University Programs Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

University Programs Knowledge Base

Labels

Discussions

Sort by:
Recommend accessories or post your own designs.  For the community by the community! Add your contributions in the comments section below.  As I filter through them I will move them up into this main document, so it is easier to browse. TFC Camera Mounts Designed by Wave Number Print these on demand via Shapeways.com Base Board Hinge Two Position Tower Elevator TWR-ELEV-2 — Wavenumber LLC - Link to the Store
View full article
Which Platform to use?  Qorivva or Kinetis? Both are 32-bit devices. The Qorivva products, a Power architecture, are used widely in the automotive industry.  It has specialized peripherals such as CAN and LIN.  Automotive products are built tough, to high industry standards. The Kinetis products, ARM M4 architecture, are widely used.  You will find it in lots of everyday devices and industrial automation (such as robotics). It can support a lot of consumer peripherals such as USB, WiFi, and Graphical Displays. Which platform is more powerful or easy to use? Both supported processors are powerful 32 bit microcontrollers with similar software peripherals. Take an hour or two to research the evaluation boards on the Freescale sites and their underlying technologies. Think through the design and implementation process of connecting various components like the motor, battery and servo, to the evaluation board. The Tower System provides a modular prototyping platform, and the TRK evaluation board has many features. What level of support does a technology have? For the Cup Challenge, you may use any Freescale microcontroller. There are reference designs here on the wiki and TONS of code and examples on the Freescale site. Students should speak with their professor, and check out their respective documentation and software examples to make a choice. Having on campus support is invaluable in this case. There are online communities for the respective technologies as well. Research which technologies are have more active user communities which best complement the teams design approach? Obviously the Freescale Cup Wiki itself is a resource, and provides details on how to use two different microcontrollers - so it might be best to limit choices to one of these two supported platforms.
View full article
Features General Tower card Form Factor Connections to allow use with a TRK-MPC5604B Board Camera Interfaces 1. 5-pin header to connect directly to Freescale Line Scan Camera 2. Header for 2nd linescan camera (optional) 3. RCA Camera Interface. Includes an LMH1981 Sync Extraction chip and connectors to MCU to allow for low resolution (32x32) decoding of signals Servo Outputs 3-pin Header to connector directly to steering Servo 1 Extra Servo header. Power Accepts direct Battery Power – Onboard Switching regulator 5-18v Tower Card will source power to other tower modules. All circuitry except for motor controller can be optionally powered over USB Connector Battery Input and motor Outputs will be a Tyco (TE Connectivity) TE Connectivity Screw Terminal http://search.digikey.com/us/en/products/1776275-2/A98036-ND/1826899 Motor Driver 2x MC33887APVW : Dual, Independent 5A Motor Driving Circuit Supports forward, reverse and braking. Current Feedback to MCU ADC to allow for closed loop torque control Programming Integrated Kinetis MK20DN512ZVLL10MCU with OSJTAG Can be used stand-alone or be used as a peripheral in the tower system. Additional I/O Extra signals from K40 routed to tower edge card connector. Signals for H-bridge, camera and servo can be routed to Tower Edge connector to be driven by another MCU card. Each can be disconnected via jumper. - We will need to crosscheck the signals to all other CPU modules. Would it be easier to just have a version that doesn't have the K40 populated and OSJTAG populated? Also, we may not need jumpers. Simply configure the Kinets I/O to inputs. Some basic I/O for debugging. 4-poistion DIP Switch + 4 LEDs. Inputs for Tach Signal/Speed Sensor Design Files Rev Alpha Schematics (Sent to MyRO on 4.4.2012) - Includes 3d view Assembly Prints (For Reference) PCB Fabrication Notes Bill of Materials Rev A Errata: Pins 4 & 5 for the camera (Gnd and +3.3v) got swapped on the PCB. You will need to swap the wires in the cable. You can pop the contacts out of the connector housing with tweezers. POT0 has a jumper wire to pin 26 (ADC1_SE18 . This was done to put all signals *except* the NTSC video onto ADC1 to simplify software. Future versions will have this change in the artwork Some components interfere with the tower connector. It can be mated to about 95%. Will work fine. Future versions will fix this issue Rev Beta Schematics, Assembly Prints, BOM, etc. - Includes 3d view Rev B Errata: None known! Google Code repository for the Example Code: https://code.google.com/p/tfc-twr/ This code works with Rev B of the board (and Rev A). All major interfaces & peripherals have been tested. At some point we will make a video going through the code. By default the Linescan camera code is enabled. The code in Main.c is pretty easy to follow. There is also code for the NTSC camera but must enabled in the TFC_Config.h file via a pre-processor directive. There is also code used for teh OSTAG interface, Labview demo applications and drivers for the USB Pictures Just verified the OSJTAG. Test Project to blink the battery LED's was downloaded into the K20 Videos Testing the Servo circuits….. Testing the pots, servos, H-bridges and K20 USB port Linescan Camera Bringup with Labview NTSC Camera Bringup with Labview 1.) This is a basic demo of an NTSC camera being brought in using the a Combo of the ADC, port interrupts and DMA transfers. 2.) I *ahem* overclock the ADC to 24MHz to get some extra resolution for a 64x64 pixel image (the first 6 columns are junk as they contain color burst data*) 3.) I decimate the images to a few frames per second to send over the WIFI (the booster pack card I made) to a Labview program. The Kinetis can bring the data in a the same frame rate of the camera, I just need to send much slower as there is some overhead in my communications scheme (ASCII text) and the WIFI is driven via a UART. 4.) In reality, I can get a 64 x 480 pixel image in memory as I pull in all the lines. I just decimate the rows to get a 64x64 result on the labview display. 5.) DMA does most of the work freeing up the CPU to do algorithms in the foreground.
