MPC5xxx Knowledge Base

cancel
Showing results for 
Search instead for 
Did you mean: 

MPC5xxx Knowledge Base

Labels
  • General 180
  • test 6

Discussions

******************************************************************************** * Detailed Description: * * Configures the FlexCAN to transmit and receive a CAN message. * ECC reporting in the FlexCAN module is enabled. * * In this config, CAN_A transmits a message. CAN_B receives the message. * CAN_A MB8 is configured to send data. CAN_A sends message each 1sec. * This interval is generated by PIT. * CAN_B MB9 is configured to receive a message, SW polling is used. * * Install jumpers J37 1-2 and J38 1-2 * * Connect CAN0-CANH on P15-1 to CAN1-CANH on P14-1 * Connect CAN0-CANL on P15-2 to CAN1-CANL on P14-2 * * ------------------------------------------------------------------------------ * Test HW:         MPC5777C-512DS Rev.A + MPC57xx MOTHER BOARD Rev.C * MCU:             PPC5777CMM03 2N45H CTZZS1521A * Fsys:            PLL1 = core_clk = 264MHz, PLL0 = 192MHz * Debugger:        Lauterbach Trace32 * Target:          internal_FLASH * Terminal:        19200-8-no parity-1 stop bit-no flow control on eSCI_A *           use USB connector (J21) on minimodule * * EVB connection:  ETPUA30 (PortP P23-15) --> USER_LED_1 (P7-1) *                  ETPUA31 (PortP P23-14) --> USER_LED_2 (P7-2) * * ********************************************************************************
View full article
******************************************************************************** * Detailed Description: * * This example shows possible implementation of frequency and duty cycle * measurement with the help of eMIOS module. * Two eMIOS channels are used and set to IPWM and IPM modes. The first channel * measures the positive pulse width and the second channel measures the period. * * EVB connection: * PJ7.5 to PJ7.6 ... connect external pulse signal to this * * See result on PC terminal (9600, 8N1) * ------------------------------------------------------------------------------ * Test HW:  XPC56xxMB2 + XPC564xB/C, SPC5646C 0N32E silicon * Target :  internal_FLASH, RAM * Fsys:     120 MHz PLL0 * Debugger: Lauterbach Trace32. script for internal_FALSH run_from_flash.cmm *                               script for RAM: run_from_ram_vle.cmm * ********************************************************************************     BR, Petr
View full article
******************************************************************************** * Detailed Description: * Example dimmes LED1 according on board potentiometr. LED2 and LED3 demostrates * ADC watchdog functionality. LED2 is turned on when signal level is below LOW * threshold, LED3 is turned on when signal is above HIGH threshold. * Example also displays coverted results to the terminal window. * ------------------------------------------------------------------------------ * Test HW:         XPC560B 100LQFP, XPC56XX EVB MOTHEBOARD Rev.C * MCU:             PPC5604BE MLL 1M27V * Terminal:        19200-8-no parity-1 stop bit-no flow control on LINFLEX_0 * Fsys:            64/48 MHz * Debugger:        Lauterbach Trace32 *                  PeMicro USB-ML-PPCNEXUS * Target:          RAM, internal_FLASH * EVB connection:  - initialize PB[8] as ANS0: connect potentiometer to PB[8]                      pin, remove J30 jumper and connect J30.2 with P2.9                    - header J8 (LED_EN) fully fitted ********************************************************************************
View full article
******************************************************************************** * Detailed Description: * * Configures the MCANs to transmit and receive a CAN message. * * In this config, MCAN_1 transmits a message. MCAN_2 receives the message. * * MCAN_1 sends message each 1sec. This interval is generated by PIT. * Single TX buffer is used to send n bytes. The message ID is changed for each * transmission. Two standard and 2 extended IDs are sent. * * MCAN_2 is configured to receive a message, SW polling is used. * There are 2 standard and 2 extended ID filter tables defined. Classic filter * configuration is set, means filter ID & mask. * Messages with matched standard ID are received into RXFIFO_0, messages with matched * extended ID then stored in RXFIFO_1. *   * EVB connection: * * J37 and J38 to position 1-2 to connect MCAN1 TX/RX to transceiver * * CAN0-CANH on P15-1 to CAN1-CANH on P14-1 * CAN0-CANL on P15-2 to CAN1-CANL on P14-2 * * ------------------------------------------------------------------------------ * Test HW:  MPC5777M, MPC57xx Motherboard + MPC5777M_512DS minimodule * Maskset:  0N78H * Target :  internal_FLASH * Fsys:     600 MHz PLL1 with 40 MHz crystal reference, *        core2 at 200MHz generated from PPL1 * Terminal: None ******************************************************************************** Revision History: 1.0     Jan-5-2017     PetrS    Initial Version of MCAN example *******************************************************************************/ Original Attachment has been moved to: Example-MPC5777M-MCAN-simpleTXRX-GHS614.zip
View full article
