LPC Microcontrollers Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

LPC Microcontrollers Knowledge Base

Discussions

Sort by:
Introducing MCUXpresso SDK v.2 for LPC54xxx Series What's New in MCUXpresso SDK v.2 for LPC54xxx? The Software Development Kit (SDK) 2.0.0 is a collection of software enablement for microcontrollers that includes peripheral drivers, multicore support, and integrated RTOS support for FreeRTOS OS and μC/OS. In addition to the base enablement, the SDK is augmented with demo applications and driver example projects, and API documentation to help the customers quickly leverage the support of the SDK. Development Tools The MCUXpresso SDK v.2 for LPC54xxx 2.0.0 was compiled and tested with these development tools: - LPCXpresso 8.2.0 - IAR Embedded Workbench for ARM® platform version 7.60.2 - MDK-ARM Microcontroller Development Kit (Keil)® 5.20 Supported Development Systems Development boards MCU devices LPCXpresso54114 LPC54114J256BD64, LPC54114J256UK49, LPC54113J128BD64, LPC54113J256BD64, LPC54113J256UK49 LPCXpresso54608 LPC54605J256ET180, LPC54605J512ET180, LPC54606J256ET180, LPC54606J512BD208, LPC54607J256ET180, LPC54607J512ET180, LPC54607J256BD208, LPC54608J512ET180, LPC54608J512BD208   SDK Board Support Folders SDK board support provides example applications for development and evaluation boards. Board support packages are found inside of the top level boards folder, and each supported board has its own folder (a SDK package can support multiple boards). Within each <board_name> folder there are various sub-folders to classify the type of examples they contain.   demo_apps: Full-featured applications intended to highlight key functionality and use cases of the target MCU. These applications typically use multiple MCU peripherals and may leverage stacks and middleware. driver_examples: Simple applications intended to concisely illustrate how to use the SDK’s peripheral drivers for a single use case. These applications typically only use a single peripheral, but there are cases where multiple are used (for example, ADC conversion using DMA). rtos_examples: Basic FreeRTOS examples showcasing the use of various RTOS objects (semaphores, queues, and so on) and interfacing with the SDK’s RTOS drivers usb_examples: Applications that use the USB host/device/OTG stack. multicore_examples: Applications for both cores showing the usage of multicore software components and the interaction between cores. Example Application Structure This section describes how the various types of example applications interact with the other components in the SDK. To get a comprehensive understanding of all SDK components and folder structure, see the SDK v.2.0 API Reference Manual document (SDK20APIRM). Each <board_name> folder in the boards directory contains a comprehensive set of examples that are relevant to that specific piece of hardware. We’ll discuss the hello_world example (part of the demo_apps folder), but the same general rules apply to any type of example in the <board_name> folder. In the hello_world application folder you see this: All files in the application folder are specific to that example, so it’s very easy to copy-paste an existing example to start developing a custom application based on a project provided in the SDK. Related links: For information on how to import and debug the MCUXpresso SDK example projects using LPCXpresso or generate your MCUXpresso SDK package take a look to this document: How to start with SDK v.2.0 for LPC5411x using LPCXpresso IDE Generating a downloadable MCUXpresso SDK v.2 package https://community.nxp.com/docs/DOC-333369  MCUXpresso Config Tools is now available!  
View full article
This document describes how to create a new LPC project using LPCOpen v2.xx, LPCXpresso v8.2.2 and LPC11U24 LPCXpresso board. In addition describes how to create 2 simple example codes. Blinking LED. Set the LED using a push bottom.  LPCOpen LPCOpen is an extensive collection of free software libraries (drivers and middleware) and example programs that enable developers to create multifunctional products based on LPC microcontrollers. After install LPCXpresso, the LPCOpen packages for supported board(s)/device(s) can be found at the path: <install_path>\lpcxpresso\Examples\LPCOpen > This directory contains a number of LPCOpen software bundles for use with the LPCXpresso IDE and a variety of development boards. Note that LPCOpen bundles are periodically updated, and additional bundles are released. Thus we would always recommend checking the LPCOpen pages to ensure that you are using the latest versions. This example was created using the LPC11U24 LPCXpresso board in this case the drivers selected is lpcopen_v2_00a_lpcxpresso_nxp_lpcxpresso_11u14.zip Importing libraries In order to create a new project, it is necessary to first import the LPCOpen Chip Library for the device used and optionally the LPCOpen Board Library Project. For do that it is necessary to follow these steps: 1. Click on Import project(s). 2. Select the examples archive file to import. In this case, the projects imported are contained within archives .zip.  3. For this example the LPC11U14 LPCXpresso board is selected. Click Open. Then click Next 4. Select only the LPCOpen Chip Library and LPCOpen Board Library Project. Click Finish. The same steps are required for any LPC device and board you are used. Creating a new LPC project.   The steps to create a new LPC project are described below: 1. In Quickstar Panel, click "New project"   2. Choose a wizard for your MCU. In this case LPC1100/LPC1200 -> LPC11Uxx -> LPCOpen-C Project This option will link the C project to LPCOpen. Then click Next.   3. Select the Project name and click Next.   4. Select the device used (LPC11U24 for this case) and click Next.   5. Select the LPCOpen Chip Library and LPCOpen Board Library, these projects must be present in the workspace.   