Linux嵌入式挑战赛知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

Linux Embedded Challenge Knowledge Base

讨论

排序依据:
In this video you can see the hdmi connection we had made and the data retrieved from the sensors printed on the screen as a result. 
查看全文
In the movie, we show that we wired the necessary connections to the 'T' pin (the red wire) of the board inside the headset, and to the ground, that needs to be common with the UDOO board's ground (the black wire). The wires are connected to the 0 (RX) pin and the GND pin of the UDOO board, respectively. Software-side, we used the Brain library which takes packets received from the serial interface and interprets them, giving values in CSV form, for us to process in the next step. For receiving data from the headset, the M4 core of the board runs the Arduino code and uses the Serial0 object (UART 5) to take the raw data, which is processed by the Brain library. Then, the resulting string is sent to the A9 core by using the provided shared memory. The Serial object is used for this step, as we see in the video. The received string contains values in the following form: signal strength, attention, meditation, delta, theta, low alpha, high alpha, low beta, high beta, low gamma, high gamma We will use them in the following milestones.
查看全文
Forlinx latest catalog
查看全文
Linux Kernel Developing U-boot and Kernel Compilation Get right toolchain for your platform.             a. Ubuntu: sudo apt-get install gcc-arm-linux-gnueabi/gcc-arm-linux-gnueabihf or            b.  Get from linaro.org : wget -c https://releases.linaro.org/14.04/components/toolchain/binaries/gcc-linaro-arm-linux-gnueabihf-4.8-2014.04_linux.tar.xz    2. Get U-boot code source git clone http://git.denx.de/u-boot-imx.git make ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- wandboard_quad_config make ARCH=arm CROSS_COMPILE=arm-linux-gnueabi-    3. Get Kernel source with Wandboard support Wandboard repo: git clone https://github.com/wandboard-org/linux.git Select the right branch: git checkout wandboard_imx_3.10.17_1.0.0_beta                                   or                                 git checkout wandboard_imx_3.0.35_4.1.0              b. Kernel Configuration ( load the wandboard  config )                      make ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- wandboard_defconfig                                     or                            make ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- menuconfig              c. Kernel Compilation make ARCH=arm CROSS_COMPILE=arm-linux-gnueabi-      4. Prepare the sdcard:             I. Copy the u-boot on the sdcard Determine the sdcard device name : sudo df -h sudo umount /dev/sdd* sudo dd if=/<path>/u-boot.imx of=/dev/sdd bs=512 seek=2           II. Partitionating the sdcard sudo fdisk /dev/sdd o n p 1 2048 +1G t c n p 2 12288 +5G   P sudo mkfs.vfat -n KERNEL /dev/sdd1 sudo mkfs.ext3 -L RFS /dev/sdd2 cd /media/ sudo mkdir KERNEL sudo mkdir RFS sudo mount /dev/sdd1 KERNEL/ v. sudo mount /dev/sdd2 RFS/          |||. Download a RFS and put on the sdcard wget -c https://rcn-ee.net/deb/minfs/wheezy/debian-7.5-minimal-armhf-2014-07-07.tar.xz sudo tar -xvf debian-7.5-minimal-armhf-2014-07-07.tar.xz  -C RFS/ Put the dtb file and zImage on the sdcard ( KERNEL partition ). sudo cp <kernel_path>/arch/arm/boot/uImage /media/KERNEL sudo cp <kernel_path>/arch/arm/boot/imx6q_wandboard.dtb /media/KERNEL IV. Setup the u-boot: run loadimage run loadfdt setenv bootargs console=ttymxc0,115200 root=/dev/mmcblk0p2 rootwait rw bootz ${loadaddr} - ${fdt_addr} Kernel devices Realise a kernel device controlled from user space. The following steps will be done on the virtual machine. NEEDED: Get the Virtual Box softwarte:  https://www.virtualbox.org/wiki/Downloads Realize a kernel device which prints “Hello World” starting from you’re the attached code.    a . First determine the kernel version from target platform: uname –a Get the kernel sources or kernel headers using one of the following methods. On the current virtual machine this step is already done. For kernel headers: sudo apt-get install linux-headers-$(uname -r) For kernel sources: sudo apt-get install linux-source    b. Now go to the directory tasks/kernel. Create a function void hello() which prints “Hello World”.  