Input voltage: 85 ~ 265VAC Input frequency: 45 ~ 65HZ Rating output voltage:48VDC Rating output power: 500W Switch frequency: > 100K Power factor > 95% Efficiency > 90% Communications: RS232 port for communication with optoisolation Visual Interface: Multi-segment LED indicators (input voltage, input current, output voltage, and output current) Block Diagram Board Design Resources
View full article
Overview This reference design describes the design of a 3-phase sensorless brushless DC (BLDC) motor control with back-EMF (electromotive force) zero-crossing sensing using an AD converter for the NXP® 56F80X and 56F83XX Digital Signal Controller (DSCs) dedicated for motor control applications. It can also be adapted to Our 56F81XX Digital Signal Controllers The system is designed as a motor drive for three-phase BLDC motors and is targeted for applications in both industrial and appliance fields (e.g. compressors, air conditioning units, pumps or simple industrial drives) The reference design incorporates both hardware and software parts of the system including hardware schematic Features BLDC sensorless motor 115 or 230V AC Supply Targeted for 56F80x, 56F83XX, and 56F81XX Digital Signal Controllers Running on 3-phase BLDC Motor EVM at 12V, 3-Phase BLDC Low-Voltage Power Stage Speed control loop Motor mode in both direction of rotation Manual interface (RUN/STOP switch, UP/DOWN push buttons control, LED indication) Overvoltage, undervoltage, overcurrent and overheating fault protection PC remote control interface (speed set-up) FreeMASTER software remote monitor Block Diagram Design Resources
View full article
Overview This reference design demonstrates the design of a 3-phase AC induction motor drive with volt per hertz control and supports the NXP® 56F80X and 56F83XX Digital Signal Controllers (DSCs) dedicated for motor control applications. Designed as a low-cost high volume motor drive system for medium power three-phase AC induction motors and is targeted for applications in both industrial and appliance fields The drive runs in a speed closed loop using a speed sensor According to the state of the control signals (Start/Stop switch, speed up/down buttons or PCMaster set speed) the speed command is calculated using an acceleration/deceleration ramp Features Speed Control of 3-phase AC Induction motor with quadrature volt per hertz control Targeted for 56F80X, 56F83XX, and 56F81XX Digital Signal Controllers Running on a High Voltage Medium Power Board for Three Phase Motors Volt-per-Hertz control with a speed closed loop Option to run the motor in open loop Quadrature encoder for motor speed reference Manual interface PC master software control interface and monitor Fault protection Block Diagram Board Design Resources
View full article
Overview This reference design describes the design of a 3-phase BLDC (Brushless DC) motor drive, which supports the NXP® 56F801X Digital Signal Controllers (DSCs). The speed-closed loop and torque control BLDC drive using a Hall sensor is implemented The system is targeted for applications in both industrial and appliance fields (e.g. washing machines, compressors, air conditioning units, pumps or simple industrial drives required high reliability and efficiency) Features Voltage control of BLDC motor using Hall sensor Targeted for 56F801X Digital Signal Controllers Running on 3-phase Motor Board Control technique incorporates: Voltage BLDC motor control with speed-closed loop Current feedback loop Manual interface DCBus undervoltage fault protection Block Diagram Board Design Resources
View full article