ユニバーシティ・プログラムのナレッジベース

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

University Programs Knowledge Base

ディスカッション

ソート順:
After completing the LED, Motor Control and servo tutorials, students should be comfortable with many of the subjects necessary to enable and input data from the Line Scan Camera. The line scan camera module consists of a CMOS linear sensor array of 128 pixels and an adjustable lens. This camera has a 1x128 resolution. The camera is mounted on a boom above the car to ensure the greatest field of view. Determining the angle of orientation about the pivot at the top of the boom will change the “look ahead” distance of the camera and enable more efficient steering algorithms Solution Overview One method of implementation is to take the entire readout of the camera and store it in the memory. Then a line detection algorithm can be used to locate the position of the black line. Due to varying lighting conditions, some level of pixel thresholding may be necessary as the intensity differences across the data may not always produce a clear indication of the line location. A good approach is to use an algorithm that looks for changes in the magnitude of voltage from one portion of the array to another, since the camera’s AO magnitude is directly related to the brightness the pixel array senses. If the microcontroller finds a significant decrease in magnitude followed by large increase in magnitude this would give us a good indication of the location of the line. For this a derivative function can be utilized. Once we have successfully determined the position of the black line, immediately adjust the wheels to adjust the direction of the car so that the black line will remain in the center of the camera’s view. Sample camera output (for illustrative purposes only) The camera outputs an analog signal from 0 to 5V depending on the grey-scale value of the image. to simplify our sample we will assume that we have set limits for the line and have transformed the data to digital bits using a threshold value. 0’s are high intensity (non-line locations), 1’s are low intensity (black or line locations) 10000000000000000000000000000000001111101000000000000000000010000000000000000 Since the camera provides a 128x1 bit picture, and the camera will be pointing down at the track which is a fixed width. A control algorithm should be developed to line up the 1’s in the center of the 128 bits. The center of the field of view will be require calibration and testing, but it is assumed that the camera will remain in a fixed location pointing down the center of the forward looking axis of rotation. Usage For normal operation of the camera, the following signals must be produced and processed: CK (clock) - latches SI and clocks pixels out (low to high) continuous signal SI (serial input to sensor) begins a scan / exposure discrete pulses, pulse must go low before rising edge of next clock pulse AO (analog output) - Analog pixel input from the sensor (0-Vdd) or or tri-stated The CK and SI signals are simple ON/OFF signals which can be produce using a GPIO Pin, setting the pin high and low corresponding to the desired exposure time of the camera. The only other requirement is to read the Analog Output of the camera which requires the initialization of the Analog Module and setting it to the proper pinout.  Actual camera output, below:                                                                                                                        Yellow = SI, Green = Camera Signal, Purple = clock More camera waveforms and information (Power Point) available here This link shows a video of the camera connected to the oscilloscope http://www.youtube.com/watch?v=YOAd3ERnXiQ To obtain this signal, connect channel 1, 2 and 3 of an oscilloscope to the SI pulse (Trigger off this signal), CLK, and AO signals. GPIO Details are provided in the LED tutorial. The timing for creation and read of the signals is crucial and is detailed in the diagram below. This information can also be found in the Line Scan Datasheet. Analog Read: The Analog Output (AO) signal from the camera needs to be processed and read by the microcontroller's Analog to Digital Converter (ADC). This ADC device converts a continuous signal into a discrete number which is proportional to the signal voltage. An 8 bit ADC has 256 discrete levels (2^8). If a analog signal between 0 and 5 volts is sampled, a digital discrete number of 0 would correspond to zero volts, and a digital discrete number of 255 would correspond to 5 volts. A number such as 145w would correspond to about 2.8 volts. The maximum signal sample rate is limited by the microcontroller. Proper configuration of the ADC peripheral and the multiplexer of the chip will configure a pin to read in an analog signal when calling the function. More details on analog to digital converters can be found on