It should be called when the device is inserted.    c.  Compile the module : make    d.  Insert the module on the virtual machine : insmod lec_cdev.ko    e.  See if the module  is inserted lsmod dmesg    f. Remove the kernel module :  rmmod lec_cdev.ko    2. Create the device lec_cdev using  mknod  /dev/lec_cdev c 243 0    3. Implement the read function of the device in order to have the following effect: cat /dev/lec_cdev =>  print to infinit “a” Modify the previous module in order to be commanded using ioctl from userspace. In function lec_cdev_ioctl  detect the command sent  from userspace and If command is MY_IOCTL_HELLO prints “HELLO WORLD”; MY_IOCTL_SET_BUFFER – prints the buffer received from userspace. MY_IOCTL_GET_BUFFER – prints the data from the char device driver buffer         HINT: use functions * copy_to_user(user_buffer, kernel_buffer, size) * copy_from_user(kernel_buffer, user_buffer , size)
查看全文
Pentru milestone-ul 3 am implementat algoritmul de stabilizare. Acesta fucționează dar este nevoie de mai mult reglaj înainte ca drona să poată fi capabilă de zbor. Momentan compensarea motoarelor nu este suficient de precisă, iar drona face mișcări prea bruște. În video demonstrăm cum algoritmul compensează înclinarea pe axe prin schimbarea puterii motoarelor. De asemenea se poate observa implementarea bonusului, aplicația este completă, are feedback de la dronă și afișează informații în timp real despre parametrii de zbor.
查看全文
In acest milestone am combinat partile din milestone 1 si milestone 2, facand un proiect functional. Sarim peste milestone 3 deoarece am avut probleme cu el si nu l-am putut rezolva la timp.
查看全文
In acest video am aratat ca am facut rost de codul ISBN din fluxul video al camerei web conectate la placuta.
查看全文
Milestone 1 -engiNEAR Afisam ca avem camera conectata la placuta, arata in timp real fluxul video primit de aceasta si la apasarea tastei ESC, programul se inchide si salveaza un frame in fisierul kappa.jpeg.
查看全文
In the video we present the requirments for the 3rd mileston and for the bonus one.
查看全文
In acest video demonstram functionalitatile finale ale proiectului Adaptive Headlights. Preluam semnalul de la volan, calculam unghiul corespunzator si trimitem valoarea corecta la motoarele care controleaza farurile. Farurile folosesc un angrenaj de rotatie pe doua axe si pot face toggle intre faza lunga, faza scurta si oprite folosind un buton aflat langa placuta. Un alt buton opreste sau porneste intregul sistem. Modelul de bot de masina a fost, de asemenea, imbunatatit.
查看全文
Milestone 4 (20 pts., 1 week): Finish the project Based on the information from the video camera (vehicles ahead, speed and distance to them), the application should update the speed of the car in order to continuously maintain the safe distance and the speed value as close as possible to the preset one.
查看全文
3D Final interface Possibility to start the game from a phone Option to play a game during load time
查看全文
Ce ar trebui adaugat este ca pentru o conexiune la placuta este nevoie ca al doilea dispozitiv sa fie pe aceasi retea  si se va accesa ip-ul placutei pe portul unde s-a deschis socketul.
查看全文
Codul pentru milestone 3 este in src/py_scripts. Este un singur script pentru milestone 3+bonus activity.
查看全文
Acest videoclip este un demo al tuturor functionalitatilor pe care le-am avut de implementat in aceasta etapa.Ce am reusit sa facem: - un program de pornire a senzorului LIDAR si afisarea datelor sub forma de unghi : , distanta : - un program de client pe UDOO care trimite aceste date unui server de pe calculatorul nostru (acest lucru a fost necesar deoarece interfata grafica construita de noi nu functiona pe udoo) -o interfata grafica in OpenGL prin care toate datele primite de la client sunt afisate sub forma unor puncte dispuse circular in functie de pozitia masinii noastre (aceste puncte reprezinta obiecte din jur - masini , case , oameni ,copaci etc) -un algoritm de clustering pentru gruparea convenabila a obiectelor (cum proiectul nostru trebuie sa identifice masini, trebuie ca celelalte obiecte sa fie ignorate in reprezentarea pe harta a locurilor de parcare ocupate/vacante)
查看全文