S32 Design Studio Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

S32 Design Studio Knowledge Base

Discussions

Sort by:
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Power Architecture v2.1 Update 7          What is new? Integrated S32 SDK for Power Architecture RTM 3.0.2 (see the S32 SDK release notes) This is a cumulative update - it includes all the content of previous updates (Update 1,Update 2 ) Installation instructions The update is available for online installation (via S32DS Extensions and Updates) or offline installation (direct download link)  installation:  go to menu "Help" -> "S32DS Extensions and Updates" dialog  select from available items and click "Install/Update" button offline installation:   go to S32 Design Studio for Power product page -> Downloads section or use direct link to download the update archive zip file  Start S32 Design Studio and go to "Help" -> "S32DS Extensions and Updates", then click 'Go to Preferences' link And add a new site "Add..." repository and browse to select the downloaded update archive zip file you downloaded in the previous step Select the 'S32 Design Studio for Power Architecture Device Package' and 'Update with S32 SDK 3.0.2 for Power Architecture' packages and click "Install/Update" button.   This will start the update installation process.
View full article
So you have created a project in S32DS with target of S32V234 Cortex-A53 APEX2/ISP Linux . You have built the project and now want to execute it on the S32V234-EVB2, which is running the Linux BSP for the VSDK on a microSD card. There are many ways to do this, however, the simplest is to use the built-in support within S32DS to run and/or debug over an Ethernet connection to the Linux BSP OS running on the EVB. In order for S32DS to connect to the Linux BSP OS, the following steps should be followed: 1) First, we must complete the steps in HOWTO: Setup S32V234 EVB2 for debugging with S32DS and Linux BSP . 2) With the Linux running on the EVB, start a terminal program (for ex. PuTTY) on your PC 3) Set Connection type to Serial 4) Set speed to 115200, Data bits 8, Stop bits 1, Parity None 5) Set Serial line to the COM port associated with the USB port setup in step 1 of this document. (for ex. COM3) 6) Click Open to start the terminal session 7) Press enter key to bring up login prompt 😎 Log into Linux (login name is "root") 9) Get IP address, enter command:    ifconfig       Make note of the IP address 10) Launch S32DS for Vision. From the C/C++ Perspective, select Run->Debug Configurations... 11) From 'C/C++ Remote Application'. Select '<project_name>_Remote_Linux' debug configuration. 12) Select New to create new debug connection. 13) Select SSH 14) Enter the IP address noted earlier 15) Enter user ID as "root". The Linux BSP uses Password based authentication, but by default, no password is set. So the password can be left blank. 16) Select Finish 17) Select Apply, and then if you wish, Debug This connection is stored within the workspace. It can be added to any projects within the workspace. If a new workspace is created, then this connection will not appear in the selection list.
View full article
Building Projects There is already a significant amount of information already available on this topic. Please explore the external references listed below for detailed information. External References Building Projects with Eclipse Build Several CDT C++ projects from command line With the following command line, it is possible to build the project KEA128: eclipsec -nosplash -application org.eclipse.cdt.managedbuilder.core.headlessbuild -data C:\Users\username\workspaceS32DS.ARM2.0 -build KEA128/Release   The project was located in workspace - C:\Users\username\workspaceS32DS.ARM2.0 Project Name is: KEA128 Build Configuration is: Release Emitting Source Code S32 Design Studio for Vision Emitting the source code from the command line: There are 2 sections in the Reference Manual, one for each of the ISP and APEX2 Visual Graph Tools. Processor Expert Software - S32 Design Studio There is a section in the Processor Expert User Guide titled 'Command Line Interface'
View full article
        Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for ARM v1.3, Update 4             S32 Design Studio for ARM v1.3 Update 4 has been just released. This update is applicable for S32 Design Studio for ARM v1.3 hosted on Windows and Linux and does not require any previous update to be installed. Note: Update 3 (which is available as a separate update) includes S32K148 support only. Update 4  contains update 3 so you don't have to install it separately.   What is new? Update 4 contains: Device support for S32K148 and S32K14x_SDK_EAR_0.8.3 which supports S32K148 & S32K144. More information can be found in the release notes for the SDK attached.   Installation instructions The update is available for online (Eclipse Updater) or offline (direct download link) installation.   online installation: go to menu "Help" -> "Install New Software..." dialog select predefined NXP S32 Design Studio update repository http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_ARM_1_3/com.freescale.s32arm.updatesite select all available items and click "Next" button offline installation: go to S32 Design Studio product page -> Downloads section or use the direct download link to download the "S32 Design Studio for ARM v1.3 - Update 4" file.   Start S32DS and go to Help -> Install New Software... Add a new "Archive" repository, browse to select the downloaded Update 4 archive file. Select all available items and click "Next" button.  
