ワイヤレス接続に関するナレッジベース

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

Wireless Connectivity Knowledge Base

ディスカッション

ソート順:
KW45’s three-core architecture integrates a 96 MHz CM33 application core, dedicated CM3 radio core and an isolated EdgeLock Secure Enclave. The Flash-based radio core with dedicated SRAM delivers a highly configurable and upgradeable software-implemented radio, freeing resources on the main core for customer application space. The Bluetooth Low Energy 5.3-compliant radio supports up to 24 simultaneous secure connections. The EdgeLock Secure Enclave’s isolated execution environment provides a set of cryptographic accelerators, key store operations and secure lifecycle management that minimizes main core security responsibilities. The KW45 MCU additionally integrates FlexCAN, helping enable seamless integration into an automobile’s in-vehicle or industrial CAN communication network. The FlexCAN module can support CAN’s flexible data rate (CAN FD) for increased bandwidth and lower latency. KW45 Block Diagram KW45 Architecture Block Diagram Documents Reference Manual Datasheet Errata Secure Reference manual** Certifications SESIP Cert SESIP ST PSA Certification RED Certification EUROPEAN UNION DECLARATION OF CONFORMITY (EVK) EUROPEAN UNION DECLARATION OF CONFORMITY (LOC) Japan MIC KW45-LOC _TELEC-20250221 see attached below Bluetooth Specifications Bluetooth_5.0_Feature_Overview  Bluetooth_5.1_Feature_Overview  Bluetooth_5.2_Feature_Overview Bluetooth_5.3_Feature_Overview Bluetooth_5.4_Feature_Overview Bluetooth_6_Feature_Overview Evaluation boards KW45 KW45-EVK KW45-EVK Schematic KW45-EVK Design Files KW45-EVK User manual KW45-LOC User manual KW45-EVK Getting Started Application Notes Software, Hardware and Peripherals: AN14122 : How to use RTC on KW45 This application note describes how to configure and use the RTC peripheral in a BLE demo AN14141 : Enabling Watchdog Timer Module on KW45 Bluetooth Low Energy Connectivity Stack This application note describes the process to implement the WDOG timer in a Connectivity Stack demo. AN13855 : KW45/K32W1 Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device This Application note provides the steps and process for integrating the Over the Air Programming Client Service into a BLE peripheral device. AN13584 : Kinetis KW45 and K32W1 Loadpull Report This application note describes measurement methodology and associated results on the load-pull characteristics. AN13860 : Creating Firmware Update Image for KW45/K32W1 using OTAP tool This application note provides the steps to create and upgrade the image on the KW45 board via OTAP. AN14077 : Steps to migrating KW45 (1MB) to KW45 (512kB) This application note describes the initial steps require to migrate from 1MB flash to 512kB flash. Power Management: AN13230: Kinetis KW45 and K32W1 Bluetooth LE Power Consumption Analysis This application note provides information about the power consumption of KW45 wireless MCUs, the hardware design and optimized for low power operation. AN13831: KW45/K32W1 Power Management Hardware This application note describes the usage of the different modules dedicated to power management in the KW45/K32W1 MCU. RF: AN13687 : K32W1 Connectivity test for 802.15.4 Application This application note describes how to use the connectivity test tool to perform K32W1 802.15.4 RF performance. AN13728 : KW45 RF System Evaluation Report for Bluetooth LE and IEEE 802.15.4 Applications This application note provides the radio frequency evaluation test results of the KW45 board for BLE (2FSK modulation) and for IEEE 802.15.4 (OQPSK modulation) applications. Also describes the setup and tools that can be used to perform the tests.  AN14098: KW45-LOC RF Test Report This application note provides basic RF test result of the KW45B41Z localization board.  AN13228 : KW45-EVK RF System Evaluation Report for BLE Applications This application note provides the RF evaluation test result of the KW45B41Z-EVK for BLE application using two frequency Shift Keying modulation. AN13229 : KW45-EVK Co-existence with RF System Evaluation Report for BLE application This application note provides the RF evaluation test results of the KW45B41Z-EVK for BLE application (2FSK modulation) AN13512 : Kinetis Wireless Family Products BLE Coexistence with Wi-Fi Application This application note provides the K32W1/4X low energy family products immunity on Wi-Fi signals and methods to improve coexistence with Wi-Fi  Security: AN13859 : KW45/K32W1 In-System Programming Utility This application note provides steps to boot KW45/K32W1 MCU in ISP mode and establish various serial connections to communicate with the MCU. AN1403 : Programming the KW45 Flash for Application and Radio Firmware via Serial Wire Debug during mass production This application note describes the steps to write, burn and programming all the necessary settings via SWD in mass production.  