the wikipedia site here. Read/Write In write mode, the GPIO pin can be set, cleared, or toggled via software initiated register settings. Microcontroller Reference Manual: Analog to Digital Converter You will find high level information about GPIO usage in several different areas of a reference manual. See the reference-manual article for more general information. Relevant Chapters: (see GPIO chapters for clock and SI Creation)  Introduction: System Modules: System Integration Modules (SIM) - provides system control and chip configuration registers Chip Configuration: Signal Multiplexing: Port control and interrupts Hardware The device discussed within this tutorial is the Line Scan Camera featuring TAOS 1401  Focusing the camera: Once the sensor is perfectly working the next step is to find the best position of the lens that will generate the clearest images. The best way to do it is using an oscilloscope: Connect the SI and AO signals to the oscilloscope Set the SI pulse so that it can be clearly seen and then trig the AO signal with the SI signal using the trig function Fix the camera looking at a sheet of paper with a black line in the center The image of the black line will appear on the oscilloscope screen Screw the camera until you find the position where the line seems the clearest Camera Circuit   5 wires must be connected  ground power SI CLK AO Camera Limitations According to the datasheet:  "The sensor consists of 128 photodiodes arranged in a linear array. Light energy impinging on a photodiode generates photocurrent, which is integrated by the active integration circuitry associated with that pixel. During the integration period, a sampling capacitor connects to the output of the integrator through an analog switch. The amount of charge accumulated at each pixel is directly proportional to the light intensity and the integration time." Integration Time: T T = (1/fmax)*(n-18)pixels + 20us, where n is the number of pixels Minimum integration time: 33.75us Maximum integration time: capacitors will saturate if exceeding 100ms frequency range 5 Khz - 8 Mhz (8 Mhz is fmax in equation above) The integration time is the following: It occurs between the 19th CLK cycle and the next SI pulse. The CLK frequency itself has little to do with the integration time. One each rising edge, the clock outputs one of the previously sampled intensity values. This means that integration time should be set by varying the time between SI pulses, not changing the clock frequency. Make the CLK frequency high, and have as much time as needed between the two SI pulses to obtain the desired intensity value. Helpful Hints Light can be transmitted through the pcb on the back of the camera. This unwanted extra light shining on the CMOS linear sensor can induce significant errors into your signals received. A shroud or housing for the camera unit can easily eliminate this problem. One of the easiest solutions is to place a piece of electrical tape across the back of the camera in the highlighted area indicated in the picture below. When testing the car on the track or transporting it, it is not uncommon for the focus on the camera to loosen or change. Therefore it is recommended that after adjusting your camera focus for maximum performance you make mark (ex. metallic sharpie) between the lens and its body so you can realign the camera lens to it's proper position easily if it does shift.   *When hooking up the linescan camera, regardless of position or focus there is a drop off at each end of the image data. This is easily viewed with an oscilloscope. This effect is undesirable, particularly when you are finding your line position utilizing a derivative approach. These fallouts cause erroneous derivative values, and hence a poor line position solution. Two solutions we found useful were: (1) Ignoring the first 10-15 pixels and last 10-15 pixels of the image data array, and then determining the line position; (2) Often when making decisions in the code as to where the line was at it was found useful to use a threshold value for the difference in the derivative position, and secondly a binary threshold on the camera data. Note that the falloff depends on camera focus, position, etc. Therefore, these threshold values and pixels in which to ignore are relative to a specific instance. The problem however is common to the camera.  * Saving previous line position values Since the camera can read the line very quickly while the servo can only update every 20ms, there are multiple camera reads before the servo can update, if you are reading the camera fast and then overriding without saving them in some form then those camera reads are being wasted and are better off not having occurred. What can help is to create some sort of filter by bringing new values into an array with previous values and preforming some sort of averaging. The following code will take the new line position value and place it in a 1xA array where A is defined by CAMERA_AVG. NO AVERAGING IS OCCURRING HERE all that is happening is the camera values are being saved in a simple array, what is done with them is up to you. The way this works is that it shifts the entire array so the oldest data point is discarded in order to make room for the new line position at the other end of the array. It will only adds the new value if there is one available if not it copies the previous first position value to the new first position value. CAMERA_AVG => an integer value for how long the averaging length will occur gfpLineAverage => global floating point array of camera center line values fpLinePos => returned from read camera this is the center line position ReadCamera() => is the read camera function call returns a floating point value of fpLinePos // this will shift the values up and throw away the oldest value // then add a new reading for (i=CAMERA_AVG;i>0;i—) { gfpLineAverage[i]=gfpLineAverage[i-1]; } // if no line was detected the previous camera value will be passed on if (fpLinePos=ReadCamera()) { gfpLineAverage[0]= fpLinePos; } For example an array of of center line position values ranging from 0-127 could look like. Initial values [51 50 52 54 58 55] New position of 45 read [45 51 50 52 54 58] New position of 44 read [44 45 51 50 52 58] No value read [44 44 45 51 50 52] No value read [44 44 44 45 51 50] New position of 50 read [50 44 44 44 45 51] Tutorials Line Scan Camera: Kinetis ARM Cortex M4 Tutorial Specifics of how to configure the K40 ADC, to create the delay code is covered in the K40: Line Scan Camera Tutorial. Line Scan Camera: Qorivva Tutorial Specifics of how to configure and program the trk-mpc5604b board to blink an LED is covered in the qorivva:line-scan-camera Tutorial. Additional Resources Freescale app note on interfacing with a linescan camera Freescale app note on interfacing with an RCA camera
記事全体を表示
This tutorial covers the details of Blinking an LED on the TRK-MPC5604B: MPC5604B StarterTRAK evaluation board. It will introduce the evaluation board, and some basic CodeWarrior features. Overview Hardware Set up the Software Development Environment A. Download and Install Codewarrior B. Download and Install Drivers Sample Code Serial Debugging: I made the hardware modifications for serial debugging: I did not make the hardware modifications for serial debugging: Download/Debug/Run Learning Step: LED Code Description Functions Blink the LED(s): Other Qorivva Tutorials Useful Links to Technical Data Overview In this exercise students will run sample code and build an application which enables testing of the Qorivva TRK-MPC5604B board. Students will: Configure the Software Development Environment Configure the evaluation board hardware Learn how to open CodeWarrior project example files Build a project Download and run the code on TRK-MPC5604B board Learn how to utilize the GPIO Peripheral to blink a LED   To successfully complete this exercise, students will need the following board and development environment. TRK-MPC5604B evaluation board CWX-MPC-5500P-EX: Evaluation: CodeWarrior for MPC55xx/MPC56xx Microcontrollers V2.8 (Classic) RAppID initialization Tool P&E Micro Driver Software Hardware Read the MCU 101: LEDs article for general information on LED circuits. The LED's are located on the board and visible in the board schematic on page 4 as below: This schematic is found here. Set up the Software Development Environment There are several steps necessary to prepare the evaluation board and PC for microcontroller programming and development. Interfacing the evaluation board with a PC requires downloading and installing the CodeWarrior IDE, as well as the device drivers for programming the microcontroller via USB. A. Download and Install Codewarrior Before completing this example project, download and install CodeWarrior for MPC56xx 2.8 or the latest version. B. Download and Install Drivers In addition to CodeWarrior, it may (needs verified) be necessary to install one or both of the following tools: RAppID initialization tool- RAppID comes on the DVD provided with your evaluation board. In the main directory of the DVD, click on the "TRK_MPC5604B.html" file to open the DVD interface which provides user manuals, software, schematics and documentation for the evaluation board. P&E Microcomputer Systems, Inc drivers- P&E is a a computer driver for the TRK-MPC5604B device, enabling evaluation board programming via USB through the CodeWarrior debug OSJTAG interface. This driver can be downloaded here Because this isn't found on the disk. Sample Code To use the Hyperterminal communications features described in the following sections and in the attached sample code you must populate the U5 on your TRK-MPC5604B board. Qorivva Sample Code Download Serial Debugging: To use