View full article
This tutorial walks a user through the steps to create a new application for the S32V234 MCU using S32DS (with S32V2xx development package and Vision extension package for S32V2xx) and the built in ISP Visual Graph tool. The completed application will take an image from camera, processes it on ISP and put the processed image in DDR buffers. Once the image is in DDR buffer, host (A53 core running Linux) will direct the display control unit (DCU) to display it on screen. Prerequisites: Some knowledge of the S32V234 System on a Chip (SoC) Have an understanding of the ISP architecture Be familiar with the NXP Vision SDK software Looking for Interactive Tutorial? You can view this tutorial as a video, go to Getting started with S32 Design Studio IDE including Vision Extension Package for S32V processors | NXP and select '3 | Create a new ISP Application'
View full article
The S32 Design Studio for S32 Platform supports the S32R45 device with the S32 Debugger. This document provides the details on how to setup and begin a debugging session on the S32R45 evaluation board.   Preparation Setup the software tools Install S32 Design Studio IDE   Use the Extensions and Updates menu within S32 Design Studio for S32 Platform to add the S32R4xx Development Package.   Setup the hardware Confirm the setup of the S32R45 evaluation board.  Configure the JTAG. The S32R45 evaluation board supports both 10- and 20- pin JTAG connections. The default board configuration is set to 20-pin, change the position of the jumper J59 from 2-3(default)  to 1-2, if you are using the 10 Pin JTAG interface. Both are supported by the S32 Debugger and S32 Debug Probe. Connect the power supply cable Setup the S32 Debug Probe Connect the S32 Debug Probe to the evaluation board via JTAG cable. Refer to the S32 Debug Probe User Manual for installation instructions. Use the JTAG connection as was confirmed in the previous step. Connect the S32 Debug Probe to the host PC via USB OR via Ethernet (via LAN or directly connected, and configured for static IP address) and power supply connected to USB port. Launch S32 Design Studio for S32 Platform Create new or open existing project and check that it successfully builds. If creating a new project, be sure the S32 Debugger is selected in the New Project Wizard.     Procedure Open the Debug Configurations menu, then follow the steps depending on whether an S32 Debugger configuration exists for your project. If the project was created using the New Project Wizard in S32 Design Studio for S32 Platform, and the S32 Debugger was selected as the debugger, then it likely has existing debug configuration(s).       S32 Debugger Configuration(s) Exist If existing S32 Debugger configuration, proceed with probe configuration. Otherwise, skip to the next section. Below is shown the debug configuration which appears for the provided SDK example project 'hello_world_s32r45'. The suffixes 'debug', 'ram', and 's32debugger' refer to how the project was built and the debugger the configuration is for. Select the debug configuration which corresponds to the project, build type debug, and primary core (if a multicore project) Select the Debugger tab Select the Interface (Ethernet/USB) by which the S32 Debug Probe is connected. If connected via USB and this option is selected for interface, then the COM port will be detected automatically (in the rare event where 2 or more S32 Debug Probes are connected via USB to the host PC, then it may be necessary to select which COM port is correct for the probe which is connected to the EVB) If connected via Ethernet, enter the IP address of the probe. See the S32 Debug Probe User Manual for ways to determine the IP address.   S32 Debugger Configuration(s) Do Not Exist There might be no existing debug configuration if the project is being ported from another IDE or was created to use another debugger. Select the S32 Debugger heading and click New Launch configuration (or double click on the S32 Debugger heading, or right click on the S32 Debugger heading and select New from the context menu) A new debug configuration appears with the name set to the name of the active project in the Project Explorer window(this can be set by opening a file from the project or selecting an already opened file from the project in the editor), and the build type which was used to build it. If this is not matching your intended project then it can either be modified to match or deleted and recreated after the active project has been changed to the desired project. Adjust the name of the project as desired. From the Main tab, check that the Project field is set