NXP Designs ナレッジベース

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

NXP Designs Knowledge Base

ディスカッション

ソート順:
Overview The NXP® Solar Panel Inverter reference design demonstrates the ability of the 16-bit digital signal controller MC56F8023 to control whole inverter functionality. The inverter converts the input voltage from the solar panel to isolated one-phase AC output voltage The application comprises all needed circuitry for power transfer, control and measurement The main power board provides standard 64-pin PCI Express® connector as the interface for the daughter card control board, providing the ability to control this inverter by other digital signal controllers Features DC input voltage from the solar panel in the nominal level of 36V Possible to use one 36V or two 18V solar panels in series connection Maximum power point tracking feature in the control software implemented Battery charger for the 3 x 12V lead-acid accumulators in series included Galvanic isolated output voltage 230V 50Hz up to 400W output power True sine shape output voltage RS-485 isolated interface for the external communication Internal low-power DC power supply maintains proper functionality without battery connection Overvoltage, overcurrent and overtemperature protection implemented Embedded software example for off-grid available Block Diagram Design Resources
記事全体を表示
Overview The S12ZVH-REF-V1 is a reference design engineered for being a design base for starting an instrument cluster project, also it helps to reducing Automotive Cluster development time and maximizing engineering resources. Based on the 16-bit S12 MagniV® S12ZVH mixed-signal microcontrollers, the S12ZVH-REF-V1 provides a production-looking design with impressive integration. The S12ZVH-REF-V1 reference design is not only provided as a hardware reference but also as a software and mechanical design. Block Diagram   Products Product Features S12ZVH MagniV Mixed-signal MCU  16-bit S12 MagniV® S12ZVH mixed-signal microcontrollers for instrument cluster.   Features Interfaces   LIN physical transceiver and connector CAN connector interfaced with MCUs CAN physical transceiver Components 1 x custom 160 segment LCD 1 x low-power piezoelectric speaker 4 x stepper motors 49 x LEDs used as telltales and backlights 6 x user buttons 2 x potentiometers S12ZVH The S12ZVH-REF-V1 does not include on-board programming/debugging circuitry; it requires an external programmer compatible with the BDM protocol. Files S12ZVH-REF-V1 Mechanical and Assembly files  S12ZVH-REF-V1 Reference Design Software (CW10.5) 
記事全体を表示
Overview   The RDS12VR is a solution engineered for window lift, power windows, and sun roof systems. Developed in partnership with Tongji University and based on the 16-bit S12 MagniV® S12VR mixed-signal microcontrollers, the RDS12VR offers control by multiple LIN salve nodes or LIN master node, through the easy-to-control Graphics User Interface (GUI). The RDS12VR reduces unnecessary external components, lowers the total bill of material (BoM), improves system quality, and saves space in automotive applications through a smaller PCB. The RDS12VR solution includes hardware for real door/window in-vehicle applications, as well as software including anti-pinch algorithms and low-level S12VR drivers for reducing time to market. Block Diagram   Products Product Features S12VR  16-bit S12 MagniV® S12VR mixed-signal microcontrollers, efficient and scalable relay driven DC motor control solution   Features Features   Window manual/automatic up/down, automatic up/down with stop function Anti-pinch in both manual/automatic mode, anti-pinch region and force can be adjusted Stuck detection out of anti-pinch region, motor overload protection Soft stop when window is close to the top/bottom Self learning, calibration by updating the window/motor parameters stored in EEPROM Use hall sensor as well as current sense to judge anti-pinch in algorithm Power   Fault diagnosis, indicating low voltage, over voltage/current/temperature etc. Low power mode (leveraging S12VR low power mode) to reduce power consumption GUI Easy-to-control GUI, set the parameters and get the status Window lift can be controlled either by multiple LIN salve nodes or LIN master node, through GUI Functional Safety Able to comply with relevant content in US Federal Motor Vehicle Safety FMVSS No. 118 standard Document DRM160, Window Lift and Relay Based DC Motor Control Reference Design Using the S12VR Microcontrollers     
記事全体を表示