hyperterminal style debugging through the Serial port you must populate U5 with a RS232 transceiver and C55. I made the hardware modifications for serial debugging: From the Start menu Run the hyper terminal by using All programs> Accessories> Communications> HyperTerminal and make COMx properties port s ettings as Baud rate 115200, Data bits 8, Parity None, Stop bits 1 and Flow control None. 8. In the project menu select make (or F7) you will get few warning messages. I did not make the hardware modifications for serial debugging: In the project menu select MAKE (or F7) you will get few warning messages and can ignore them. Next select Debug option (or F5) from project menu. The debug window opens with few sub windows such as Code, Status and CPU etc. To run the program, select the Source GO menu button. Note: Much of the code in the sample file is utilized to send and receive messages serially. Some quick, minor changes can be applied as follows: Open main.c within the for loop, remove or comment out all the code. Now, manually call the specific function desired, in this case: for (; ; )      {           LED();      } Download/Debug/Run In sample.mcp project manager window target selection window is set to the default RAM. This means the code runs in the RAM. This target option can be changed using the drop down menu to internal_FLASH. This means the code runs in the flash and this code can run without debugger when the board is powered up. You can select either RAM target or internal_FLASH target for the following test procedure. If you select internal_FLASH target you can test the standalone operation of the board. If you encounter errors, look in the Problems view and resolve them. You can ignore any warnings. If the project builds correctly, it is time to download to the board and watch it work. Ensure that the USB cable that came with the board connects the board to the host computer’s USB port. There are multiple ways to issue the Debug command. Right click the project in the projects view and choose Debug As->CodeWarrior Download. Alternatively, y go to the Run menu and choose Debug (F11). Learning Step: LED Code Description Within the sample code, there is a for loop which calls a switch statement. With working hyper-terminal and proper serial connector interface into a PC, entering the numerical characters "1" - "9" into the hyper-terminal will call each separate function initiating the following actions Blinks Leds & outputs text strings to hyperterminal Calls the Switch function - which sends text strings to hyperterminal indicating which switch has been pressed Calls the Servo function which sweeps the servo back and forth; sends text strings to hyperterminal Calls the motor function which enables and disables the left motor; sends status text strings to hyperterminal Calls the motor function which enables and disables the right motor; sends status text strings to hyperterminal Calls the Camera function which sends the correct signals to the camera and reads the data; sends status text strings to hyperterminal Calls the Left_Motor_Current function; sends status text strings to hyperterminal Calls the Right_Motor_Current function; sends status text strings to hyperterminal   (hyperterminal code documentation needs verified ) TransmitData("\n\r**The Freescale Cup**");         TransmitData("\n\r*********************");         TransmitData("\n\r1.Led\n\r");         TransmitData("2.Switch\n\r");         TransmitData("3.Servo\n\r");         TransmitData("4.Motor Left\n\r");         TransmitData("5.Motor Right\n\r");         TransmitData("6.Camera\n\r");         TransmitData("7.Left Motor Current\n\r");         TransmitData("8.Right Motor Current");         TransmitData("\n\r**********************"); option = ReadData(); option = 1;     switch(option)         {             case '1':                 LED();             break;             case '2':                 SWITCH();             break;             case '3':                 SERVO();             break;             case '4':                 MOTOR_LEFT();             break;             case '5':                 MOTOR_RIGHT();             break;             case '6':                 CAMERA();             break;             case '7':                 LEFT_MOTOR_CURRENT();             break;             case '8':                 RIGHT_MOTOR_CURRENT();             break;             default:             break;          } As visible from the schematic - the LED's are accessed via the following ports. Hardware Chip Port/Pin Comment LED1 PE4 LED2 PE5 LED3 PE6 LED4 PE7 Functions The following function is utilized in the code to blink the LED's This function is located in main.c void LED(void) {    SIU.PCR[68].R = 0x0200;  /* Program the drive enable pin of LED1 (PE4) as output*/    SIU.PCR[69].R = 0x0200;  /* Program the drive enable pin of LED2 (PE5) as output*/    