******************************************************************************** * Detailed Description: * This example demonstrates how to configure CGM )clock generation module) * and supply by clock all main peripherals. * Example demonstrate FCCU fake fault injection for fault 15. * ------------------------------------------------------------------------------ * Test HW:  MPC57xx EVB + MPC5777M minimodule * Maskset:  0N50N * Target :  internal_FLASH * Fsys:     200 MHz PLL * ******************************************************************************** Revision History: 1.0     Nov-04-2014     b21190(Vlna Peter)  Initial Version 1.1     Feb-04-2016     b21190(Vlna Peter)  Fixed Clock configuration 1.2    Feb-06-2017    b21190(Vlna Peter)  FCCU fake fault injection *******************************************************************************/
View full article
******************************************************************************** * Detailed Description: * Purpose of the example is to show how to generate Multi-bit or Single-bit ECC * error in internal FLASH (user must choose it in the option at the end of main * function). * ECC error is injected by reading of pre-defined patterns in UTEST area at * addresses 0x00400040 and 0x00400060. * When corrupted data is accessed the IVOR1 exception handler is called in case * of multi-bit ECC error (IVOR1 exception occurs) and FCCU_Alarm_Interrupt * handler is called in case of single-bit ECC error (FCCU interrupt occurs). * Both function calls MEMU handler. * The example displays notices in the terminal window (connector J19 on * MPC57xx_Motherboard)(19200-8-no parity-1 stop bit-no flow control on eSCI_A). * No other external connection is required. * ------------------------------------------------------------------------------ * Test HW:         MPC57xx_Motherboard + MPC5744P-144DC * MCU:             PPC5744PFMLQ8,0N15P,QQAA1515N, Rev2.1B * Fsys:            200 MHz PLL with 40 MHz crystal reference * Debugger:        Lauterbach Trace32 * Target:          internal_FLASH, RAM * Terminal:        19200-8-no parity-1 stop bit-no flow control * EVB connection:  default ********************************************************************************
View full article
******************************************************************************** * Detailed Description: * Application performs basic initialization, setup PLL to maximum allowed freq., * setup clock for peripherals, * * Initializes the MCU including the FlexCAN peripherals. * Configures the FlexCAN to transmit and receive a CAN message. * * Individual RX masking was added to the last version of this example. * Three messages with different ID's are sent via FlexCAN_0 MB0 MB1 and MB2. * These messages are received by FlexCAN_1 MB0, MB1 and MB2 according to masking * register settings. * * For MB0 data receive is used interrupt. * * * ------------------------------------------------------------------------------ * Test HW:         S32R274RRUEVB, MPC57xx Motherboard * MCU:             S32R274KAMMM 1N58R * Fsys:            PLL0 240MHz *                    Z4 Core 120MHz * Debugger:        Lauterbach Trace32 *                  PeMicro USB-ML-PPCNEXUS * Target:          internal_FLASH (debug mode, debug_ram and release mode) * EVB connection: * * It is necessary to remove both J35 jumpers. * * * Connect J35.2 to PA14 (CAN_1 TX) * Connect J35.4 to PA15 (CAN_1 RX) * * CAN0 is connected internally to J37 (this pin is placed on daughter card) * * Connect CAN P5.2 to J37.2 (CAN_1 and CAN_0 CANL) * Connect CAN P5.1 to J37.1 (CAN_1 and CAN_0 CANH) * * This connection has to be observed, otherwise correct communication between * CAN modules is not guaranteed. * * ********************************************************************************
View full article
******************************************************************************** * Detailed Description: * * Application initializes SPI0 module as a master and SPI2 module as a slave. * Data are sent from master to slave and from slave to master. Simple * polling method is used to determine, when data were sent/received. * Received data are saved to global variables. * * ------------------------------------------------------------------------------ * Test HW:         MPC5777M-512DS, MPC57xx Motherboard * MCU:             PPC5777MQMVA8 0N78H * Fsys:            PLL0 300MHz *                    PLL1 300MHz * Debugger:        Lauterbach Trace32 *                  PeMicro USB-ML-PPCNEXUS * Target:          internal_FLASH (debug mode, debug_ram mode, release mode) * EVB connection:  P18.12 to P14.13 (CS_0) *                    P11.4 to P8.13 (SCK) *                    P11.1 to P11.5 (SOUT - SIN) *                    P11.8 to P12.9 (SIN - SOUT) * * ********************************************************************************
View full article
This document shows, how to use CodeWarrior 10.6 to program QSPI flash for Power Architecture microcontrollers.   1) Create new project for appropriate microcontroller. 2) Open Debug configuration and duplicate one of the target.   3) Rename duplicated target (optional) 4) Choose the duplicated (renamed) target and click Edit button in Target settings tab.   5) In new screen, click Advanced Programming Options.   6) Check Use Alternative Algorithm and choose the algorithm you want to use. Algorithms are place in CodeWarrior installation folder. Full path is CodeWarrior_installation_folder\MCU\bin\plugins\support\EPPC\gdi\P&E\   7) On the screen Debug configuration, choose the file you want to program to QSPI flash.   Click Apply and Debug.