6. You can set the following option as default clicking Next, then click Finish.   7. At this point, a new project was created. This project has a src (source) folder, the src folder contains: cr_startup_lpc11uxx.c: This is the LPC11Uxx Microcontroller Startup code for use with LPCXpresso IDE. crp.c: Source file to create CRP word expected by LPCXpresso IDE linker. sysinit.c: Common SystemInit function for LPC11xx chips. <name of project> my_first_example: This file contains the main code.     8. LPCXpresso creates a simple C project where it is reading the clock settings and update the system core clock variable, initialized the board and set the LED to the state of "On". 9. At this point you should be able to build and debug this project.   Writing my first project using LPCXpresso, LPCOpen and LPC11U24.   This section describes how to create 2 simple example codes. Blinking LED. Set the LED using a push bottom. The LPCOpen Chip Library (in this case lpc_chip_11uxx_lib) contains the drivers for some LPC peripherals. For these examples, we will use the GPIO Driver. The LPCOpen Board Library Project (in this case nxp_lpcxpresso_11u14_board_lib) contains files with software API functions that provide some simple abstracted functions used across multiple LPCOpen board examples. The board_api.h contains common board definitions that are shared across boards and devices. All of these functions do not need to be implemented for a specific board, but if they are implemented, they should use this API standard.   After create a new project using LPCXpresso and LPCOpen, it is created a simple C project where it is initialized the board and set the LED to the state of "On" using the Board_LED_Set function.   int main(void) {   #if defined (__USE_LPCOPEN)     // Read clock settings and update SystemCoreClock variable     SystemCoreClockUpdate(); #if !defined(NO_BOARD_LIB)     // Set up and initialize all required blocks and     // functions related to the board hardware     Board_Init();     // Set the LED to the state of "On"     Board_LED_Set(0, true); #endif #endif       // TODO: insert code here       // Force the counter to be placed into memory     volatile static int i = 0 ;     // Enter an infinite loop, just incrementing a counter     while(1) {         i++ ;     }     return 0 ; }       a. Blinking LED. In board_api.h file there is an API function that toggle the LED void Board_LED_Toggle(uint8_t LEDNumber);  LEDNumber parameter is the LED number to change the state. The number of the LED for the LPCXpresso LPC11U24 is 0. It is easy to create a delay function using FOR loops. For example: void Delay (unsigned int ms) {         volatile static int x,y;           while (ms)         {                 for (x=0; x<=140; x++)                 {                         y++;                 }                 ms--;         } } In order to have the LED blinking, it is necessary to call these functions in an infinite loop. while(1) {                 Board_LED_Toggle(0);                 Delay (10000);         } Complete code (Blinking LED). int main(void) { #if defined (__USE_LPCOPEN)         // Read clock settings and update SystemCoreClock variable         SystemCoreClockUpdate(); #if !defined(NO_BOARD_LIB)         // Set up and initialize all required blocks and         // functions related to the board hardware         Board_Init();         // Set the LED to the state of "On"         Board_LED_Set(0, true); #endif #endif          while(1) {                 Board_LED_Toggle(0);                 Delay (10000);         }         return 0 ; }  void Delay (unsigned int ms) {         volatile static int x,y;         while (ms)         {                 for (x=0; x<=140; x++)                 {                         y++;                 }                 ms--;         } }      b. Set the LED using a push bottom. For this example it is necessary to configure a pin as input.  The gpio_11xx_1.h file contains all the function definitions for the GPIO Driver. The example uses the pin 16 of port 0 to connect the push bottom. The function Chip_GPIO_SetPinDIRInput(LPC_GPIO_T *pGPIO, uint8_t port, uint8_t pin) sets the GPIO direction for a single GPIO pin to an input. In order to configure the Port 0, pin 16 as input we can use this function: Chip_GPIO_SetPinDIRInput(LPC_GPIO, 0, 16); Then, it is necessary to check the status of this pin to turn-on/turn-off the LED. The function Chip_GPIO_GetPinState(LPC_GPIO_T *pGPIO, uint8_t port, uint8_t pin) gets a GPIO pin state via the GPIO byte register. This function returns true if the GPIO is high, false if low. State_Input=  Chip_GPIO_GetPinState (LPC_GPIO, 0, 16);   Complete code (Set the LED using a push bottom). int main(void) {         bool State_Input;   #if defined (__USE_LPCOPEN)     // Read clock settings and update SystemCoreClock variable     SystemCoreClockUpdate(); #if !defined(NO_BOARD_LIB)     // Set up and initialize all required blocks and     // functions related to the board hardware     Board_Init();     Chip_GPIO_SetPinDIRInput(LPC_GPIO, 0, 16);     // Set the LED to the state of "On"     Board_LED_Set(0, false);  #endif  #endif      while(1) {           State_Input=  Chip_GPIO_GetPinState (LPC_GPIO, 0, 16);              if (State_Input==0){                 Board_LED_Set(0, true);             }             else {                 Board_LED_Set(0, false);             }     }     return 0 ; }   I hope this helps!! Regards Soledad
View full article
LPCXpresso54608 development board up and running out of the box with our unified software development kit (SDK)!
View full article