Kinetisマイクロコントローラ・ナレッジ・ベース

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

Kinetis Microcontrollers Knowledge Base

ディスカッション

ソート順:
The mbed Compiler delivers full online editor. it provides a lightweight online C/C++ IDE that is pre-configured to let you quickly write programs, compile and download them to run on your mbed Microcontroller. The only weakness is that it doesn’t have debug feature. In fact, you don't have to install or set up anything to get running with mbed. Because it is a web app, you can log in from anywhere and carry on where you left off, and you are free to work on Windows, Mac, iOS, Android, Linux, or all of them. Currently, mbed Compiler support: FRDM-KL25Z FRDM-KL46Z FRDM-KL05Z FRDM-K20D50M FRDM-K22F Ethernet IoT Starter Kit This article will introduce how to use mbed Compiler to develop code on Freescale FRDM board. Summary:  we can use mbed Online Compiler edit, build, generate binary file. But CAN’T debug. With mbed FRDM KL25z Upgrade pakage, we can burn binary file to board with drag and drop. Its really simple, and it's free, because it is a web based compiler, multi-platforms are supported. so lets get started!
記事全体を表示
Hello All, Power consumption of devices and implications around designing on embedded systems is a common topic nowadays. Kinetis MCUs offer different power modes to fit user's needs. Among these low power modes, we can find the lowest consumption modes: Low-Leakage Stop (LLS) and Very Low-Leakage Stop modes (VLLS). Attached document provides a brief introduction/explanation on these modes and lists the steps needed to configure MCU to operate in any of these modes. It is a bare-board project for FRDM-KL26Z but same principle applies to other Kinetis families. Also, two projects for KDS v3.2 are attached for reference. I hope you can find them useful! Regards, Isaac
記事全体を表示
[EEPROM emulation driver for KEA128 and KEA8] software used for Kinetis EA family product (without integrated EEPROM memory), which using the sector-erasable Flash memory be used to emulate the EEPROM through EEPROM emulation software.  The software could downloaded from here: This document will interpret EEPROM emulation driver demo for KEA128 product and shows how the EEPROM emulation driver works and related API function introduction. 1> EEPROM emulation driver feature The EEPROM emulation driver for SGF/FTM flash family implements the fix-length data record scheme. Several sectors shall be involved in emulation with a round robin scheduling scheme. The EEPROM functionalities to be emulated include initializing, de-initializing, reading, writing records. The EEPROM emulation driver is more complicated than general Flash program data application with following features: User configurable emulated EEPROM size. Larger life for the flash memory used for EEPROM emulation. Unique feature of Cache Table which makes data retrieval fast. Support fix length record scheme only. Support synchronous model which can be run from both RAM and FLASH. When running from FLASH, user needs to relocate flash launch command routine to RAM to avoid Read While Write error. If any operation fails during EEPROM emulation, the driver will try to repeat that operation until successfully for several times (which is defined by user). If that operation still fails, the driver will make the related sector to DEAD to eliminate it from round robin sequence and continue other tasks without stopping driver. Concurrency support via callback. Release in C source code format. Ready-to-use demos illustrating the usage of the driver with different compilers. 2> Demo interpretation The demo routine located at default installation path: ..\\KEA EEPROM Emulation Driver\KEA_SGF180\Demos\build\TRK_KEAZ128\iar\Normal_demo folder. For the demo runs in Flash memory, avoiding Read While Write error happened, Eed_FlashLauchnCommand and g_EECallBack must be relocated to or placed in RAM when the main routine start. Then it will disable the cache and initialize Flash clock(KEA128 ICS module default clock mode is FEI, the default system/core clock is 21MHz, the Flash clock divider value set to 20 to make Flash clock to be 1MHz).   