to the correct project name, as listed in the Project Explorer, and that the C/C++ Application is set to the ELF file which was built. The name of the project can be customized, but '_' must be used instead of spaces. If the Project field is not set or incorrect, click Browse... and then select the correct project name from the list. If more than one project is open in the workspace, then each will be listed. This shows how, regardless of which project is active in the C/C++ perspective, any available workspace project could be associated. This can be useful when reusing a debug configuration from one project in another. If the C/C++ Application is not set or incorrect, click Search Project... and then select the correct binary file (will only work if Project field is correct and project was successfully built). Switch to the Debugger tab, Click 'Select device and core' and then select the correct core from the list. In this case, the M7_0 core is correct. If this is not the primary core, then uncheck the box next to 'Initial core'. This is done only for multi-core projects for the non-boot cores. This causes the scripts to skip the initialization of the core as the boot core will launch the other cores so additional initialization will not be required. Select the Interface (Ethernet/USB) by which the S32 Debug Probe is connected. If connected via USB and this option is selected for interface, then the COM port will be detected automatically (in the rare event where 2 or more S32 Debug Probes are connected to the host PC, then it may be necessary to select which COM port is correct for the probe which is connected to the EVB) If connected via Ethernet, enter the IP address of the probe. See the S32 Debug Probe User Manual for ways to determine the IP address. Click Apply Click Debug. This will launch the S32 Debugger. When the debugger has been successfully started, the Debug perspective is opened and the application is executed until a breakpoint is reached on the first line in main().  
View full article
Create Project From Example S32DS for ARM: Create and Debug a New Project from Example Code in S32 DS IDE for ARM based MCUs. Learn how to create a new project in S32 Design Studio IDE and load an example code to blink an LED using the S32K144EVB and build and debug the project. Create New Project S32DS for ARM: Create and Debug a New Project in S32 DS IDE for ARM based MCUs Learn how to create a new project in S32 Design Studio IDE using Processor Expert and SDK to blink an LED using the S32K144EVB and build and debug the project.
View full article
The Vision SDK root is contributed to the Design Studio as a dynamic path variable “S32DS_VSDK_DIR”. Several Design Studio services use this variable to access the resources inside the Vision SDK. By default, this variable points to “${eclipse_home}../S32DS/s32v234_sdk”, i.e. to the Vision SDK shipment bundled with Design Studio. Technically you can change this variable to point to another instance of Vision SDK using the following steps: 1. Go to the main menu "Window -> Preferences" 2. Filter the preference dialog with "sub" keyword or just navigate to "Run/Debug -> String Substitution node. 3. Edit Variable "S32DS_VSDK_DIR" to assign another value to be substituted as Vision SDK root 4. Press OK when changes are complete.
View full article
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for ARM® 2018.R1  Update 9          What is new? S32K1xx SDK RTM 3.0.0 supporting S32K116, S32K118, S32K142, S32K144, S32K146, and S32K148  (S32K1xx SDK release notes) AMMCLIB version 1.1.15  (AMMCLIB S32K14x release notes) Segger J-Link drivers v6.42a (J-Link release notes) This is a cumulative update - it includes all the content of previous updates (Update 1, Update 2, Update 3, Update 4, Update 5, Update 6, Update 7, Update 8) Installation instructions The update is available for online (via Eclipse Updater) or offline installation (direct download link)  installation:  go to menu "Help" -> "Install New Software..." dialog  select predefined update site "S32DesignStudio - http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_ARM_2018.R1/updatesite" select all available items and click "Next" button   offline installation:   go to S32 Design Studio for ARM product page -> Downloads section or use direct link to download the update archive zip file Start S32DS and go to "Help" -> "Install New Software..." Add a new "Archive" repository and browse to select the downloaded update archive .zip file you downloaded in the previous step Select all available items and click "Next" button.   This will starts the update installation process.