Overview This reference design demonstrates speed control of the 3-Phase Switched Reluctance (SR) motor with Hall position sensor using the NXP® 56F80x or 56F83XX Digital Signal Controllers (DSCs). It helps start development of the SR drive dedicated to the targeted application The DSC runs main control algorithm; when the start command is accepted, the state of the Hall sensors position signals is sensed and the individual motor phases are powered in order to start the motor in the requested direction of rotation without rotor alignment According to the determined switching pattern and the calculated duty cycle, the on-chip PWM module generates the PWM signals for the SR motor power stage Features Speed Control of an SR motor with position Hall sensors Targeted 56F80X, 56F83XX, and 56F81XX Digital Signal Controllers Running on a 3-Phase SR HV Motor Control Development Platform (115/230VAC) Running on a 3-phase SR LV Motor Control Development Platform (12V DC) The control technique: voltage control with a speed closed loop Hall sensors position reference for commutation Start from any motor position without rotor alignment Manual interface FreeMASTER software control interface and monitor Fault protection Block Diagram Board Design Resources
記事全体を表示
Overview The NXP® home health hub (HHH) reference platform is designed to speed and ease development for telehealth applications using seamless connectivity and data aggregation for remote access and improved healthcare management. Multiple connectivity options to obtain data from commercially available wired and wireless healthcare devices such as blood pressure monitors, pulse oximeters, weight scales, blood glucose monitors, etc. Provides connectivity to take action with collected data by sharing it through a remote device with a display such as a tablet, PC or smartphone or through the Cloud Delivers a real-time connection to caregivers for comfort and safety to the person being monitored Features Automatic reporting of vital sign measurements Cloud connectivity and secure integration into medical vaults Pervasive mobile device access Daily activity alarms, security alarms and passive monitoring of safety sensors for early detection of injury or security risks Anytime consultation with monitoring center, medical staff, family and friends Anytime and intuitive access to trusted health resources Compelling user interface for a remote display Block Diagram Board Videos Design Resources
記事全体を表示
Overview QorIQ® P2020 UTM/Security Appliance Solution enables OEMs to develop a range of security applications including UTM appliances, IPS/IDS appliances, content security appliances, secure routers, VPN routers, secured switches and business gateways. The QorIQ P2020-based UTM appliance enables ODMs and customers to develop a production-ready, BOM optimized, certified, off-the-shelf UTM appliance solution. It allows our customers to leverage high-performance multicore QorIQ silicon and VortiQa® software optimized for multicore for UTM security appliances. Features NXP’s high-performance QorIQ ®  P2020 processor in 45 nm SOI technology VortiQa ®  software for enterprise equipment optimized for multicore processors Integrated security engine: protocol support includes SNOW, ARC4, 3DES, AES, RSA/ECC, RNG, single-pass SSL/TLS, Kasumi Cost-optimized bill of materials by hardware ODMs FCC, UL and CE certified—ready to ship Complete appliance portfolio from low to high end Block Diagram Board Design Resources
記事全体を表示
Overview The NXP® 800 MHz MPC8377E PowerQUICC® II Pro processor built on Power Architecture® technology features integrated hardware acceleration for wireless security, MiniPCI or MiniPCI Express®-based interfaces for 802.11N radio modules, dual-band concurrent operation, Gigabit Ethernet (GbE) LAN and WAN interfaces, USB 2.0 host/device interface and IEEE® 802.3af PoE-compliant solution for dual-concurrent MIMO operation. Features 800 MHz MPC8377E PowerQUICC ®  II Pro processor built on Power Architecture technology Integrated hardware acceleration for wireless security MiniPCI or MiniPCI Express based interfaces for 802.11N radio modules Dual-band concurrent operation with 3 x 3 MIMO (GbE) LAN and WAN interfaces USB 2.0 host/device interface IEEE ®  802.3af PoE-compliant solution for dual-concurrent MIMO operation Block Diagram Board Design Resources
記事全体を表示