After flash clock initialized, it will initialize EEPROM configuration start address. The status of each sector with five value, which means Blanked, Alternative, Active, Dead and Invalid. The EE_ALLOTED_SECTORS macro will calculate the total number of sectors, which includes Active sectors and Alternative sectors. #define EE_ALLOTED_SECTORS              (EE_ACTIVE_SECTORS + EE_READY_SECTORS) The EE_ACTIVE_SECTORS value is 1 and EE_READY_SECTORS value is 2, so the EE_ALLOTED_SECTORS value is 3. Then there with three allotted sector, and allocated at below address:      eepromConfig.startSecAddr[0] = 0x1A00;      eepromConfig.startSecAddr[1] = 0x1C00;      eepromConfig.startSecAddr[2] = 0x1E00; After initialize start address for EEPROM configuration, following to call Eed_DeinitEeprom() function to erase all sectors used for emulation. Then it will initialize EEPROM emulation, includes to remove dead sector from EEPROM system and determine maximum valid index in array of start sector address after that; also includes initialize all sectors by erasing the “possible-error-sector”; and initialize and update cache table if enabled. It call Eed_InitAllSectors() function to initialize all sectors and allocate the current active sector to base sector. The Eed_ShiftIdxToBase() function will be called to shift the current index to base index of 0. After that, the EEPROM configuration startSecAddr array will change to :      eepromConfig.startSecAddr[0] = 0x1E00;      eepromConfig.startSecAddr[1] = 0x1A00;      eepromConfig.startSecAddr[2] = 0x1C00; The active sector start address at 0x1E00. Then it will program erase cycle value to each sector start address, the erase cycle value will occupy 4 bytes with sector start address offset 0: Then make the base sector to be active and program the active indicator at sector start address offset 8. Here the base sector start address is 0x1E00, the active indicator will be programmed at 0x1E08 with active indicator value 0x55555555: Then it will call Eed_SearchBlankSpace () function to find blank space of EEPROM system, in this demo, the blank space start address at 0x1e0c. If enable the Flash cache, the cache will be cleared and updated during EEPROM emulation initialize phase. The demo will write eight group data to EEPROM system, each group with 16 bytes data, total data number is 128 bytes. The data located at Flash start address is 0x1e0c. After each group data programming, it will following with the data ID info and program the status. With all data was written, the all 128 bytes data was programed at 0x1e00 start EEPROM sector. When the write data exceed the active EEPROM sector, the swapping will occur. The swapped EEPROM sector will record previous data and current write data. If there exist sector erase action, it will also update the erase cycle value. The data is full and the new data written will make swap happens: After swap happens: At the end of demo, it will read EEPROM data back and make sure all valid record ID are written to EEPROM emulation.
記事全体を表示
Hi All, I designed one multi-uarts bootloader project for customers, with which the customers can improve their production efficency in factory. The attached files is the host machine and slave machine bootloader programs and a document for reference. Now the programs can work smoothly on K64 freedom board with three uarts broadcust function. Anybody who has such request can refer to my new program. Best regards David
記事全体を表示
This sample is to use two FRDM-KL02Z to testing the I2C.  By working at 400KHz baud rate, some customer may found the I2C_SDA will generating a dig when failing edge of the I2C_CLK.  Actually it should related with I2C port layout and the question is why this happen and how to get rid of the dig? The truth is I2C pins are open drain, so no one actually drives a high value. The high value is only there because of a pullup resistor on the lines. For the case to connect two of FRDM-KL02Z using the I2C0_SCL and I2C0_SDA lines that are available on J7, these lines are also used for connecting to the inertial sensor that is on the board, and there are 4.7K pullups on both lines. Problem is that there are 4.7K pullups on the lines on both boards, so the pullups are weaker than intended. So customer should remove the pullup resistors from one of the two boards that should help. We even recommend customer might need to replace the 4.7K pullups with an even stronger pullup though when they have more devices on the I2C bus that are all adding loading.