View full article
The Image Vector Table (IVT) image is a set of pointers to other images which are required by the BootROM. It typically contains the following images, though not all are required to create a valid IVT image: DCD Self-Test DCD HSE Application Bootloader The IVT Tool enables configuration and generation of the IVT image as specified in the BootROM reference manual. Prerequisites Before using the IVT Tool, it will be useful to have already generated the binary image from your application project, it will be an input to the IVT. It may also be necessary to include a DCD image, for example, to initialize the SRAM. For application bootloader image, follow the steps in HOWTO: Generate S-Record/Intel HEX/Binary file, selecting 'Raw binary' option. For DCD image, follow the steps in HOWTO: Use DCD Tool To Create A Device Configuration Data Image . Procedure With desired project open in project explorer (C/C++ perspective), switch to IVT perspective. Click on 'Open IVT'. In the Boot Configuration section, check that the correct Boot Target is selected. For the demonstration here, M7_0 is the correct selection. Check the 'Interface selection' section. If your intended boot device is SD, MMC or eMMC, then change the setting from QuadSPI Serial Flash. If your intended boot device is QuadSPI AND you do not have a QuadSPI parameter file to specify, then uncheck the box for 'Configure QuadSPI parameters'. QuadSPI parameters change some flash registers' settings away from the default setting and are generally required for larger memory sizes (for ex. applications over 1 MB in size, for some supported devices). From the Image Table section, depending on your configuration, turn off all unused images. For the demonstration here, the following will be changed to Reserved: Self-Test DCD, Self-Test DCD (backup), DCD (backup), Application bootloader (backup). The following images will remain enabled: DCD, Application bootloader. In DCD section of the Image Table, click 'Browse File' and select the DCD binary file. Some of the fields may become red shaded after the file is loaded. This is OK as it is showing the memory layout is no longer aligned. This will be resolved in a later step.  Scroll down to the Application bootloader section, again use  'Browse File' and select the application binary. When the application boot image is loaded, the tool processes the file to check if it contains the header for the application bootloader image. If the header is not found, it means that the file is only the raw code (the bin generated by S32 Design Studio) and it will be necessary to provide the values for RAM start & entry addresses (code length is automatically calculated), as noted with the expanded view and red shading. To set the RAM start pointer and entry pointer addresses, from to the C/C++ perspective: From Project Explorer on the C/C++ perspective, open the linker file (in this case: hello_world\Project_Settings\Linker_Files\<device_name>_common_ram.ld) and locate the RAM start address and enter it in both the RAM start pointer AND RAM entry pointer fields in the IVT Tool. Use copy and paste to add the values to the Application Boot Image settings. Since the application binary file which was loaded for this example is just a raw binary file, it is necessary to generate the full application bootloader image. The Export Image function takes the values entered for the RAM start & entry pointers and the automatically calculated Code length, then generates the Application bootloader header. This header is added to the raw binary file producing a new image, the full application bootloader image file. Within the Application bootloader section, click 'Export Image' and enter a meaningful name for the image file. In addition to being a necessary source component of the IVT image, this file can more easily be shared or re-used to as an input to other IVT images. After the file has been generated, you will notice that the address settings section has collapsed. This is because it has replaced the file you originally selected with the newly generated one and the tool has recognized that the file contains the required header information. Before the Blob image can be generated, all of the images must be properly aligned within the memory map. You will likely also see error messages regarding segment overlaps, but even without this error it is good to check that the alignment is correct. In the Automatic Align section, if you have a dedicated area of the memory you can specify the start address and then click 'Align'. If you don't have a dedicated area, then use the default automatic align start address of 0x0 (QSPI), or 0x1000 (SD, MMC, eMMC). Click 'Align' to automatically align the images to this address. Upon successful completion of the alignment, all of the red shading will be removed. Click 'Export Blob Image' to generate the blob image file. This is what will be flashed to the target. Now that the Blob Image is generated, the 'Flash Image' button could be used to program the image to the target over serial connection, or use the S32 Flash Tool.