Overview OM27462NBR is a battery operated easy-to-use smart lock demonstrator kit for hospitality door access applications. The door operates by exchanging and verifying door access tokens via NFC and Bluetooth Low Energy. The design incorporates NXP ®  PN7462 first all-in-one full NFC Controller and the ultra-low-power Bluetooth Low Energy system-on-chip QN9021. The hardware is designed for low-power operation using a CR2 battery and features intelligent sleep and wake-up logic via Bluetooth Low Energy and a touch sensor using NXP capacitive touch sensor IC PCF8883. The Bluetooth ®  word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by NXP ®  Semiconductors is under license. OM27462NBR Kit Content OM27462NBR Full Kit Content OM27462NBR Module   Specifications Power Management Battery operated Wireless NFC and Bluetooth Low Energy design and operation Token concept Access token exchange and validation ECDSA token signature verification Smart card, Bluetooth Low Energy, and NFC via HCE token exchange Support MIFARE® DESFire® support Android™ app available in Google Play™ Store Ready to use Documents and Software User manual and Quick Start Guide are attached to this document
記事全体を表示
Overview This reference design deals with the average current mode control of Power Factor Correction (PFC) on the NXP® MC56F8013 digital signal controller (DSC). The application is written for MC56F8013, but can be easy ported into the other members of the MC56F80xx family according to application requirements Both fast current and slow voltage loops are implemented digitally using the DSC and the PFC power switch is controlled directly by the DSC Using direct PFC, we can achieve much better dynamics of the system so the solution is cost-effective The example of such PFC implementation into 3-phase single shunt ACIM vector control is described in this reference design Features Inner current loop Outer voltage loop Direct PFC algorithm Average current control mode 230VAC Input voltage FreeMASTER control interface Part of the system together with HV AC/BLDC Power Stage dedicated for Motor Control Applications Maximal output power 750W Fault protection: Input over-current fault protection Input under-voltage fault protection Input over-voltage fault protection DC-Bus under-voltage fault protection DC-Bus over-voltage fault protection Block Diagram Board Design Resources
記事全体を表示
  Overview The Water Level Reference design continuously monitors water level and water flow using the temperature compensated MPXM2010GS pressure sensor in the low cost MPAK package, a dual op–amp, and the MC68HC908QT4, 8–pin microcontroller. This system uses very few components, reducing the overall system cost. This allows for a solution to compete with a mechanical switch for water level detection but also offer additional applications such as monitoring water flow for leak detection, and the other applications for smart washing machines. Archived content is no longer updated and is made available for historical reference only.   Features Demonstrate Water Level Monitor plus additional features such as water flow monitoring and leak Pressure Sensor - MPXM2010 MPAK Package Sensitivity 2.5 mV / kPa Pressure Rating 10kPa (Max) Microprocessor MC68HC908QT4 40K Bytes of in-application reprogrammable Flash and 128 Bytes of RAM High performance, easy to use, HC08 CPU 4 Channel 8-bit analog to digital converter 8-pin DIP or SOIC packages Design Considerations Media Isolate pressure sensor from water by using a head tube Accuracy To prevent overflow and control consumption of water Auto-zeroing concept can eliminate offset errors Tank/tub diameter is irrelevant, the important part is to have an accuracte look up table to correlate water height versus pressure     Printed Circuit Boards and Schematics RD1950MPXM2010SCHEM RD1950MPXM2010SCHEMATIC RD1950MPXM2010DGRBR
記事全体を表示
Overview This reference design is for a sensorless permanent magnet (PM) motor drive single-chip solution based on the NXP® DSC56F80XX digital signal controller (DSC). An electronically controlled three phase PM motor provides a unique feature set with the higher efficiency and power density This application presents a motor control technique of PM motor without a need to use a rotor position transducer This technique particularly targets horizontal axis (H-axis) washing machine with belt drive in fractional horsepower range A designer reference manual provides a detailed description of the application, including the design of the hardware and the software Features Designed to fit into consumer and industrial applications MC56F80XX digital signal controller 3-phase AC/BLDC High Voltage Power Stage Board 1-phase line input 110/230VAC 50/60Hz Apliance PM motor Initial rotor position detection Full torque at motor start-up Field weakening Application based on C-callable library functions (GFLIB, GDFLIB, MCLIB, ACLIB) Current control loop Speed control loop with Field weakening Flash: ~ 6KB, RAM ~ 1.5KB FreeMASTER based control pages Block Diagram Board Design Resources