AN13883 : Updating KW45 Radio Firmware Via ISP Using SPSDK This application note provides steps to boot KW45/K32W1 MCU in ISP mode and update the radio firmware with secure binary. AN14109 : KW45 and K32W148 Secure  Boot Using the SEC Tool This application note provides steps to do secure boot KW45/K32W1 MCU using signed images and secure binaries on the SEC GUI tool. AN13838 :  KW45 and K32W148 Secure  Boot Using the SPSDK Command line Tool This application note provides steps to do secure boot KW45/K32W1 MCU using signed images and secure binaries on the SPSDK command line tool. AN13931 : Managing Lifecycles on KW45 and K32W148 This application note provides steps to do transition lifecycles KW45/K32W1 MCU using the SEC GUI and SPSDK command line tools.  AN14158: Debug Authentication on KW45/ K32W148 This application note describes how to do debug authentication to securely debug an application in the field.  AN14544 : EdgeLock 2GO Services for MPU and MCU This application note introduces the EL2GO services for NXP devices. This allows trust provisioning of the device in an untrusted environment.  AN14174: KW45/K32W1 Flash Encryption using NPXThis application note provides steps to do enable on-the-fly encryption on KW45/K32W1 MCU. AN14158: debug authentication on KW45/K32W148 This application note describes the steps for debug authentication using the Secure Provisioning SDK tool (SPSDK). Support If you have questions regarding KW45, please leave your question in our Wireless MCU Community! here   Useful Links Reference Designs - NXP Community [MCUXSDK] How to use GitHub SDK for KW4x, MCXW7x, MCXW2x - NXP Community this community post provides step by step how to use GitHub SDK [MCUXSDK] GitHub SDK - Documentation for Bluetooth LE platforms - NXP Community this community post provides the documentation for BLE platforms.  Clock Measuring using the Signal Frequency Analyzer (SFA) module for KW45/KW47/MCXW71/MCXW72 - NXP Community : this community provides the steps on how to use the Signal Frequency Analyzer  The best way to build a PCB first time right with KW45 (Automotive) or K32W1/MCXW71 (IoT/Industrial)... Community : In this community provides the important link to build a PCB using a KW45 or K32W148 and MCXW71 and all concerning the radio performances, low power and radio certification (CE/FCC/ICC) How to use the HCI_bb on Kinetis family products and get access to the DTM mode:  This article is presenting two parts: How to flash the HCI_bb binary into the Kinetis product. Perform RF measurement using the R&S CMW270 BLE HCI Application to set transmitter/receiver test commands: This article provides the steps to show how user could send serial commands to the device. Bluetooth LE HCI Black Box Quick Start Guide : This article describes a simple process for enabling the user controls the radio through serial commands. Kinetis (K32/38/KW45 & K32W1/MCXW71) Power Profile Tools:  This page is dedicated to the Kinetis (KW35/KW38/KW45) and MCX W7x (MCX W71) Power Profile Tools. It will help you to estimate the power consumption in your application (Automotive or IoT) and evaluate the battery lifetime of your solution. KW45/K32W1 32MHz & 32kHz Oscillation margins: this article provides the properly configuration for the Oscillation margins for the circuit. KW45/MCXW71 Changing Clocking peripherals from FRO6M to other clock sources:  This article provides a comprehensive guide to selecting and configuring alternative clock sources   Demo (video) KW45 Based CS 1 to Many Demo NXP - Channel Sounding   Training BLE Introduction  RF Switch Comparison Absorptive/Reflective Standards Comparison ETSI / FCC / ARIB requirements BLE Channel Sounding  - Overview BLE Channel Sounding - RF Hardware BLE Channel Sounding - ANSYS Modeling Tools  BLE Channel Sounding - Antenna Prototypes Validation Measurements     Equipment Wireless Equipment: This article provides the links to the Equipment that helps to the project development  Development Tools  SDK builder: The MCUXpresso SDK brings open-source drivers, middleware, and reference example application to speed your software development. SDK GitHub: SDK open-source Drivers, middleware and reference examples in Github NXP MCUXpresso: MCUXpresso IDE offers advanced editing, compiling and debugging features with the addition of MCU-Specific debugging. Supports connections with all general-purpose Arm Cortex-M.  