記事全体を表示
NXP 的BLE芯片目前包括QN902x 和 Kinetis KW3x两大系列,NXP BLE Solution 主页为:Bluetooth Smart|Bluetooth Low Energy|BLE|恩智浦 1)QN902x系列包括QN9020和QN9021,他们主要区别是封装不同,QN9020为QFN48(6x6mm),QN9021为QFN32(5x5mm)。QN902x的主要技术参数如下: 》Cortex- M0内核 》支持BLE4.1 》96Kb ROM,128Kb SPI Flash ,64Kb RAM 。代码在RAM中执行 》最高工作频率32Mhz 》输出功率:-20~4dBm;接收灵敏度:-95dBm 》功耗:接收电流:9.25mA,发送电流:8.8mA ,sleep mode:3uA 该芯片的datasheet:http://cache.nxp.com/documents/data_sheet/QN902X.pdf?fpsp=1&WT_TYPE=Data%20Sheets&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf… 官方的评估板为QN9020DK,链接为:高度可扩展的QN9020应用开发平台|恩智浦 另外一第三方公司也有一套开发板,可用来评估QN902x芯片,其连接地址为:FireBLE - Firefly wiki 2)KW3x,包括KW30和KW31两个系列,KW30 具体信息可以参考:KW30Z|Kinetis Bluetooth Low Energy MCU|恩智浦 KW31具体信息可以参考:KW31ZlKinetis BLE无线MCU|恩智浦 随便说下,NXP还有一个KW4x系列,该芯片可以同时支持Zigbee和BLE,它包括KW40和KW41,主页分别为:KW40Z|Kinetis BLE & 802.15.4无线MCU|恩智浦 和KW41ZlKinetis BLE & 802.15.4无线MCU|恩智浦
記事全体を表示
First let us see the clock tree: Core clock up to 112M, Bus clock up to 56M, Flash clock up to 28M. Clock can been from: System OSC、Slow IRC 、Fast IRC and System PLL 1. OSC SCG_SOSCCFG 2. PLL configuration formula: SPLL_CLK = (VCO_CLK)/2 VCO_CLK = SOSC_CLK/(PREDIV + 1) *(MULT + 16)  3. SCG_SPLLCSR void SystemClockInit(void) { SCG->SOSCCFG = 0x3C; SCG->SOSCCSR |= 1<<0; /* SOSCEN=1 enable SOSC clock */ /*wait clock active*/ while((SCG->SOSCCSR & SCG_SOSCCSR_SOSCVLD_MASK) == 0); SCG->SPLLCSR &= ~(0x1<<0) ; /* SPLLEN=0: disable PLL*/ SCG->SPLLCFG &= ~(0x7<<8); /* PREDIV=0: 1 */ SCG->SPLLCFG |= 0xCU<<16; /* MULT=12: 28   PLL VCO = 8/1*(12+16) = 224M */ SCG->SPLLCSR |= 0x1<<0; /* SPLLEN=1: enable PLL */ /* wait PLL active*/ while((SCG->SPLLCSR & SCG_SPLLCSR_SPLLVLD_MASK) == 0); SCG->RCCR |= SCG_RCCR_DIVCORE(0); /* DIVCORE=0: 1, CORE/SYS_CLK  112MHz */ SCG->RCCR |= SCG_RCCR_DIVBUS(1); /* DIVBUS=1: 2, BUS_CLK  56MHz */ SCG->RCCR |= SCG_RCCR_DIVSLOW(3); /* DIVSLOW=2: 4   FLASH_CLK  is 28MHz */ SCG->RCCR &= 0xFEFFFFFF; /* Initially set to SIRC so that LSB could be set as '0' */ SCG->RCCR |= SCG_RCCR_SCS(6); /* SCS=6: system clock System PLL */ }
記事全体を表示