SIU.PCR[70].R = 0x0200;  /* Program the drive enable pin of LED3 (PE6) as output*/    SIU.PCR[71].R = 0x0200;  /* Program the drive enable pin of LED4 (PE7) as output*/    TransmitData("****Led Test****\n\r");    TransmitData("All Led ON\n\r");    Delayled();    SIU.PGPDO[2].R |= 0x0f000000;  /* Disable LEDs*/    SIU.PGPDO[2].R &= 0x07000000;  /* Enable LED1*/    TransmitData("Led 1 ON\n\r");    Delayled();    SIU.PGPDO[2].R |= 0x08000000;  /* Disable LED1*/    SIU.PGPDO[2].R &= 0x0b000000;  /* Enable LED2*/    TransmitData("Led 2 ON\n\r");    Delayled();    SIU.PGPDO[2].R |= 0x04000000;  /* Disable LED2*/    SIU.PGPDO[2].R &= 0x0d000000;  /* Enable LED3*/    TransmitData("Led 3 ON\n\r");    Delayled();    SIU.PGPDO[2].R |= 0x02000000;  /* Disable LED3*/    SIU.PGPDO[2].R &= 0x0e000000;  /* Enable LED4*/    TransmitData("Led 4 ON\n\r");    Delayled();    SIU.PGPDO[2].R |= 0x01000000;  /* Disable LED4*/ } Code Details: SIU - System Integration Unit PCR - Port Configuration Register PGPDO - Parallel GPIO Pad Data Output Registers : definition From viewing the user manual, under Functional port pin descriptions, it is Blink the LED(s): Within the main find the infinite for loop. for ( ; ; )      {      } loop of Main.c, remove all code, and add the LED's with the following function: for(;;) { LED(); } To alter the behavior of the LEDs, change the function itself, or pull specific code from the function and insert it within loops of a program for testing purposes. LED's are often used for testing important parts of an algorithm. By connecting an oscilloscope to a LED, it is possible to test the duration of a key algorithm, or to verify if signal timing is as expected along with the visual cue. Other Qorivva Tutorials Qorivva: Drive DC Motor Tutorial Qorivva: Turning A Servo Qorivva: Line Scan Camera Tutorial Useful Links to Technical Data TRK-MPC5064B Freescale Webpage TRK-MPC5064B Freescale Reference Manual TRK-MPC5064B Freescale Schematic
記事全体を表示
Academic Textbooks Collection of textbooks related to or using Freescale processors and/or covering general embedded engineering concepts. Additional resources including lab manuals, sample projects and more are available in the Faculty Portal.  These resources are only available to to verified faculty partners. 32-bit Microprocessor and Microcontrollers Kinetis (ARM Cortex-M) Title: uC/OS-III The Real Time Kernel for the Kinetis Cortex M4 Author: Jean Labrosse ISBN:9780982337523 Publisher: Micrium Press Released: 2011 ColdFire™ (MC51xx, MC52xx, MC53xx, MC54xx) Title: ColdFire Microprocessors and Microcontrollers Author: Munir Bannoura, Rudan Bettelheim, Richard Soja ISBN: 0976297302 Publisher URL: www.amtpublishing.com Released: 2006 Power™ Architectures (MC5xx, MC55xx) Title: MPC5554/MPC5553 Revealed Author: Munir Bannoura, Richard Soja ISBN: 0976297353 Publisher URL: www.amtpublishing.com Released: 2005 Title: eTPU Programming Made Easy  **Now Available in Japanese Author: Munir Bannoura, Margaret Frances ISBN: 0976297310 Publisher URL: www.amtpublishing.com Released: 2004 Title: TPU Microcoding for Beginners Author: Amy Dyson, Munir Bannoura ISBN: Publisher URL: www.amtpublishing.com Released: 1999 Digital Signal Processing Title: DSP for Embedded and Real-Time Systems Author: Robert Oshana ISBN: 9780123865359 Publiser: Elsevier Released: 2012 Title: DSP Filter Cookbook (Electronics Cookbook Series) Author: John Lane, Jayant Datta, Brent Karley, Jay Norwood ISBN: 0790612046 Publisher URL:  No Data Released: 2004 Title: Digital Signal Processing Fundamentals Author: Ashfaq Khan ISBN: 1584502819 Publisher URL: www.oup.com/us/he Released: 2000 Title: Digital Signal Processing Applications with Motorola's DSP56002 Processor Author: Mohammed El-Sharkawy ISBN: 0135694760 Publisher URL:  No Data Available www.oup.com/us/he Released: 1996 Title: Foundations of Digital Signal Processing: Theory, Algorithms and Hardware Design Author: Patrick Gaydecki ISBN-10: 0852964315 ISBN-13: 978-0852964316 Publisher: IEE; General 32-bit topics Title: Modern Micoprocessors 3rd Edition Author: V. Korneev / A.Kiselev ISBN: 1584503688 Publisher URL: www.charlesriver.com Released: 2004 Title: Micrcontrollers and Microcomputers: Principles of Software and Hardware Engineering Author: Fredrick M. Cady ISBN: 0195110080 Publisher URL: www.oup.com/us/he Released: 1997 Title: Programming Microcontrollers in C Author: Ted Van Sickle ISBN: 1878707140 Publisher URL: Released: 1994 Title: Real-Time Programming: A Guide to 32-bit Embedded Development Author: Rick Grehan, Ingo Cyliax, Robert Moote ISBN: 0201485400 Publisher URL:  www.aw.com Released: 1998 Title: Embedded Systems Design: A Unified Hardware/Software Introduction Author: Frank Vahid, Tony D. Givargis ISBN: 0471386782 Publisher URL:  No Data Available Released: 2001 Title: Microcontrollers in Practice Author: Marian Mitescu ISBN: 3540253017 