View full article
Example contains modified startup code to be able run in BookE only mode. For GNU gcc and as you need to add -mno-vle parameter in project properties:  For debugging with PE Micro you need to use modified Initialization script in Advanced options: Please note that there is no STD C BookE only library available:
View full article
      Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for ARM® 2.2  Update 1          What is new? SDK S32K1xx RTM SR 3.0.3 (Patch for SDK S32K1xx RTM 3.0.0) AMMCLIB version 1.1.19 for KEAx, for S32K11x, for S32K14x AMMCLIB version 1.1.20 for KEAx, for S32K11x, for S32K14x Installation instructions The update is available for online (via Eclipse Updater) or offline installation (direct download link)  online installation: go to menu "Help" -> "S32DS Extensions and Updates" dialog check boxes next to "S32K1xx development package", "S32K1xx SDK 3.0.3 pakage" and "S32 Design Studio for ARM Devices development package" click "Install/Update 3 item(s)" offline installation:   go to S32 Design Studio for ARM product page -> Downloads section or use direct link to download the update archive zip file go to menu "Help" -> "S32DS Extensions and Updates" dialog select "Go to Preferences" Add a new Software Site Add a new "Archive" repository and browse to select the downloaded update archive .zip file you downloaded in the previous step check boxes next to "S32K1xx development package" and "S32 Design Studio for ARM Devices development package" click "Install/Update 2 item(s)" This will start the update installation process.
View full article
1) Prepare the evaluation board hardware You can use the S32 Debug Probe to download code to target Connect S32 Debug Probe to S32V234 EVB2 using JTAG connector Connect S32 Debug Probe to PC via USB cable OR ethernet (if connected via ethernet, then USB power cable must also be connected) Connect the S32V234 EVB2 to PC via ethernet (typically via LAN) Connect power cable to evaluation board and switch on the power     2) Build the project using the A53 build option. 3) The project is now built, and the ELF file is ready to be loaded to the EVB for execution. Before a debug session can be started, we must complete HOWTO: Setup A Remote Linux Connection in S32DS (S32V234). Start A53 Debug 4) Select the debug drop-down menu and click Debug Configurations     5) Make sure the '{project_name}_Remote_Linux' debug configuration is selected and the Connection (see step 3) is selected (points to the IP address of your EVB). Click Debug     6) The first time you connect to a new IP address (i.e. the first time you debug after creating a new workspace), you will receive a warning message, Click Yes and proceed.     The executable file is copied to Linux file system and gdbserver starts.   You may get an error message on the first try, this is normal. Just try it again and it will work. 7) Once the Linux GDB has started on A53 core and the initial break point is reached in main(), it is almost ready for to start debug on ISP. Click Resume as the A53 must be running before we can attach the ISP debug thread. 😎 Return to the Debug Configurations menu and locate the ISP debug configuration. You will see a debug configuration within the 'S32 Debugger' group (in our example, isp_sonyimx224_csi_dcu_mipi_simple_IPUS0 as shown below). This is the debug configuration we will use, however, it will require some setup.     9) You should notice the error message at the top of the window, just below the title and a red 'X' on the Debugger tab. Click on the Debugger tab to select it. We must setup the Debug Probe Connection before we can proceed. There are two options: Ethernet USB   If connecting the Probe via Ethernet, please refer to the Quick Start Guide or S32 Debug Probe User Guide provided with the S32 Debug Probe for instructions on how to connect it and determine the Hostname or IP address.     If connecting the Probe via USB, then the COM port will appear in the Port selection setting. If you have more than one S32 Debug Probe connected, you will need to determine which COM port is the correct one, otherwise, only the COM port for your S32 Debug Probe will appear.   10) This is already done for our example, but for your application, it may be necessary to setup the symbols for the ISP engine. Go to the Startup tab and:    a) Check the box for 'Load symbols'    b) Select the option for 'Use file', click Workspace... and locate the object file (.opius) for the ISP engine you wish to debug.   11) Click Apply then Debug. It may take a few moments for the ISP core debug to launch.   12) Wait for the ISP debug launch to complete. You may notice the A53 thread has terminated. This is normal and expected since the camera input cannot be suspended. When the launch completes, the context of the Debug window will switch to the ISP debug thread. 13) Enable Instruction Stepping mode and then step one time to load the object file which was setup in step 6. 14) The ISP debugging is now running and you can step through the ISP engine, look at registers, set a break point, etc. Note: only one hardware break point is supported for ISP.