View full article
Further Reading MCU 101: How does a DC Motor work? MCU 101: Pulse Width Modulation for DC Motors Specifications of Included DC Motor Conditions of Standard Operation Driving Voltage: 7.2V Direction of Rotation: CW viewing from metal housing Position of Motor: Horizontal Operating Temperature: 10 to 30 (Celsius) Operating Humidity: 30%RH to 95%RH Electrical Characteristics No Load Speed: 16000+/- 3200 rpm No Load Current 220mA (max) Mechanical Noise (Distance from housing side A=10cm Background Noise =30dB (max) 75 dB Stall Current: (two points method 1.2&3.9mNm) 3800mA (max) Stall Torque (two points method 1.2&3.9mNm) 80g.cm min End Play of Shaft 0.05~0.60 mm
View full article
Some typical variations: Report Requirements Specific Components Usage Additional Tiers of Competition 2017 Rules per Region EMEA University Challenge 2016-2017 2016 Rules per Region Americas, Malaysia and Taiwan.​ EMEA University Program Challenge EMEA High School Challenge 2015 Rules per Region Worldwide Challenge Rules EMEA 2014 Rules per Region EMEA Worldwide Challenge Rules USA [ARCHIVE] 2013 Rules per Region Malaysia Latin America Latin America - Advanced USA Global Championship
View full article
Welcome to the NXP Cup!  The following pages are designed to introduce students to the concepts of robotics and the components of the NXP Cup Car. Programming microcontrollers is challenging, and the content here is developed to facilitate the process of becoming a successful embedded programmer. General Information Marketplace Special offers from our Global Sponsors History of the NXP Cup Where to buy a racetrack? Mathworks Support for The NXP Cup Race Track Information Community created accessories FAQ's Assembly Directions Keil Software Offer Rules Cameras Regulations Teams' Technical Reports Hardware Concepts Embedded Systems Concepts Real world usage (Practical) Line Scan Camera MCU 101 Tutorials Kinetis FRDM-KL25Z Servo Motor NXP Cup related video series by Prof. Eli Hughes https://community.nxp.com/docs/DOC-1096 Drive (DC) Motors MathWorks basic model for using wide angle lenses on The NXP Cup Car The NXP Cup Technical Reports https://community.nxp.com/docs/DOC-1283 Motor Driver (H-Bridge) https://community.nxp.com/docs/DOC-1057 Battery New Supply location for NXP Cup kits and replacement parts with global delivery possibilities: www.landzo.com CCD sensor: http://www.landzo.com/?product-52.html CCD camera: http://www.landzo.com/?product-51.html Power Motor control unit: http://www.landzo.com/?product-50.html Car kit without Electronics: http://www.landzo.com/?product-49.html In case of any questions or issues, please contact Bella at 汪瑞 <wangrui@landzo.cn> Connect with teams in your region! Brazil EMEA Malaysia Mexico North America Taiwan
View full article
MCU101 (Theory Topics)   Know Your Microcontrollers   Blink LED   Drive a DC Motor   Turn a Servo   https://community.nxp.com/docs/DOC-1030   Navigating Technical Documentation   C programming for Embedded System Software Tools CodeWarrior Software Development Tools & IDE CodeWarrior Beginners Tutorial (videos)   TRK-MPC 5604B Hardware Setup   Creating a new bareboard project   Debugging a bareboard project   Importing projects and merging code   Discussion of the header files (part 1)   Discussion of the header files (part 2) Qorivva Specific (with Code) Beginners Hands-on Tutorials Blink LED Drive DC Motor Turn A Servo Line Scan Camera Hardware https://community.nxp.com/docs/DOC-1016 DIY Camera Mounting Wiring Connections for TRK-MPC5604b Batteries Advanced Tutorial Series Push-Buttons   I2C Sensors using Kinetis K40 Miscellaneous Topics PCB design tips
View full article