       上篇详细的介绍了加密锁定Kinetis的一种方法,本篇再接再厉,给大家再介绍一种加密方法(哎,这点家底都晒出来了)。当然实际上原理还是不变的,即还是通过修改0x400~0x40F地址段的内容来实现加密锁定,万变不离其宗,所谓殊途同归罢了,下面好戏登台:        既然实现security最终都是改写寄存器加载段flash地址的内容,那实际上修改flash内容的方式还是灵活多变的,方案一中提到的在中断向量表的最后添加flash配置信息只是其中一种,那还有哪些呢?还是不摆谱了,小心被拍砖,哈哈。不错,那就是通过在指定地址定义常量的方法,当然定义常量大家都会用到(有些应用譬如LCD显示的字模或者一些固定的查找表为节省RAM空间我们一般会选择定义const常量的方法将它们存放到flash空间中),但是指定地址的存放方式用的会少些(一般都是让编译器自动分配的),如果我们非要指定地址呢(哎,强迫症又开始了,呵呵),即将flash配置信息作为常量强制指定存放到0x400起始的地址,那岂不是跟方案一有了异曲同工之妙了,好吧,这样的话那就该“@”这位老兄上场了(咳咳,可不是给单片机发email啊,呵呵),相信很多人到此处就都明白了。下面我仍然以IAR环境下锁定K60为例,简单介绍下方案二的使用步骤: 1. 打开待加密工程中的main.c文件,在其中的main函数之前以添加如下图所示常量定义,即将FlashConfig数据组数据存放到“.flashConfig”段中,其中FlashConfig[11]即为0x40C地址: 2. 至于这个.flashConfig段属性是需要在与该工程匹配的IAR连接文件(.icf文件)中人为添加定义的,如下图所示,需要添加三个部分,然后保存: 3. 前两步完成之后,其实需要添加的部分就已经完成了,但是还有特别重要的两点需要注意,这里我加红注释一下,如下: (1)采用方案二的情况,需要确保vectors.c中中断向量表最后的16个字节没有被添加,即不能有4个CONIFG_x配置信息的,否则会出现编译错误,因为这就涉及到两者冲突的问题,也就是说在采用方案一的话就不能采用方案二,同理,采用方案二的话也不能采用方案一,总之两者不能同存; (2)还需要考虑编译器优化的问题,因为我们在.flashConfig段定义了常量,但是在代码程序里却没有使用它,这种情况下编译器会直接把这段常量优化掉,所以我们做的工作算是白做了,即使我们在IAR的优化等级中设置成low或者none都不行,因为人家编译器认死理儿,反正你也没有使用它,我就是怕它pass掉,这下子伤心了,呵呵。还好IAR给我们留了条后路,在options->Linker->Input选项卡中提供了Keep symbol功能,如下图,将FlashConfig添加进去即可强制编译不优化它,这样目的就达到了,呵呵,看来还是天无绝人之路啊有木有。 3. 编译通过,下载调试,程序下载之后同样会出现进入不到调试窗口的现象,这个是正常现象,因为这个时候芯片就已经被security了,这样就可以放心量产了,呵呵~       希望这两篇系列文章能对大家有所帮助,enjoy it~
記事全体を表示
1. USB Multilink Universal    支持 Kinetis, HCS08, HC(S)12(X), S12Z, RS08, ColdFire V1/+V1, ColdFire V2-4*, Qorivva 5xxx, DSC.    PE Micro, http://www.pemicro.com/ 2. USB Multilink Universal FX    支持 Kinetis, Qorivva MPC5xxx, ColdFire +V1/ColdFire V1, ColdFire V2/3/4, HC(S)12(X), S12Z, HCS08, RS08, DSC, 683xx, HC16.    PE Micro, http://www.pemicro.com/ 3. J-Link    支持飞思卡尔ARM based Microcontroller Kinetis.    可以配合PC端的软件JFlash对目标板进行烧写。    Segger, http://www.segger.com 4. ULink2    支持飞思卡尔ARM based Microcontroller Kinetis.    Keil, http://www.keil.com/arm/ulink/ 5. USBDM    开源调试器    可以配合PC端的上位机对目标板进行烧写。    http://usbdm.sourceforge.net/    https://github.com/podonoghue    http://sourceforge.net/projects/usbdm/ 6. CMSIS-DAP    ARM公司开源调试器    仿真器相关介绍页: http://mbed.org/handbook/cmsis-dap-interface-firmware    仿真器的源码下载: https://github.com/mbedmicro/CMSIS-DAP 7. OpenSDA     P&E Microcomputer Systems
記事全体を表示
For Jorge_Gonzalez Subject: MKE04 interrupt latency in Kinetis microcontrollers This is the code I was using to measure interrupt latency. David Hollinrake
記事全体を表示
The DOC introduces the nano-edge placement  feature for KV4x family, it gives the application for the nano-edge placement feature, in other words, it's target is to increase the PWM signal resolution. It gives the example code and PWM waveform for the nano-edge placement feature.