View full article
The attached file is an example project based on KEA128 for LED flashing by toggle GPIO signals. It was developed   on S32 Design Studio for ARM 1.0.
View full article
1) Prepare the evaluation board hardware You can use the S32 Debug Probe to download code to target Connect S32 Debug Probe to S32V234 EVB using JTAG connector Connect S32 Debug Probe to PC via USB cable OR ethernet (if connected via ethernet, then USB power cable must also be connected) Connect the S32V234 EVB to PC via ethernet (typically via LAN) Connect power cable to evaluation board and switch on the power     2) Build the project using either the A53 or the TEST_A53 build options. 3) The project is now built and the ELF file is ready to be loaded to the EVB for execution. Before a debug session can be started, we must complete HOWTO: Setup A Remote Linux Connection in S32DS (S32V234). Start A53 Debug 4) Select the debug drop-down menu and click Debug Configurations     5) Make sure the Debug_Remote_Linux debug configuration is selected and the connection setup in step 4 is selected (points to the IP address of your EVB). Click Debug     6) The first time you connect to a new IP address (i.e. the first time you debug after creating a new workspace), you will receive a warning message, Click Yes and proceed.     The executable file is copied to Linux file system and gdbserver starts. You may get an error message on the first try, this is normal. Just try it again and it will work. 7) Once the Linux GDB has started on A53 core and the initial breakpoint is reached in main(), we need to set a breakpoint at the function apu_hal_Enable().    This breakpoint has already been created for you, you just need to enable it! Locate the breakpoint in the Breakpoints view. Due to some known issues with Eclipse CDT, it is necessary to enable->disable->enable the breakpoint so it will work properly. The issue only affects this breakpoint, due to the way it is provided, and will not affect breakpoints which you set elsewhere in the code. 😎 Press Resume twice, so that the breakpoint which was set at apu_hal_enable() is reached for the 2nd time. 9) Open Debug Configurations. You will see a debug configuration within the 'S32 Debugger' group (FAST9COLOR as shown below). This is the debug configuration we will use, however, it will require some setup.     10) You should notice the error message at the top of the window, just below the title and a red 'X' on the Debugger tab. Click on the Debugger tab to select it. We must setup the Debug Probe Connection before we can proceed. There are two options: Ethernet USB   If connecting the Probe via Ethernet, please refer to the Quick Start Guide or S32 Debug Probe User Guide provided with the S32 Debug Probe for instructions on how to connect it and determine the Hostname or IP address.     If connecting the Probe via USB, then the COM port will appear in the Port selection setting. If you have more than one S32 Debug Probe connected, you will need to determine which COM port is the correct one, otherwise, only the COM port for your S32 Debug Probe will appear.       11) Click Apply then Debug. It may take a few moments for the APEX core debug to launch.   12) It may take a moment or two before the APEX2 debug thread launch is complete, see the Thread listed within the <kernel_name>[S32 Debugger] in the Debug window. Also note, a new breakpoint is listed in the Breakpoints view. This breakpoint is set for you at the start of the APEX2 graph function. 13) The debugger context is still on the A53 thread. Press RESUME and then select the APEX2 thread to see that it has stopped on the graph function break point. Now you can step through the graph. 14) To step through a kernel, locate the call to the kernel function in the graph function and set a break point on the line. 15) Press RESUME to advance the program counter to the new break point 16) Press STEP INTO to advance the program counter into the kernel. It may take several steps as the optimizations performed by the compiler produce some synchronization inconsistencies. 17) You may need to help the IDE to locate the source files. Now you can see the kernel wrapper function... and the kernel! 18) Step through, monitor variables and registers and set breakpoints.