The first step of starting your TFC project is to get to know your microcontroller. This article serves you as an introduction of Qorivva MPC560xB microcontroller. Qorivva MPC5604B Summary The Qorivva MPC560xB/C/D family of 32-bit microcontrollers (MCUs) includes the latest in integrated devices for automotive electronics applications. These scalable Power Architecture® devices are supported by an enablement ecosystem that includes software drivers, operating systems and configuration code to help you quickly implement your designs.  For the Freescale Cup Challenge, we have provided Tutorials, example code and projects which are based on the trk-mpc5604b StarterTRAK evaluation board. Which Chip do you have? The chipset mounted on the boards for the Freescale Cup can vary. Always validate your chipset to know it's full capabilities. MPC560xB Product Information Page Difference's At-a-Glance: 5604B = 512MB Flash; no DMA 5606B = 1MB Flash; Has 16-Channel DMA 5607B = 1.5Mb Flash; Has 16-Channel DMA Getting Started Presentation Getting Started with MPC5600B.pptx (2Mb) Important Resources: e200z0 Core Reference Manual TRK-MPC5604B User's Manual TRK-MPC5604BQuick Reference Guide TRK-MPC5604B Schematics Reference manual Freescale's Qorivva MPC560xB Page Power.Org
View full article
This article serves you as an introduction of Kinetis TWR K40 microcontroller. At the end of this part, you shall be able to answer some basic questions such as: what is Kinetis K40, and what is a Tower System. 2. Kinetis K40 32-bit Kinetis MCUs represent the most scalable portfolio of ARM® Cortex™-M4 MCUs in the industry. Enabled by innovative 90nm Thin Film Storage (TFS) flash technology with unique FlexMemory (configurable embedded EEPROM), Kinetis features the latest low-power innovations and high performance, high precision mixed-signal capability. For the Freescale Cup Challenge, we have provided several tutorials, example code and projects based on the twr-k40x256-kit. This board is part of the Freescale tower-system, a modular, reusable development platform that allows engineers to quickly prototype new designs. The K40 chip is a 144 pin package with 512KB of Flash, 245Kb of Program Flash, 4KB of EEProm, and 64KB of SRAM.      Important Documents:           Kinetis K40 Reference Manual           Besides the Reference manual and the Datasheet, the most useful document for learning to program the K40 chip is the:           Kinetis Peripheral Module Quick Reference           Data sheet           Errata      External Links           Freescale's Kinetis K40 Product Page (You can find all the information you want about Kinetis K40 over here) 3. TWR-K40X256 Kit The TWR-K40X256 Kit is a Freescale evaluation board powered by the Kinetis K40 microcontroller. The Kinetis microcontroller family is a set of 32 bit ARM Cortex M4 chips which feature flexible storage, lower power usage, high performance and optional Floating Point Unit with many useful peripherals. For more information on the Kinetis family see Freescale's Kinetis website. The Tower System is a prototyping platform with interchangeable and reusable modules along with open source design files. Freescale K40 MCU Tower Module: TWR K40X256 Hardware Setup There are several main hardware configuration steps. After installing the battery, once the USB cable has been connected between the evaluation board and PC, it may be necessary to update the chip firmware which requires moving a jumper pin on the evaluation board. TWR K40X246 Hardware Setup Instructions Board Tips The TWR-K40X256 features a socket that can accept a variety of different Tower Plug-in modules featuring sensors, RF transceivers, and more. The General Purpose TWRPI socket provides access to I2C, SPI, IRQs, GPIOs, timers, analog conversion signals, TWRPI ID signals, reset, and voltage supplies. The pinout for the TWRPI Socket is defined in Table 3 of the TWR-K40X256 User's Manual, but the user manual does not describe how to order a connector. A Samtec connector, part number: SFC-110-T2-L-D-A is the proper female mating connector for the TWR-K40X256 TWRPI socket. SIDE A/SIDE B White DOTS for counting Pins Solder Wire to GND, and to MCU VDD Pin for testing purposes      Important Documents           TWR-K40X256 User's Manual           TWR-K40X256 Schematics      External Links           TWR-K40X256-KIT Webpage           Kinetis Discussion Forum           Tower Geeks Community Website           Tower Geeks Freescale Cup Group .