NXP SPSDK: Is a unified, reliable, and easy to use Python SDK library working across the NXP MCU portfolio providing a strong foundation from quick customer prototyping up to production deployment. NXP SEC Tool: The MCUXpresso Secure Provisioning Tool us a GUI-based application provided to simplify generation and provisioning of bootable executables on NCP MCU devices. NXP OTAP Tool: Is an application that helps the user to perform an over the air firmware update of an NXP development board. Config Tool: MCUXpresso Config Tools, an integrated suite of configuration tools, these configuration tools allow developers to quickly build a custom SDK and leverage pins, clocks and peripheral to generate initialization C code or register values for custom board support. SDK Examples for Wireless MCUs: The wireless examples feature many common Bluetooth configurations. **For secure files is necessary to request additional access. 
記事全体を表示
The wireless examples feature many common Bluetooth, zigbee and thread configurations. This article describes each SDK example.  MCUs: KW45 K32W1 KW47 MXCW71/72 Category SDK Example Name Description comments BLE Controller hci_bb the HCI black box demo gives access to the BLE controller via serial interface using commands and events.    Bluetooth adv_ext_central the adv_ext_central implements a custom GATT based temperature Profile. After pairing with the peripheral, it configures notifications and displays temperature values on a terminal.  Board to Board Bluetooth adv_ext_peripheral the adv_ext_peripheral implements a custom GATT based temperature Profile. it begins with a general discoverable mode and waits for the central node to connect and configure notifications for the temperature value.  Board to Board Bluetooth ancs_c the demo acts as a peripheral that advertises a service solicitation for custom ANCS service. Also, can acts as a client once connected to the device offering the ANCS service. The application displays information about ANCS notifications received from the mobile. this service is available on iOS mobile devices.   Bluetooth beacon the demo has non-connectable advertising packets that are sent on the three advertising channels. From the info sent by the beacon we can see: company identifier.  beacon identifier.  UUID, by default this value is a random value based on the UI of the board.  some beacon application data  RSSI IoT toolbox app Bluetooth ble_fscibb implements a custom GATT based wireless UART profile. it can be possible to interact with the device through a serial terminal.    Serial Terminal  Bluetooth ble_shell implements a console application that allows the user to interact with a full feature BLE stack library. implements GAP roles and both client and server, to enabling these roles can be done using some commands. this demo allows the user to add, erase or modify services.  Serial Terminal Bluetooth eatt_central the application behaves as a GAP central node. It scans for an EATT peripheral to connect to. Once connected it performs service discovery, initiates an EATT connection and configures indications on the peripheral for services A and B.  The central reports the received service data and steps taken during the setup on a serial terminal.  Board to Board Bluetooth eatt_peripheral the application behaves as a GAP peripheral node. it works a as general discoverable mode and waits for a GAP central node to connect. This application implements two services, Service A and Service B. After the EATT connection in completed, the peer must enable indications for the two services to periodically receive profile data over EATT.   Board to Board Bluetooth hid_device (Mouse) the demo moves the cursor in a square pattern between a min and max axis. this demo behaves as a GAP peripheral node with a general discoverable mode that waits for a GAP central node to connect.    Bluetooth hid_host the application behaves as a GAP central node. it works as a GAP limited discovery Procedure and searches for HID devices to connect to. After connecting with the peripheral node, it configures notifications and displays the received HID reports on a serial terminal.  