記事全体を表示
Overview This reference design enables development of a vector control algorithm for a three-phase AC induction motor implemented on NXP® digital signal controllers MC56F8013/MC56F8023. Targeted mainly at consumer and industrial applications Cost-effective and highly reliable, the algorithm implements a single shunt current sensing, eliminating the need for more than one sensor High range of motor operating speeds up to 18000RPM An adaptive closed loop rotor flux estimator enhances control performance and increases the overall robustness of the system A reference manual provides a detailed description of the application, including a design of hardware and software Features 3-phase AC induction motor drive Designed to fit into consumer and industrial applications Uses 56F8013 or 56F8023 32 MIPS Digital Signal Controller Running on a 3-phase High Voltage Power Stage Control technique incorporating: Vector control of three-phase AC induction motor with position encoder Closed-loop speed control Both directions of rotation Both motor and generator modes Reconstruction of three-phase motor currents from DC-Bus shunt resistor Closed loop current control Flux and torque independent control Adaptive rotor flux space-vector estimator Field-weakening for high speeds High-speed range, max speed – 18000 RPM (2-pole motor) FreeMASTER software control interface (motor start/stop, speed setup) FreeMASTER software monitor FreeMASTER software graphical control page (required speed, actual motor speed, start/stop status, DC-Bus voltage level, motor current, system status) FreeMASTER software speed scope (observes actual and desired speeds, DC-Bus voltage and motor current) FreeMASTER software high-speed recorder (reconstructed motor currents, vector control algorithm quantities) DC-Bus overvoltage and undervoltage, overcurrent protection Block Diagram Board Design Resources
記事全体を表示
Overview This reference design describes a 3-phase sensorless brushless DC (BLDC) motor control with back-EMF (electromotive force) zero-crossing detection, supporting the NXP® 56F80X and 56F83XX Digital Signal Controllers (DSCs) for motor control applications. It can also be applied to Our 56F81XX DSCs The system is designed as a motor drive system for three-phase BLDC motors and is targeted for applications in both industrial and appliance fields (e.g. compressors, air conditioning units, pumps or simple industrial drives) The reference design incorporates both hardware and software parts of the system including hardware schematics Features BLDC sensorless motor 115 or 230V AC Supply Targeted for 56F80X, 56F83XX, and 56F81XX Digital Signal Controllers Running on 3-phase BLDC Motor EVM at 12V, 3-Phase BLDC Low-Voltage Power Stage Speed control loop Motor mode in both direction of rotation Manual interface (RUN/STOP switch, UP/DOWN push buttons control, LED indication) Overvoltage, undervoltage, overcurrent and overheating fault protection Hardware autodetection FreeMASTER control interface (speed set-up) FreeMASTER software remote monitor Block Diagram Board Design Resources
記事全体を表示
Overview NXP brings a broad portfolio of proven PowerQUICC ®  network communications products, firmware and reference designs that support multiple network interfaces. These reference designs have the flexibility to integrate new features and are adaptable across product lines to protect your investment and maintain an edge over the competition. The NXP ®  MPC8323E-RDB is a turnkey hardware/software reference platform designed to rapidly provide the core elements of tomorrow's multiservice gateway products. Built on Power Architecture technology, the MPC8323E-RDB leverages the processing power of the MPC8323E PowerQUICC II Pro integrated communications processor. Features MPC8323E Integrated Multiservice Gateway features: Flexible WAN interfaces RJ45 100BT Ethernet and connectors for ADSL2+/VDSL2, WiMAX IPv4 Router with VPN capability RJ45 100BT Ethernet and connectors for ADSL2+/VDSL2, WiMAX Up to 640 DMIPS e300 CPU QUICC Engine ®  technology acceleration, 200 MHz Bridging/Routing with NAP/NAPT Firewall support (ACL) QoS for IPTV, VoIP and high-speed data VPN termination and pass-through Board Interfaces: Flexible network interfaces 10/100 Ethernet ADSL2+/VDSL2 WiMAX FXS ports (2) for analog phones 4-port 10/100 Ethernet LAN Two USB 2.0 host (480 Mbps) type A MiniPCI slots (2) Development Environment Our well established vertical ecosystem provides customers with the exact development flow they desire. The MPC8323E-RDB is kitted with: Encased CPE form factor board Linux ®  2.6 (LTIB) Design Resources