View full article
MCU 101 - Beginners Concepts https://community.nxp.com/docs/DOC-1241 Blink LED Drive a DC Motor Turn a Servo Line Scan Camera Glossary of Terms Software Tools CodeWarrior Software Development Tools & IDE (recommend you download the Special Edition) CodeWarrior Beginners Tutorial (videos)   TWR K40X256 Hardware setup   Creating a new bareboard project   Debugging a bareboard project   Importing projects and merging code   Discussion of the header files (part 1)   Discussion of the header files (part 2) (Code) Beginners Hands-on Tutorials Introduction to Microcontroller Programming Blink LED Drive DC Motor Turn A Servo LIne Scan Camera Sample Codes LED BLINK 96MHZ Hardware DIY Tower System Mounting DIY Camera Mounting Batteries Advanced Tutorial Series Push-Buttons https://community.nxp.com/docs/DOC-1034 Miscellaneous Topics Reading a Reference Manual PCB design tips
View full article
The components of this kit will provide students with the basic materials. The challenge for teams is to collaborate with peers to design the interconnecting hardware and to create the algorithms that will give a vehicle the competitive edge. The sensor interfacing, vehicle navigation, signal processing and control systems techniques students will learn can be applied to most embedded systems. Included in the Freescale Cup Kit Part Number: TFC-KIT Model Car chassis Line Scan Camera Interface and Motor Controller Board   Part Number: TFC-5604B-KIT  All pieces inside TFC-KIT Freescale Microcontroller Board (Qorivva MPC5604B) Getting Started: 1. Purchase the kit 2. Explore the tutorials and reference materials Take the Freescale Cup Training Tutorials Browse through the sample code within the tutorials Download the reference manuals for your microcontroller, many which are linked to from this wkik Navigate to the training modules and videos of the Designing and programming your Cup Car: Hardware 1.Tools needed: In addition to what is provided in the kit, you will need several other tools you will need to design and build a working intelligent car. Must have Soldering iron Solder Solder wick Wire (gauges) Oscilloscope Useful Power Supply Solder remover bulb Oscilloscope DMM Optional Access to a Rapid Prototyping Machine Software such as Eagle or PCBArtist 2.Electronics Components you will want to obtain soon Software What we’ve provided The software provided in this wikiwill get you started in your task of creating an intelligent car. We have included files which you can load onto your microcontroller which blink a led, activate the motor and servo, as well as a small simple driver for the camera which sends it the proper signals and reads data into your microcontroller. What you need to design Your job will be to connect the various components together, refine and add to the code we have provided and create a working intelligent car. Start thinking about how you will determine where the line is on the track, what algorithm you will use for steering and deciding how much power you want to send to your motor. You may want to read up on PID controllers, or other types of control systems. Are there any special features that you might want to add to your car – such as real time debugging? Those features will require extra work and up front planning. Planning and Teamwork You might not have the time to document all your designs and concepts properly before sitting down to code or to create a piece of hardware, but you might want to create an ordered list of all the different tasks which will be necessary to finish the car, who will do those items, and when you want each task to be finished. A schedule will help you determine if you are on track with your goals …
View full article
All results of the NXP CUP survey can be found here.
View full article
Getting Started with the NXP CUP These pages help you with the question of how to achieve the goal of creating an autonomous vehicle that quickly navigates around a track (timed race) and solves precision tasks (Figure 8, Speed limit zone, Obstacle avoidance) What is a Microcontroller? For information on what a microcontroller is head to the microcontrollers article. Getting Started - Learn to Program a microcontroller First off, you are going to need to know C programming. For a crash-course head to c-programming-for-embedded-systems. The classic first application to learn how to program a microcontroller is to get through the process of Blinking an LED. This wiki contains a tutorial for each of the Cup microprocessors which simplifies the process of setting up the evaluation board, installing the Integrated Development Environment, and programming the board with a simple set of software which blinks a LED. The Blink a LED tutorial is the first of 4 tutorials designed to familiarize students with the process of designing a cup car. These four tutorials will introduce students to many of the fundamentals of robotics, the software used to control the locomotion and sensors on an autonomous line following vehicle, and provide example code which help simplify the process of creating a competitive entry in the NXP CUP. Here is an outline of the Basic Microcontroller Programming Tutorial: Read the microcontroller article Choose a microcontroller Set up the development environment Set up the microcontroller evaluation board Program A LED move to the next tutorial… Course Material from the NXP CUP professors and supporters: Thanks to our professors and NXP CUP supporters we created an exclusive starter kit. It includes lecture material, information on the car, useful tips on the board etc. Download the file below and dive into a huge support portfolio! ARC Ingenierie Files - The Champions Board! ARC Ingenierie has been very generous in providing us with their PCB layout and Gerber files to produce your own NXP CUP board. They also provided sample code and drivers plus instructions (in French) to get you started. How cool is that?! Many thanks to ARC, this is much appreciated! Download the files below. If you want to build your own board, please contact us. When do so please keep in mind to give credit to ARC university. All boards should have "HE-ARC Ingenierie" inscription.   Further support links: Information on Line Scan Camera Use The Book of Eli - Microcontrollers, robotics and warp drives Microcontrollers MCU 101 - C Programming for Embedded Systems NXP CUP Shield for the FRDM KL25Z