View full article
******************************************************************************** * Detailed Description: * * Configures the FlexCANs to transmit and receive a CAN FD message with or without * bit rate switching for data phase. * Baudrate during arbitration phase is set to 500kbps, during data phase 2Mpbs. * * In this config, CAN_0 transmits a message. CAN_1 receives the message. * * EVB connection: * * CAN0-CANH on P15-1 to CAN1-CANH on P14-1 * CAN0-CANL on P15-2 to CAN1-CANL on P14-2 * * NOTE! Termination resistor (120Ohm) have to be placed on transceivers output * * ------------------------------------------------------------------------------ * Test HW:  X-MPC574xG-324DS + X-MPC574XG-MB * Maskset:  1N81M * Target :  FLASH * Fsys:     160 MHz PLL * ********************************************************************************
View full article
In order to enable the RappID bootloader. It needs to program the C:\Freescale\RAppIDBL\RBF_Files\MPC5744P.rbf file into the MCU. User can use S32DS to program the rbf file to MCU. After that the Rappid bootloader PC utility can communicate with the MCU.
View full article
******************************************************************************** * Detailed Description: * Example of core watchdog implementation on Cobra 55. It executes on core 0 * All the functions are in the file "watchdog.c" *WatchDogCreate(delay, FirstTimeout, SecondTimeout) -> create/configure the wathdog timer *WatchDogStart() -> start the watchdog timer *WatchDogService() -> acknowledge the watchdog timer * ------------------------------------------------------------------------------ * Test HW:         MPC5777C-416DS Rev.A + MPC57xx MOTHER BOARD Rev.C * MCU:             PPC5777CMM03 2N45H CTZZS1521A * Fsys:            PLL1 = core_clk = 264MHz, PLL0 = 192MHz * Debugger:        Lauterbach Trace32 * Target:          internal_FLASH * ********************************************************************************
View full article
This document shows, how to use CRC gen utility in CodeWarrior for MCU IDE.   1) Create new project in CodeWarrior. 2) Create a file calc_crc.crc in the Project/Project_Settings/Linker_File directory. 3) Open project settings, choose C/C++ Build ->Settings and add the following command to Post-build steps: "${MCU_TOOLS_HOME}/bin/crcgen.exe" "${BuildLocation}/${BuildArtifactFileName}" -crc "${ProjDirPath}/Project_Settings/Linker_Files/calc_crc.crc" -srec "${BuildLocation}/${BuildArtifactFileName}.crc.mot" 26   4) Open calc_crc.crc and configure required parameters. Meaning of single lines is described in CodeWarrior reference manual called Targeting_Microcontrollers I used following code (it is only example)   5) Build your project. 6) File MPC5604B-CRCTest.elf.crc.mot was created   Now you have s-record, which contains CRC and which could be loaded to microcontroller.