View full article
So you've just installed the S32DS and are using it for the first time and would like to see how it works. Here is a quick and simple project to get you started. Prerequisite Before following the steps in this HOWTO, ensure you have the S32V2xx development package installed to S32DS. 1. Launch S32DS for Vision 2. Select 'S32DS Application Project' 3. Enter a name for the project 4. Select the 'A53 Linux' processor option 5. Click Next 6. Click the '...' next to the SDKs field 7. Check the box next to 'VSDK_MODULE_WIN' for Windows OS or 'VSDK_MODULE_LINUX' for Linux OS and click OK. 8. Click Finish 9. Build the project for Debug 10. Project is now built, ELF file is ready to be loaded to EVB for execution. However, if we have not prepared the EVB, we must first complete HOWTO: Setup S32V234 EVB2 for debugging with S32DS and Linux BSP. 11. Once the EVB is properly prepared, we must complete HOWTO: Setup A Remote Linux Connection in S32DS (S32V234)  12. With the project debug configuration and remote linux connection selected, select the debug dropdown menu and click Debug Configurations 13. Make sure the Debug_Remote_Linux debug configuration is selected and the connection setup in step 10 is selected (points to the IP address of your EVB). Click Debug 14. The first time you connect to a new IP address (i.e. the first time you debug after booting the board), you will receive a warning message, Click Yes and proceed. 15. The executable file is copied to Linux file system and gdbserver starts. 16. The Debug perspective is opened. You can now step through the code*     *Only debugging of the A53 code is supported by Linux GDB. For multicore debugging, including ISP and APEX2, additional debugger and probe(S32 Debugger with S32 Debug Probe, Lauterbach, etc) will be required.
View full article
        Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Power v1.2, Update 2             What is new? AMMCLIB v1.1.9 support for MPC56xx (MPC560xB, MPC560xP, MPC5643L, MPC567xF, MPC567xK) and for MPC57xxx (MPC574xC, MPC5748G, MPC574xP, MPC574xR, MPC577xC, MPC577xK, MPC577xM) updated PEmicro Eclipse Plugin Update v1.6.9 which fixes HSM mass erase problem for MPC5748G (see e.g.MPC5748G can not attach JTAG )   Installation instructions The update is available for online (Eclipse Updater) or offline (direct download link) installation.   online installation: go to menu "Help" -> "Install New Software..." dialog select predefined NXP S32 Design Studio update repository http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_POWER_1_2/com.freescale.s32power.updatesite  select all available items and click "Next" button   offline installation: go to S32 Design Studio product page -> Downloads section or use the direct download link to download the "S32 Design Studio for Power v1.2 - Update 2" file.   Start S32DS and go to "Help" -> "Install New Software..." Add a new "Archive" repository and browse to select the downloaded Update 2 archive file: Select all available items and click "Next" button.
View full article
In this document, we show the steps to use the New Project Wizard to create a new application project for APEX2, ISP, or both.   1. Launch S32DS for Vision 2. Select File -> New -> S32DS Application Project 3. Enter a name for the project 4. Select the 'A53 APEX2/ISP Linux' processor option 5. Click Next 6. Select the APEX2/ISP options you need.       a. APEX2 programming - will add support to your project for an APEX2 application, you need this for any new APEX2 project       b. ISP programming - will add support to your project for an ISP application, you need this for any new ISP project       c. ISP visual modeling - will create a separate project for your ISP data flow diagram, you will not need this if you plan to use an existing graph diagram. This can also be created later. 7. Select the SDK(s) as appropriate for your setup. For example, 'VSDK_MODULE_WIN' for Windows OS or 'VSDK_MODULE_LINUX' for Linux OS, the one which corresponds to your OS is selected for you by default. 7. Click Finish 8. You now have a project or set of projects for development on the S32V234.