Publisher URL:  No Data Available Released: 2005 Title: Embedded Systems Architecture: A Comprehensive Guide for Engineers and Programmers Author: Tammy Noergaard ISBN: 0750677929 Publisher URL:  books.elsevier.com/newnes/ Released: 2005 Title: MEMS: Applications Author: Mohamed Gad-el-Hak ISBN: 0849391393 Publisher URL:  crcpress.com Released: 2005 Title: High-Performance Embedded Computing: Architectures, Applications, and Methodologies Author: Wayne Wolf ISBN: 012369485X Publisher URL:  No Data Available Released: 2006 Title: Hardware and Computer Organization Author: Arnold S. Berger ISBN: 0750678860 Publisher URL:  www.elsevier.com Released: 2005 8- and 16-bit Microcontrollers HCS12 Title:  Microcontroller Programming For Engineers Author: Harlan Talley ISBN-13: 978-0-557-09570-4 Publisher URL: http://lulu.com Released: 2009 Title:  Learning by Example Using C – Programming the DRAGON12-Plus Author: Richard E. Haskell and Darrin M. Hanna ISBN: Publisher URL: http://www.lbebooks.com Released: Title:  Learning by Example Using C – Programming the mini DRAGON12 Author: Richard E. Haskell and Darrin M. Hanna ISBN: Publisher URL: http://www.lbebooks.com Released: Title:  HCS12 Microcontrollers and Embedded Systems Author: Muhammad Ali Mazidi, Danny Causey, Janice Mazidi ISBN: 978013672294 Publisher URL: http://www.pearsonhighered.com Released: 2008 Title: Assembly and C Programming for the Freescale HCS12 Microcontroller Second Edition Author: Fredrick M. Cady ISBN: 9780195308266 Publisher URL: www.oup.com/us/he Released: 2007 Title: The HCS12/9S12, An Introduction to Hardware and Software Interfacing Author: Han-Way Huang ISBN: 1401898122 Publisher URL: http://www.delmarlearning.com/electronics/ Released: 2006 Title: Embedded Microcomputer Systems: Real Time Interfacing 2nd Edition Author: Jonathan W. Valvano ISBN: 0534551629 Publisher URL: http://engineering.thomsonlearning.com/ Released: 2006 Title: MicroC/OS-II: The Real-Time Kernel Author: Jean J. Labrosse ISBN: 1578201039 Publisher URL: www.cmpbooks.com Released: 2002 HCS08 Title: Microcomputer Architecture - Low Level Programming Methods and Applications of the M68HC908GP32 Author: Dimosthenis E. Bolanakis, Euripidis Glavas, Georgios A. Evangelakis, Konstantinos T. Kotsis, Theodore Laopoulos ISBN: 978-960-93-4536-1 (English version of the book) ISBN: 978-960-357-101-8 (Greek version of the book: delivered with an educational board) Title: HCS08 Unleashed: Designer's Guide To the HCS08 Microcontrollers Author: Fabio Pereira ISBN-10: 1419685929 Publisher URL: http://www.booksurge.com/ Released: March 24, 2008 Title: Using Microprocessors and Microcomputers: The Motorola Family 4th Edition Author: William Wray, Joseph Greenfield, Ross Bannatyne ISBN: 0138404062 Publisher URL:  www.prenhall.com Released: 1998 Title: The Official Robosapien Hacker's Guide Author: Dave Prochnow ISBN: 0071463097 Publisher URL:  /www.mhprofessional.com Released: 2005 Title: Robot Building for Beginners Author: Dave Cook ISBN: 1893115445 Publisher URL:  http://www.robotroom.com Released: 2002 Title: Intermediate Robot Building Author: Dave Cook ISBN: 1590593731 Publisher URL:  http://www.robotroom.com Released: 2004 HC11/HC12 (Legacy Devices) Title: Software and Hardware Engineering Motorola M68HC12 Author: Fredrick M. Cady, James M. Sibigtroth ISBN: 0195110463 Publisher URL: www.oup.com/us/he Released: 2000 Title: Software and Hardware Engineering Motorola M68HC11 Author: Fredrick M. Cady ISBN: 0195110463 Publisher URL: www.oup.com/us/he Released: 1997 Title: MC68HC12 An Introduction: Software and Hardware Interfacing Author: Han-Way Huang ISBN: 0766834484 Publisher URL: http://www.delmarlearning.com/electronics/ Released: 2002 Title: MC68HC11 An Introduction: Software and Hardware Interfacing 2nd Edition Author: Han-Way Huang ISBN: 0766816001 Publisher URL: http://www.delmarlearning.com/electronics/ Released: 2002 Title: Programming the Motorola M68HC12 Family Author: Gordon Doughman ISBN: 0929392671 Publisher URL:  No Data Available Released: 2000 Title: Embedded Systems: Design and Applications with the 68HC12 and HCS12 Author: Steven F. Barrett, Daniel J. Pack ISBN: 0131401416 Publisher URL:  www.prenhall.com Released: 2004 Title: Introduction to Microcontrollers Architecture, Programming, and Interfacing for the Freescale 68HC12 Author: G. Jack Lipovski ISBN: 0124518389 Publisher URL:  books.elsevier.com Released: 2004 Title: Single and Multiple Chip Microcomputer Interfacing Author: G. Jack Lipovski ISBN: 0138105731 Publisher URL:  No Data Available Released:  No Data Available Title: Microcomputer Engineering, Third Edition Author: Gene H. Miller ISBN: 0131428047 Publisher URL: www.prenhall.com Released:  2003
記事全体を表示
Want to know what the camera sees in an autonomous Freescale Cup Car? A unique drivers perspective view captured with an IPOD touch. Thanks to Josh and Doug ...