View full article
1. Download CodeWarrior 10 Evaluation Version (Eclipse, Windows-hosted) To Program your microcontroller you will need to set up the CodeWarrior Integrated Development Environment. CodeWarrior is available on the Freescale.com Website. Method 1: Direct Link direct download link (Caution - link may not be up to date) Method 2: Navigate to the Download Link From Freescale.com click on: "Design Resources" tab at the top of the page, then navigate to "Software and Tools", and then to "Codewarrior Devleopment Tools" Click on the "Download CodeWarrior now link" Click on the Download Evaluation Versions link" Within this page, use your browser "find" feature (Typically CTRL-F) to search for the text string "Kinetis." Click the "download" button next to "Evaluation: CodeWarrior for Microcontrollers(Eclipse, Windows-hosted) version". and save it to your computer. 2. Install CodeWarrior To install CodeWarrior Development Studio for Microcontrollers v10, double-click the installation package and a wizard will guide you through the installation process. Installation Notes: Are you using Windows Vista or Windows 7? 1. The CodeWarrior installer should be run using the ‘Run as administrator’ option. CodeWarrior service packs are installed with the Eclipse Updater. The updater should also be run with this option. To start the Eclipse Updater select ‘Window > Install new software’ in the menu. 2. Eclipse needs read/write access to the installation folder. Make sure the eclipse installation folder has the appropriate permissions for all users. 3. Make sure your project workspace has read and write permissions Evaluation Edition User: If you are installing the Evaluation Edition, the Evaluation license is automatically installed with your product and you do not need to register it. This license allows you to develop projects as Professional Edition within the 30-day evaluation period. After 30 days, the license works as Special Edition license (free permanent, but feature limited) which supports unlimited assembly code, up to 32KB of C code for HCS08/RS08 derivatives, up to 64KB of C code for V1 ColdFire derivatives and up to 128KB of C code for V2-V4 ColdFire and Kinetis derivatives and up to 512KB of C code for MPC56xx derivatives. Once you have finished downloading and installing CodeWarrior, users can return to Downloading and Installing P&E as part of the Blink a LED on Kinetis Tutorial Additional Resources: CW10 User Manual —The Above user manual has a list of other helpful docs which can be found within your CodeWarrior installation directory. (i.e. <CWInstallDir>\MCU\Help\PDF\)
View full article
1. Download CodeWarrior 2.8 Evaluation Version (Classic, Windows-hosted) To Program your microcontroller you will need to set up the CodeWarrior Integrated Development Environment. CodeWarrior is available on the Freescale.com Website. Method 1: Direct Link direct download link (Caution - link may not be up to date) Method 2: Navigate to the Download Link From Freescale.com click on: "Design Resources" tab at the top of the page, then navigate to "Software and Tools", and then to "Codewarrior Devleopment Tools" Click on the "Download CodeWarrior now link" Click on the Download Evaluation Versions link" Within this page, use your browser "find" feature (Typically CTRL-F) to search for the text string "V2.8" Click the "download" button next to "Evaluation: CodeWarrior for MPC55xx/MPC56xx Microcontrollers V2.8 (Classic)". and save it to your computer. 2. Install CodeWarrior To install CodeWarrior Development Studio for Microcontrollers v2.8, double-click the installation package and a wizard will guide you through the installation process. Installation Notes: Are you using Windows Vista or Windows 7? Evaluation Edition User: If you are installing the Evaluation Edition, the Evaluation license is automatically installed with your product and you do not need to register it. This license allows you to develop projects as Professional Edition within the 30-day evaluation period. After 30 days, the license works as Special Edition license (free permanent, but feature limited) which supports unlimited assembly code, up to 32KB of C code for HCS08/RS08 derivatives, up to 64KB of C code for V1 ColdFire derivatives and up to 128KB of C code for V2-V4 ColdFire and Kinetis derivatives and up to 512KB of C code for MPC56xx derivatives. Once you have finished downloading and installing CodeWarrior, users can return to Downloading and Installing P&E as part of the Blink a LED on Qorivva Tutorial
View full article
Notes: Will ask - Do you want to add the Remote System to your workspace? Click yes Build - select flash Plug in your K40 board to the usb (tower is not needed in this step) Click on debug as it will ask you which configuration you want to launch: Select the internal flash one. Bottom right you will see it "Launching with a little green light indicating that it is programming your board. After clicking debug as, you will enter the debug Eclipse "view" nothing will happen until you press "resume" Download the Zip file which is located: LED BLINK 96MHZ How to: Set up a debug: Program the FLASH Click on project in codewarrior projects menu There is noe issue with the Kinetis chips errata 2448. The code which is in our zip file already has these changes made, but if you download Kinetis example code from the official freescale site instead of using the wiki code - it may not work. Read more about the work - around here: here ++ Test to make sure everything is working properly CodeWarrior typically defaults to a "pause" setting when the debug is first started. To test wheter the code is working you will need to press "resume"
View full article