View full article
There are 2 methods to run; GUI, and terminal window. GUI Method 1) Make sure EVB is powered and connected to PC via USB (micro to USB) 2) Launch DDR Stress Test Tool, C:\NXP\S32DS_Vision_v2.0\utils\ddr_stresstool\DDR_Tester.exe 3) Load Image (C:\NXP\S32DS_Vision_v2.0\utils\ddr_stresstool\bin\s32v234_ddr_test.bin) 4) Load Init Script (C:\NXP\S32DS_Vision_v2.0\utils\ddr_stresstool\scripts\S32V234_LDDR2_MMDC0_2Gb.inc) 5) Select COM port 6) Press Download, then wait for it to complete. (may temporarily show 'not responding') 7) In 32bit Memory Read/Write section, enter address 80000000 in ADDR field. 😎 Change SIZE to 32 WORD 9) Click Read 10) See results 11) In DDR Stress Test section, enter 533 in both Start Freq and End Freq fields 12) Click Stress Test 13) See results 14) Results can be saved (C:\NXP\S32DS_Vision_v2.0\utils\ddr_stresstool\log) Terminal window Method (JTAG) This checks what settings are already uploaded in MMDC module 1) Make sure EVB is powered and connected to PC via PEMicro (Universal Multilink) or Lauterbach AND via USB cable. 2) In S32DS, create a simple project a. File->New->S32DS Application Project b. Enter name 'test' c. Select S32V234 Cortex-A53 d. Next e. Uncheck boxes for cores 2-4 f. Finish 3) Setup debug configuration a. Run->Debug Configurations… b. Select test_A53_1_PNE c. Change C/C++ Application to C:\NXP\S32DS_Vision_v2.0\utils\ddr_stresstool\ddr-test-uboot-jtag-s32v234.elf d. Select Debugger tab e. Click Advanced Options f. Check box for Enable initialization script g. Browse to find C:\NXP\S32DS_Vision_v2.0\eclipse\plugins\com.pemicro.debug.gdbjtag.pne_3.1.3.201709051622\win32\gdi\P&E\supportFiles_ARM\NXP\S32Vxxx\S32V234M100_DDR.mac h. OK 4) Click Debug. You will see error message indicating the source file could not be found. This is expected. 5) Open terminal (such as PuTTY.exe) and connect a serial line using the USB port you have connected to the EVB, speed set to 115200, 8 data bits, 1 stop bit, and no parity or flow control. 6) Click Resume in S32DS Debugger. 7) In terminal window, you will see the test script has started. 😎 Select the MMDC channel (for example, enter 1 for MMDC1) 9) Select the DDR density (for example, enter 6 for 32MB) 10) Enter 'n' to decline the DDR Calibration 11) Enter 'y' to accept the DDR Stress Test 12) Enter Start and End frequencies (for example, enter 533, as was done in GUI method) 13) Enter 0 to run only once 14) See the results
View full article
This example performs basic initialization, sets PLL to maximum allowed frequency 200MHz, sets clock for peripherals, GPIO pins, PIT timer and interrupt controller. After initialization it blinks LED2 in the main loop using timeout counter variable. PIT timer generates periodical interrupts and toggles LED1 with 1s period. Test HW: MPC5746R-252BGA, MPC57xxMB Motherboard MCU:  PPC5746R 1N83M Fsys: PLL0 266MHz       Z4 Core 200MHz Debugger: PeMicro USB-ML-PPCNEXUS IDE/Compiler: S32DS for Power 2017.R1 / GCC Target: internal_FLASH - debug, release              internal_SRAM - debug_ram EVB connection:   Default EVB jumper setup   Connect LED1 to P14.3 on motherboard   Connect LED2 to P14.4 on motherboard
View full article