記事全体を表示
Highlights for Freescale Cup Malaysia 2011. Enjoy it 🙂
記事全体を表示
A peek at where vehicle technology is headed.
記事全体を表示
Couple of new videos. This time I am running the FRDM-TFC library demo code written by Eli Hughes without any change at all-- successfully on my car. I have had the 0 ohm R24 res replaced with a higher one thanks to the soldering skills of David DiCarlo! The first video highlights demo modes 0 through 3: Car demos - YouTube Demo 0- test buttons and switches Demo 1- test servo Demo 2- test motors Second, I was able to get my little o-scope (xprotolab) to capture the camera analog out-- here: Camera testing - YouTube No major coding done but I understand the library and ports on the boards much better now.   Still haven't resolved the 'whining' apparent when I enable the H-bridge but I will try a few things this week-- it is possible it is harmless. Next steps, buffering camera data then on to control loops! Daniel Oh, I was also able to get the serial port working while code was running so I could get some dynamic feedback. This document was generated from the following discussion: Videos testing out Freescale Cup kit
記事全体を表示
Este video faz um resumo do trabalho da Equipe LAB_TELECOM, da Faculdade de Tecnologia da Unicamp. Ficamos em 5º Lugar.
記事全体を表示
2013 Global Freescale Cup Participant: Japan Car Specs: -Freescale "Bolero" MPC5604B 32-bit MCU
記事全体を表示
The Embedded World 2013 trade show was held last week (26-28 Feb) in Nuremberg. The exhibition attracted over 22,500 visitors (1.3% increase over 2012) of which 29% are from outside Germany. This year, for the 2nd time, Freescale presented its University Programs presentation in addition to its large demo booth in Hall 4A. The University Programs area is dedicated in linking the industry with the universities we partner with, showing demos and achievements from students related to today's Freescale technologies. This year we featured the following demonstrations: ROS (Robot Operating System) communication to a robotic arm and sensor array system featuring distributed computing system based on iMX535 platform from the University of Applied Sciences Georg-Simon-Ohm in Nuremberg Tennis game demonstration as teaching programming tool using the Kinetis K60 Tower system from the University of Applied Sciences of Munich IP Camera stabilisation system for drone system using MPC5604B Track Board from the University of Applied Sciences of Ingolstadt eCARus 2.0 2-seater electric buggy featuring i.MX and 16-bit automotive S12 technologies from the Technical University of Munich Rescue Robot for remote assistance in disaster areas using i.MX and 16-bit automotive S12 technologies from the Technical University of Ostrava FSLBOT mini robot demonstration running on ColdFire from the University of Applied Sciences in Landshut FSLBOT and other student robot projects running on Kinetis K60 Tower systems from the University of Applied Sciences in Deggendorf Here are a few pictures showing robots roaming the grounds and attracting the attention of several visitors. http://www.radio-electronics.com/articles/processing-embedded/embedded-world-2013-the-inside-74
記事全体を表示
Kinetis Header Part 2 of 2
記事全体を表示
The TWR-K40X256 Kit is a Freescale evaluation board powered by the Kinetis K40 microcontroller. The Kinetis microcontroller family is a set of 32 bit ARM Cortex M4 chips which feature flexible storage, lower power usage, high performance and optional Floating Point Unit with many useful peripherals. For more information on the Kinetis family see Freescale's Kinetis website. The Tower System is a prototyping platform with interchangeable and reusable modules along with open source design files. Freescale K40 MCU Tower Module: TWR K40X256 Hardware Setup There are several main hardware configuration steps. After installing the battery, once the USB cable has been connected between the evaluation board and PC, it may be necessary to update the chip firmware which requires moving a jumper pin on the evaluation board. TWR K40X246 Hardware Setup Instructions Board Specific Tutorials K40 Blink LED K40 Drive DC Motor K40 Drive Servo Motor K40 Line Scan Camera Board Tips The TWR-K40X256 features a socket that can accept a variety of different Tower Plug-in modules featuring sensors, RF transceivers, and