After completing the LED, Motor Control and servo tutorials, students should be comfortable with many of the subjects necessary to enable and input data from the Line Scan Camera. The line scan camera module consists of a CMOS linear sensor array of 128 pixels and an adjustable lens. This camera has a 1x128 resolution. The camera is mounted on a boom above the car to ensure the greatest field of view. Determining the angle of orientation about the pivot at the top of the boom will change the “look ahead” distance of the camera and enable more efficient steering algorithms Solution Overview One method of implementation is to take the entire readout of the camera and store it in the memory. Then a line detection algorithm can be used to locate the position of the black line. Due to varying lighting conditions, some level of pixel thresholding may be necessary as the intensity differences across the data may not always produce a clear indication of the line location. A good approach is to use an algorithm that looks for changes in the magnitude of voltage from one portion of the array to another, since the camera’s AO magnitude is directly related to the brightness the pixel array senses. If the microcontroller finds a significant decrease in magnitude followed by large increase in magnitude this would give us a good indication of the location of the line. For this a derivative function can be utilized. Once we have successfully determined the position of the black line, immediately adjust the wheels to adjust the direction of the car so that the black line will remain in the center of the camera’s view. Sample camera output (for illustrative purposes only) The camera outputs an analog signal from 0 to 5V depending on the grey-scale value of the image. to simplify our sample we will assume that we have set limits for the line and have transformed the data to digital bits using a threshold value. 0’s are high intensity (non-line locations), 1’s are low intensity (black or line locations) 10000000000000000000000000000000001111101000000000000000000010000000000000000 Since the camera provides a 128x1 bit picture, and the camera will be pointing down at the track which is a fixed width. A control algorithm should be developed to line up the 1’s in the center of the 128 bits. The center of the field of view will be require calibration and testing, but it is assumed that the camera will remain in a fixed location pointing down the center of the forward looking axis of rotation. Usage For normal operation of the camera, the following signals must be produced and processed: CK (clock) - latches SI and clocks pixels out (low to high) continuous signal SI (serial input to sensor) begins a scan / exposure discrete pulses, pulse must go low before rising edge of next clock pulse AO (analog output) - Analog pixel input from the sensor (0-Vdd) or or tri-stated The CK and SI signals are simple ON/OFF signals which can be produce using a GPIO Pin, setting the pin high and low corresponding to the desired exposure time of the camera. The only other requirement is to read the Analog Output of the camera which requires the initialization of the Analog Module and setting it to the proper pinout.  Actual camera output, below:                                                                                                                        Yellow = SI, Green = Camera Signal, Purple = clock More camera waveforms and information (Power Point) available here This link shows a video of the camera connected to the oscilloscope http://www.youtube.com/watch?v=YOAd3ERnXiQ To obtain this signal, connect channel 1, 2 and 3 of an oscilloscope to the SI pulse (Trigger off this signal), CLK, and AO signals. GPIO Details are provided in the LED tutorial. The timing for creation and read of the signals is crucial and is detailed in the diagram below. This information can also be found in the Line Scan Datasheet. Analog Read: The Analog Output (AO) signal from the camera needs to be processed and read by the microcontroller's Analog to Digital Converter (ADC). This ADC device converts a continuous signal into a discrete number which is proportional to the signal voltage. An 8 bit ADC has 256 discrete levels (2^8). If a analog signal between 0 and 5 volts is sampled, a digital discrete number of 0 would correspond to zero volts, and a digital discrete number of 255 would correspond to 5 volts. A number such as 145w would correspond to about 2.8 volts. The maximum signal sample rate is limited by the microcontroller. Proper configuration of the ADC peripheral and the multiplexer of the chip will configure a pin to read in an analog signal when calling the function. More details on analog to digital converters can be found on the wikipedia site here. Read/Write In write mode, the GPIO pin can be set, cleared, or toggled via software initiated register settings. Microcontroller Reference Manual: Analog to Digital Converter You will find high level information about GPIO usage in several different areas of a reference manual. See the reference-manual article for more general information. Relevant Chapters: (see GPIO chapters for clock and SI Creation)  Introduction: System Modules: System Integration Modules (SIM) - provides system control and chip configuration registers Chip Configuration: Signal Multiplexing: Port control and interrupts Hardware The device discussed within this tutorial is the Line Scan Camera featuring TAOS 1401  Focusing the camera: Once the sensor is perfectly working the next step is to find the best position of the lens that will generate the clearest images. The best way to do it is using an oscilloscope: Connect the SI and AO signals to the oscilloscope Set the SI pulse so that it can be clearly seen and then trig the AO signal with the SI signal using the trig function Fix the camera looking at a sheet of paper with a black line in the center The image of the black line will appear on the oscilloscope screen Screw the camera until you find the position where the line seems the clearest Camera Circuit   5 wires must be connected  ground power SI CLK AO Camera Limitations According to the datasheet:  "The sensor consists of 128 photodiodes arranged in a linear array. Light energy impinging on a photodiode generates