Serial Terminal Bluetooth loc_reader the application behaves as a GAP peripheral node. This application has the RASP profile implemented; it advertises for compatible devices, once it connected begins to send ranging data to the central device.  Board to Board Bluetooth loc_user_device the application behaves as a GAP central node. it scans for compatible devices, once it connected begins to send ranging commands to the peripheral device and calculates the distance estimation based on the information received.  Board to Board Bluetooth otac_att the over the air programming client is a GAP peripheral which advertising the BLE OTAP service and waits for a connection from an OTAP server. After an OTAP server connects, the OTAP client waits for it to write the OTAP control point CCCD and then starts sending commands via ATT indications.  over the air programming tool //IoT toolbox app Bluetooth otac_I2cap (different transfer method) The over the air programming client is a GAP peripheral which advertising the BLE OTAP service and waits for a connection from an OTAP server. After an OTAP server connects, the OTAP client waits for it to write the OTAP control point CCCD and then starts sending commands via ATT indications.  over the air programming tool // IoT toolbox app Bluetooth otas the Over the air programming server application is a GAP central which scans for devices advertising the BLE OTAP service. After it finds one, it connects to it and configures the OTAP control point CCC descriptor to receive ATT indications from the device then it waits fir OTAP commands from the device.  over the air programming tool // IoT toolbox app Bluetooth temp_coll the application behaves as a GAP central node, it enters GAP limited discovery procedure and searches for sensor devices to pair with. After pairing with the peripheral, it configures notifications and displays temperature values on a serial terminal.  Board to Board Bluetooth temp_sens the application behaves as a GAP peripheral node. it enters GAP general discoverable mode and waits for a GAP central node to connect and configure notifications for the temperature value.  Board to Board Bluetooth w_uart implements a custom GATT based wireless UART profile. it can be possible to interact with the device through a serial terminal.  IoT toolbox app Bluetooth wireless_ranging Is used to perform secure and highly accurate distance estimation between two BLE device.  the application is made of two parts: The embedded firmware, that can be controlled manually via serial connection. the host application (python) running on a PC and controlling the firmware using serial link. Wireless Ranging application allows to: Configure most of the parameters required for measurement. Select what type of measurement to be performed.  Trigger CS measurements using range or test command. Log system debug information but also raw IQ data information in MatLab. Board to Board  genfsk connectivity_test   Board to Board ieee_802.15.4 connectivity_test   Board to Board reference design bluetooth this application is based on a GATT temperature Service and demonstrates power consumption optimization in BLE. The power consumption is optimized during advertising, connected and no activity states.   
記事全体を表示
Wireless Equipment: Ellisys:  Ellisys is a leading worldwide supplier of advanced protocol test solutions for Bluetooth®, Wi-Fi, WPAN, USB 2.0, SuperSpeed USB 3.1, USB Power Delivery, USB Type-C, DisplayPort and Thunderbolt technologies.  USB, Bluetooth and WiFi Protocol Test Solutions  Bluetooth Vanguard - Advanced Bluetooth Analysis System Bluetooth Qualifier - Bluetooth Qualification System   RFcreations:     RFcreations is a core team of highly skilled and knowledgeable, professional engineers with decades of experience across the design and development of both RF and digital hardware, embedded, protocol stacks and UI software mini-moreph morephCS   Teledyne Lecroy:    offers an extensive range of test solutions to help with design, development, and deployment of devices and systems frontline-x240 Wireless Protocol Analyzer  frontline-x500e Wireless Protocol Analyzer  Rohde&Schwarz:        is a global technology group striving for a safer and connected world. Offers Test & Measurement, Technology Systems and Networks & Cybersecurity Divisions R&S CMW270 wireless connectivity tester Useful links:  Top Online Bluetooth LE learning Resource Ellisys Bluetooth Video Series RFcreations Bluetooth Sniffers and Test Tools Learn Bluetooth Low Energy in a single weekend
記事全体を表示