View full article
******************************************************************************** * Detailed Description: * This SW provides the example of clearing of FCCU faults. * * ------------------------------------------------------------------------------ * Test HW:  MPC57xx * Maskset:  1N65H * Target :  internal_FLASH * Fsys:     200 MHz PLL with 40 MHz crystal reference + FCCU fault clearing example code. * ******************************************************************************** Revision History: 1.0     Jan-05-2016     nxa13250(Vlna Peter)  Initial Version *******************************************************************************/
View full article
******************************************************************************** * Detailed Description: * 200 MHz PLL with 40 MHz crystal reference + FCCU fault clearing *           example code + FCCU ALARM state configuration * ------------------------------------------------------------------------------ * Test HW:  MPC57xx Motherboard + MPC5744PE257DC minimodule, MPC5744P, * silicon mask set 1N65H * Target :  internal_FLASH* ********************************************************************************
View full article
******************************************************************************** * Detailed Description: * This example demonstrate how to configure CGM (clock generation module) * and supply by clock all main peripherals. At maximum available frequency for system * which is 265MHz. * ------------------------------------------------------------------------------ * Test HW:  MPC57xx Motherboard + MPC5775K_356DS minimodule, MPC5775K, * Maskset:  0N76P * Target :     internal_FLASH * Fsys:        265 MHz PLL0 * ******************************************************************************** Revision History: 1.0     Apr-15-2015     b21190(Vlna Peter)  Initial Version *******************************************************************************
View full article
This example follows application notes AN3283 and AN4365. It is intended for users who develop own JTAG programmer. It shows how to implement basic functions: - enter debug mode during reset - enable external debug mode - OnCE access to GPR, SPR and memory - Nexus access to memory The example is written in PRACTICE script language using Trace32 debugger from Lauterbach (www.lauterbach.com). Low level functions for JTAG are used, so users can see sequences of ‘0’s and ‘1’s which are sent to JTAG interface. Used commands are described in this document: www2.lauterbach.com/pdf/general_ref_j.pdf This example was tested on MPC5607B device and VLE instruction set was used for OnCE access.
View full article
******************************************************************************** * Detailed Description: * * Configures the MCANs to transmit and receive a CAN FD message with or without * bit rate switching for data phase. This is defined by BRS macro. * Baudrate during arbitration phase is set to 500kbps, during data phase 1Mpbs * because of PHY used on the EVB. * * In this config, MCAN_0 transmits a message. MCAN_1 receives the message. * * MCAN_0 sends message each 1sec. This interval is generated by PIT. * Single TX buffer is used to send n bytes. The message ID is changed for each * transmission. Two standard and 2 extended IDs are sent. * * MCAN_1 is configured to receive a message, ISR is used to read new message. * There are 2 standard and 2 extended ID filter tables defined. Classic filter * configuration is set, means filter ID & mask. * Messages with matched standard ID are received into RXFIFO_0, messages with matched * extended ID then stored in RXFIFO_1. *   * EVB connection: * * J37 and J38 to position 2-3 to connect MCAN1 TX/RX to transceiver * * CAN0-CANH on P15-1 to CAN1-CANH on P14-1 * CAN0-CANL on P15-2 to CAN1-CANL on P14-2 * * * ------------------------------------------------------------------------------ * Test HW:         MPC5777C-512DS Rev.A + MPC57xx MOTHER BOARD Rev.C * MCU:             PPC5777CMM03 2N45H CTZZS1521A * Fsys:            PLL1 = core_clk = 264MHz, PLL0 = 192MHz * Debugger:        Lauterbach Trace32 * Target:          internal_FLASH * Terminal:        19200-8-no parity-1 stop bit-no flow control on eSCI_A *           use USB connector (J21) on minimodule * * EVB connection:  ETPUA30 (PortP P23-15) --> USER_LED_1 (P7-1) *                  ETPUA31 (PortP P23-14) --> USER_LED_2 (P7-2) * ********************************************************************************
View full article
******************************************************************************** * Detailed Description: * * Application initializes SPI0 module as a master and SPI2 module as a slave. * Data are sent from master to slave and from slave to master. After data are * received, interrupt for each module is handled and data are saved to global * variables. * * * ------------------------------------------------------------------------------ * Test HW:         MPC5775K-356DS, MPC57xx Motherboard * MCU:             PPC5775KMMY3A 0N76P * Fsys:            PLL0 266MHz *                    Z4 Core 133MHz * Debugger:        Lauterbach Trace32 *                  PeMicro USB-ML-PPCNEXUS * Target:          internal_FLASH (debug mode, release mode) * EVB connection:  P18.0 to P18.5 (CS_0) *                    P18.2 to P18.7 (SCK) *                    P18.3 to P18.9 (SIN - SOUT) *                    P18.4 to P18.8 (SOUT - SIN) * * ********************************************************************************
View full article
******************************************************************************** * Detailed Description: * Application performs basic initialization, setup PLL to maximum allowed freq., * initializes and display notice via UART terminal. It calculates temperature * using TSENS and printes it to the terminal window. * ------------------------------------------------------------------------------ * Test HW:        MPC5675KEVB * MCU:            PPC5675KFMMSJ in Lock-Step mode * Fsys:           180/150 MHz CORE_CLK * Debugger:       Lauterbach Trace32 *                 PeMicro USB-ML-PPCNEXUS * Target:         RAM, internal_FLASH * Terminal:       19200-8-no parity-1 stop bit-no flow control on eSCI_A * EVB connection: default * ********************************************************************************
View full article