photocurrent, which is integrated by the active integration circuitry associated with that pixel. During the integration period, a sampling capacitor connects to the output of the integrator through an analog switch. The amount of charge accumulated at each pixel is directly proportional to the light intensity and the integration time." Integration Time: T T = (1/fmax)*(n-18)pixels + 20us, where n is the number of pixels Minimum integration time: 33.75us Maximum integration time: capacitors will saturate if exceeding 100ms frequency range 5 Khz - 8 Mhz (8 Mhz is fmax in equation above) The integration time is the following: It occurs between the 19th CLK cycle and the next SI pulse. The CLK frequency itself has little to do with the integration time. One each rising edge, the clock outputs one of the previously sampled intensity values. This means that integration time should be set by varying the time between SI pulses, not changing the clock frequency. Make the CLK frequency high, and have as much time as needed between the two SI pulses to obtain the desired intensity value. Helpful Hints Light can be transmitted through the pcb on the back of the camera. This unwanted extra light shining on the CMOS linear sensor can induce significant errors into your signals received. A shroud or housing for the camera unit can easily eliminate this problem. One of the easiest solutions is to place a piece of electrical tape across the back of the camera in the highlighted area indicated in the picture below. When testing the car on the track or transporting it, it is not uncommon for the focus on the camera to loosen or change. Therefore it is recommended that after adjusting your camera focus for maximum performance you make mark (ex. metallic sharpie) between the lens and its body so you can realign the camera lens to it's proper position easily if it does shift.   *When hooking up the linescan camera, regardless of position or focus there is a drop off at each end of the image data. This is easily viewed with an oscilloscope. This effect is undesirable, particularly when you are finding your line position utilizing a derivative approach. These fallouts cause erroneous derivative values, and hence a poor line position solution. Two solutions we found useful were: (1) Ignoring the first 10-15 pixels and last 10-15 pixels of the image data array, and then determining the line position; (2) Often when making decisions in the code as to where the line was at it was found useful to use a threshold value for the difference in the derivative position, and secondly a binary threshold on the camera data. Note that the falloff depends on camera focus, position, etc. Therefore, these threshold values and pixels in which to ignore are relative to a specific instance. The problem however is common to the camera.  * Saving previous line position values Since the camera can read the line very quickly while the servo can only update every 20ms, there are multiple camera reads before the servo can update, if you are reading the camera fast and then overriding without saving them in some form then those camera reads are being wasted and are better off not having occurred. What can help is to create some sort of filter by bringing new values into an array with previous values and preforming some sort of averaging. The following code will take the new line position value and place it in a 1xA array where A is defined by CAMERA_AVG. NO AVERAGING IS OCCURRING HERE all that is happening is the camera values are being saved in a simple array, what is done with them is up to you. The way this works is that it shifts the entire array so the oldest data point is discarded in order to make room for the new line position at the other end of the array. It will only adds the new value if there is one available if not it copies the previous first position value to the new first position value. CAMERA_AVG => an integer value for how long the averaging length will occur gfpLineAverage => global floating point array of camera center line values fpLinePos => returned from read camera this is the center line position ReadCamera() => is the read camera function call returns a floating point value of fpLinePos // this will shift the values up and throw away the oldest value // then add a new reading for (i=CAMERA_AVG;i>0;i—) { gfpLineAverage[i]=gfpLineAverage[i-1]; } // if no line was detected the previous camera value will be passed on if (fpLinePos=ReadCamera()) { gfpLineAverage[0]= fpLinePos; } For example an array of of center line position values ranging from 0-127 could look like. Initial values [51 50 52 54 58 55] New position of 45 read [45 51 50 52 54 58] New position of 44 read [44 45 51 50 52 58] No value read [44 44 45 51 50 52] No value read [44 44 44 45 51 50] New position of 50 read [50 44 44 44 45 51] Tutorials Line Scan Camera: Kinetis ARM Cortex M4 Tutorial Specifics of how to configure the K40 ADC, to create the delay code is covered in the K40: Line Scan Camera Tutorial. Line Scan Camera: Qorivva Tutorial Specifics of how to configure and program the trk-mpc5604b board to blink an LED is covered in the qorivva:line-scan-camera Tutorial. Additional Resources Freescale app note on interfacing with a linescan camera Freescale app note on interfacing with an RCA camera
View full article
There are three types of memory in a typical Micrcontroller  FLASH - where your programs are stored RAM - for manipulating variables during runtime EEPROM - stores long term information
View full article
Pulse-width modulation (PWM), is a technique utilized in robotics for controlling motors and servos. Through the use of internal counters, the microcontroller modulates the duty cycle of a square wave to control the amount of power delivered to a device. The Duty Cycle referes to the porportion of time the square wave is 'on' as compared to the repeating signal period. The higher the duty cycle the higher the power carried in the signal. Duty cycle is expressed as a percentage of time the signal is 'on', with 100% being consistently on.  overview-create-a-pwm-signal Once you feel comfortable that you understand the concepts behind a duty cycle signal, return to Reference Manual: Timer Information portion of the Drive A DC Motor Tutorial