more. The General Purpose TWRPI socket provides access to I2C, SPI, IRQs, GPIOs, timers, analog conversion signals, TWRPI ID signals, reset, and voltage supplies. The pinout for the TWRPI Socket is defined in Table 3 of the TWR-K40X256 User's Manual, but the user manual does not describe how to order a connector. A Samtec connector, part number: SFC-110-T2-L-D-A is the proper female mating connector for the TWR-K40X256 TWRPI socket. SIDE A/SIDE B White DOTS for counting Pins Solder Wire to GND, and to MCU VDD Pin for testing purposes Important Documents TWR-K40X256 User's Manual TWR-K40X256 Schematics External Links TWR-K40X256-KIT Webpage Kinetis Discussion Forum Tower Geeks Community Website Tower Geeks Freescale Cup Group
記事全体を表示
The components of this kit will provide students with the basic materials. The challenge for teams is to collaborate with peers to design the interconnecting hardware and to create the algorithms that will give a vehicle the competitive edge. The sensor interfacing, vehicle navigation, signal processing and control systems techniques students will learn can be applied to most embedded systems. Included in the Freescale Cup Kit Part Number: TFC-KIT Model Car chassis Line Scan Camera Interface and Motor Controller Board   Part Number: TFC-5604B-KIT  All pieces inside TFC-KIT Freescale Microcontroller Board (Qorivva MPC5604B) Getting Started: 1. Purchase the kit 2. Explore the tutorials and reference materials Take the Freescale Cup Training Tutorials Browse through the sample code within the tutorials Download the reference manuals for your microcontroller, many which are linked to from this wkik Navigate to the training modules and videos of the Designing and programming your Cup Car: Hardware 1.Tools needed: In addition to what is provided in the kit, you will need several other tools you will need to design and build a working intelligent car. Must have Soldering iron Solder Solder wick Wire (gauges) Oscilloscope Useful Power Supply Solder remover bulb Oscilloscope DMM Optional Access to a Rapid Prototyping Machine Software such as Eagle or PCBArtist 2.Electronics Components you will want to obtain soon Software What we’ve provided The software provided in this wikiwill get you started in your task of creating an intelligent car. We have included files which you can load onto your microcontroller which blink a led, activate the motor and servo, as well as a small simple driver for the camera which sends it the proper signals and reads data into your microcontroller. What you need to design Your job will be to connect the various components together, refine and add to the code we have provided and create a working intelligent car. Start thinking about how you will determine where the line is on the track, what algorithm you will use for steering and deciding how much power you want to send to your motor. You may want to read up on PID controllers, or other types of control systems. Are there any special features that you might want to add to your car – such as real time debugging? Those features will require extra work and up front planning. Planning and Teamwork You might not have the time to document all your designs and concepts properly before sitting down to code or to create a piece of hardware, but you might want to create an ordered list of all the different tasks which will be necessary to finish the car, who will do those items, and when you want each task to be finished. A schedule will help you determine if you are on track with your goals …
記事全体を表示
2013 Global Freescale Cup Participant from Mexico Car Specs: -Freescale "Bolero" TRK-MPC5604B
記事全体を表示
2013 Global Freescale Cup Participant: India Car Specs: -Freescale "Bolero" MPC5604B 32-bit MCU
記事全体を表示
FTF2011 - Freescale Cup Invitational - Finals Third Place Team
記事全体を表示
Tiro al blanco que funciona con un LED infrarrojo. Para más información vea el video. Gracias.
記事全体を表示
Added by John Mc on April 25, 2012 Practice Time First Place (TE Connectivity Challenge) - Pennsylvania State University Second Place (TE Connectivity Challenge) - Pennsylvania College of Technology First Place (Speed) - Clarkson University Second Place (Speed) - Pennsylvania College of Technology Third Place (Speed) - Pennsylvania State University Group Photo
記事全体を表示