記事全体を表示
Overview The QorIQ® communications processors include single-, dual-, quad- and multicore processor architectures with integrated support for communications protocols such as EtherCAT. The new programmable logic controller (PLC) reference platform is equipped to ease development of industrial control systems PLC reference platform implements the KPA (koenig-pa GmbH) EtherCAT Master protocol with ISaGRAF Firmware and QNX Neutrino® RTOS on the high-performance QorIQ P1025 processor Supported by powerful development tools from all four companies, including the KPA EtherCAT Studio, ISaGRAF 6 Workbench, QNX Momentics® Tool Suite, and CodeWarrior® Development Suit Features Integrated ISaGRAF Firmware, KPA EtherCAT Master stack and QNX Neutrino RTOS on the QorIQ ®  P1 Tower ®  module EtherCAT master protocol and customer control application run simultaneously on a single QorIQ P1025 processor to deliver one millisecond EtherCAT master cycle time QorIQ P1 processors can also provide simultaneous support for complex applications, as well as additional industrial protocols like PROFINET, PROFIBUS and EtherNet/IP ™ Powerful development tools include the KPA EtherCAT Studio, ISaGRAF 6 Workbench, QNX Momentics Tool Suite, and CodeWarrior ®  Development Suite ISaGRAF 6 Workbench and Firmware kernel can fully support all IEC 61499 and IEC 61131-3 standard PLC programming languages Software and hardware developed on TWR-P1025 can be easily deployed on a range of QorIQ P1 processors, including the P1012, P1021, P1016 and P1025 processors QorIQ P1 processor family offers pin-compatible single-core variants for cost reduction, and dual-core variants which scale up to 3,700 million instructions per second (MIPS) for more complex control algorithms. Customers may distribute processing functions across two cores, or isolate real-time control functions on one core while running maintenance and communications functions on the other core. Commercial EtherCAT Master stack available from KPA Commercial Neutrino RTOS available from QNX Block Diagram Platform Requirements One TWR-P1025 QorIQ Tower Module Target slaves required to run the demo: Beckhoff EK1100 EtherCAT coupler Beckhoff EL1004 4-channel digital input terminal 24 V DC, 3 ms Beckhoff EL2004 4-channel digital output terminal 24 V DC, 0.5 A Beckhoff EL9011 end cap An image of the complete PLC Reference Platform run-time software. Download the PLC Reference Platform evaluation software. ISaGRAF 6 Workbench for offline tools Utility Software (Windows) TeraTerm for RS232 communications USB to UART driver for console port TFTP Server to load images to TWR-P1025 Design Resources
記事全体を表示
  Overview The Point of Sale reference design demonstrates how the control, security, and connectivity features found on the NXP ®  MCF5329 ColdFire ®  MPU and MCS908QG8 MCU work together to create a secure Industrial Point of Sale System. Complete with an Open Source Embedded Linux® Software Solution, the Point of Sale Reference Design serves as a reference for any industrial design that requires flexible connectivity options, secure communication, or a human interface at a low cost and with a fast development cycle. Archived content is no longer updated and is made available for historical reference only.   Features The Point of Sale Reference Design was designed with the following considerations: Low system cost Easy and intuitive graphical user interface Multiple connectivity solutions to accommodate various POS system connectivity requirements Secure networking communications, transactions, and memory accesses Fast development cycle The Industrial Point of Sale Reference Design also features an Open Source Software Solution: µCLinux Operating System running on the MCF5329 Microprocessor NanoX Graphical User Interface (GUI) Configuration Tool running in the µCLinux environment Communication protocol for secure ethernet transactions MySQL Server Database used to store/access sales transactions       Code Generation Tools Model-Based Design Toolbox Printed Circuit Boards and Schematics Point of Sale Reference Design Schematics Point of Sale Gerber Files (Reference Design)
記事全体を表示