View full article
Pulse-width modulation (PWM), is a technique utilized in robotics for controlling motors and servos. Through the use of internal counters, the microcontroller modulates the duty cycle of a square wave to control the amount of power delivered to a device. The Duty Cycle referes to the porportion of time the square wave is 'on' as compared to the repeating signal period. The higher the duty cycle the higher the power carried in the signal. Duty cycle is expressed as a percentage of time the signal is 'on', with 100% being consistently on. Configuring the Timer The generation of a PWM signal using is based on hardware comparisons between register values and free running hardware counters. The timer module offers similar hardware comparison in the form of output compare circuitry. The contents of a register are continually compared to the master free-running timer. When a match occurs, a hardware output event can be configured to take place and an interrupt can then call a service routine. Timer I/O The Timer I/O port control registers are located in the Port Integration Module (PIM). Each port can be configured on a pin-by-pin basis and each timer input capture/output compare channel is associated with a single pin. On reset, timer modules are disabled and the appropriate I/O port defaults to a high impedance input. The initial state of a pin can be defined by configuring the appropriate general purpose I/O pin as an output in the Data Direction Register (DDRT) and writing the Port Data Register (PTx) to the appropriate state. An external pull device is required to control the level during reset.Setting the Timer Enable (TEN) bit in the Timer System Control Register (TSCR1) enables the timer module. The output compare functionality is disabled in the default module reset state. In this mode, the Data Direction bits (DDRTx) control the I/O state of the pins while the Input Compare logic monitors transitions on the pins. Setting the appropriate bit in the Timer Input Capture/Output Compare Select (TIOS) register enables a timer channel for output compare, as needed for PWM generation. In output compare mode, the Output Mode (OMn) and Output Level (OLn) bits in the Timer Control Registers (TCTL1/2) simultaneously select the compare event action and enable the connection of the output compare output logic to the relevant pin. If the OMn:OLn control bits for a channel are both zero the DDRTx and PTx bits control the state of the I/O pin. Setting either (or both) of the OMn:OLn bits connects the output compare circuitry to the pin, over-riding the DDRTx and PTx settings. Following a reset, the output state for each output compare circuit is zero. For PWM generation, the OM bit is set (= 1) so that the output compare output follows the state of the associated OL bit on each compare event. The state of the OL bit is inverted every time the timer channel interrupt is serviced to produce a toggling output. Clearing or setting the TEN bit disables or enables the timer module respectively, but does not modify the contents of any other timer control registers or the state of the output compare output logic A number of considerations have to be made when configuring the timer module for PWM. From a high-level point of view, the main considerations are: • PWM Frequency • PWM Duty Cycle In order to generate the required PWM frequency, the bus clock frequency must be known, and the timer prescaler must be set. These values will depend on the range of PWM frequencies that will be generated and the degree of resolution of the PWM signal. Maximum resolution and PWM frequency are limited by the maximum timer clock frequency. Lower PWM frequencies are limited by the minimum timer clock frequency. This can sometimes result in a trade-off and can be evaluated as shown in Figure 1. Once the timer channel is configured, the PWM signal can be generated using the timer channel interrupt. This should be configured to call an interrupt service routine (ISR) to load the timer compare register with the appropriate compare value (mark or space). This is achieved by identifying whether the last action was a negative or a positive edge transition, switching the transition status and loading the compare register with the next appropriate value. References to the master timer count register can be avoided by simply adding consecutive mark and space values to the timer compare register on successive ISR function calls as shown in Figure 3. Timer roll-over is seamless when using unsigned integer addition. Using the previous compare value as a reference for generating the next compare value allows precise output timing even though the ISR latency may vary. Starting the PWM is a task that requires careful consideration. In order to start the PWM generation using the interrupt, it is necessary to configure the first compare event manually. It is necessary to configure a forced compare by setting a compare to switch the output pin to the first transition state. After the initial compare event, interrupts will handle the PWM generation. The HCS12 does not support hardware forced compare, but a forced compare can be configured by setting a normal compare a few cycles ahead of the current free-running timer value. The cycles are necessary to compensate for internal latency within the MCU. The number of cycles will vary depending on the core and module clocks. When stopping the PWM generation, it is important to consider runt pulses (pulses with width shorter than the prescribed mark or space ratio as appropriate). To avoid these pulses, disable the PWM generation by setting the appropriate local interrupt mask within the associated interrupt service routine. The appropriate state of the pin at stop time can be set by disabling the interrupt in either part of the ISR; either the rising or falling edge portion. Additional Tutorial Resource: Introduction to DC Motor Control - Part II Lecture 2: Pulse Width Modulation
View full article