Overview This reference design is based on 32-bit DSC MC56F84789, to demo a simple servo motor control solution. This reference design jump-starts your ability to leverage the NXP® DSCs' advanced feature sets via complete software, tools and hardware platform. Can be expended to dual servo motors control on single chip. Speed regulation: < 0.05% (from 0% to 100% load under nominal speed) with encoder and 32-bit speed control algorithm. Speed ratio: 1 : 2000 with position and speed closed loop control – intelligent PID, the minimal operational speed is up to 0.5RPM. Only low cost Quadrature Encoder (1000 lines) is required, HALL sensors removed. System dynamic response: 90Hz for speed closed loop, and 30Hz for position closed loop – PID regulator. Speed acceleration/deceleration: from 1 to 10,000ms (configurable). Brake function: regenerative braking, stop in one revolution. Bidirectional operation: forward and reverse with speed and torque limitation. Faults protection such as abnormal speed, over-/under-voltage, over-current etc. FreeMASTER software control interface and monitor. Features MC56F84789 Simple Servo Motor Control MAPS-56F84000 EVK Board MAPS-MC-LV3PH Motor Control Power Stage Block Diagram Board Design Resources
記事全体を表示
Overview This reference design describes the design of a 3-phase BLDC (Brushless DC) motor drive, which supports the NXP® 56F80X and 56F83XX Digital Signal Controllers (DSCs). The speed-closed loop BLDC drive using a Hall sensor is implemented The system is targeted for applications in both industrial and appliance fields (e.g. washing machines, compressors, air conditioning units, pumps or simple industrial drives required high reliability and efficiency) Features Voltage control of BLDC motor using Hall sensor Targeted for 56F80X, 56F83XX, and 56F81XX Digital Signal Controllers Running on 3-phase Motor Board Control technique incorporates: Voltage BLDC motor control with speed-closed loop Current feedback loop Both directions of rotation Motoring mode Minimal speed 500 RPM Maximal speed 1000 RPM (limited by power supply) Manual interface (Start/Stop switch, Up/Down push button control, LED indication) FreeMASTER software control interface (motor start/stop, speed set-up) FreeMASTER software monitor Block Diagram Board Design Resources
記事全体を表示
Overview The NXP® Home Energy Manager (HEM) reference platform features an i.MX283 application processor, MC13224V ZigBee® module, 9S08QE32 MCU and MC34726 DC/DC buck. The reference platform is aimed at jumpstarting customer developments around the HAN (Home Area Network). Comprises a control board based on the low-power, yet powerful i.MX283 running connectivity interfaces to the: Smart meter Home automation system Broadband IP network User interface Micro-grid generation unit In order to accommodate a fast-paced changing connectivity landscape, the control board features extension connectors ready for: Powerline modems GPRS/3G data modem U-SNAP connectivity peripherals Mass storage cards Features Low-power Based on the latest low-power NXP ®  Arm9™ i.MX283  processor including integrated power management and supporting advanced voltage and frequency scaling techniques for optimized power consumption Running Our low-power ZigBee radio 1.5W max at full operating speed Low-cost Unique integration on the i.MX283 eliminates external components, enables 4-layer PCB Complete solution available Source code Hardware schematics Gerbers Bill of materials Complimentary software available through 3rd party partners Linux based frameworks Windows Embedded Compact 7 based framework Java-based framework Remote In-Home Display software Block Diagram Design Resources
記事全体を表示
Overview This NXP® reference design is a speed closed-loop BLDC drive using a sensorless technique that serves as an example of a BLDC motor control design using an NXP K60 MCU. Simple and easy to understand control approach to BLDC, using MQX in a time-critical application. Contains two versions of the application software, one with the MQX RTOS, and the other bare-metal The MQX version contains a web server to demonstrate the benefits of an MQX-based solution Both use the same source code for motor control Features BLDC motor control using the BEMF integration method for position determination Targeted for the TWR-K60N512 controller board Speed closed-loop with speed measurement Adjustable speed ramp Motor mode in both directions of rotation Minimum speed of 400 rpm Maximum speed of 4000 rpm Tested up to 30 rpm with a one-pole pair motor Overvoltage, Undervoltage and overcurrent fault protection FreeMASTER control interface Control via a web server Block Diagram Board Design Resources
記事全体を表示