記事全体を表示
作者 Sam Wang & River Liang 在RISC架构的MCU中,通常是加载-存储(Load and Store)的操作机制,而这种方式不能提供传统8bit架构MCU的直接位操作内存和地址空间。为此飞思卡尔在M0+系列MCU上集成了BME(Bit Manipulation Engine)位操作引擎功能,例如KE和KL系列里都带有BME,它从硬件上提供了对外设地址空间用读-修改-写的操作方式来实现位操作。         使用BME能够降低总线的占用率和CPU执行时间,这些效果都能够降低系统的功耗。另外使用相比于用C语言实现相同功能的代码,使用BME能够更节省代码空间。这些可以参照         BME功能支持访问从0x4000_0000开始的,大小为512K的地址空间,并把它映射成从0x4400_0000到0x5fff_ffff的内存空间。         好了,长话短说。下面转入正题,我们应该如何使用BME来进行位操作,并达到节省代码空间、提高效率的效果。 一、写操作方式,对定义内容用写的方式来实现与、或、异或、位域插入功能 1:BME的&操作可以一次对IO的几个bit清0     //     0x21<<26 | addr (A0~A19) //GPIOA_PDOR   地址为   400F_F000 #define GPIOA_AND *((volatile unsigned char *) (0x44000000+0xFF000)) 例: GPIOA_AND=0xaa; #define GPIOA_AND_I *((volatile unsigned int *) (0x44000000+0xFF000)) 例: GPIOA_AND_I=0x55aa; 实际上命令是将400f_f000的内容与目标数进行&运算。修改volatile unsigned char, volatile unsigned int, volatile unsigned long来实现BME的所谓8,16,32位操作.下面命令相同。 2:BME的|操作可以一次对IO的几个bit置1     //       0x22<<26 | addr (A0~A19) #define GPIOA_OR *((volatile unsigned char *) (0x48000000+0xFF000)) 例: GPIOA_OR=0xaa; #define GPIOA_OR_I *((volatile unsigned int *) (0x48000000+0xFF000)) 例: GPIOA_OR_I=0x55aa; 实际上命令是将400f_f000的内容与目标数进行|运算。 3: BME的^操作          //     0x23<<26 | addr (A0~A19) #define GPIOA_XOR *((volatile unsigned char *) (0x4C000000+0xFF000)) 例:GPIOA_XOR=0xaa; #define GPIOA_XOR_I *((volatile unsigned int *) (0x4C000000+0xFF000)) 例: GPIOA_XOR_=0x55aa; 上面3个例子讲解了一般的与、或、异或等常用操作,下面来点复杂一点的。                                                                                           4: BME的位域插入操作BFI(Bit Field Insert)//   (5<<28) | (bit<<23) | (width<<19) | addr (A0~A18) #define BME_BFI_ADDR (ADDR, BIT, WIDTH)   (*(volatile uint32_t *) (((uint32_t) ADDR) | (1<<28) | (BIT<<23) | (WIDTH<<19))) 在这里bit是插入的位置,表示被操作目标的最低位开始被操作,Width这里是插入的数据长度 例:BME_BFI_ADDR(&ADC0_CFG1, 0x05, 0x01) = 0x40; 结果是将寄存器ADC0_CFG1从bit5开始,用0x40的bit5来替换ADC0_CFG1的bit5,0x40的bit6来替换ADC0_CFG1的bit6,调用该命令后,寄存器ADC0_CFG1_ADIV = 2 相当于执行了mask = ((1 << (w+1)) - 1) << b;                          //等一系列位操作。                             (ADC0_CFG1 & ~mask) | (0x40 & mask); 使用BFI功能需要注意的是,操作地址是A0到A18,而GPIO寄存器的A0到A19是从FF000开始,因此会有1bit 的地址冲突。为此,在使用BFI操作GPIO的寄存器时,使用的是内存映射出来的地址空间,此时GPIO的起始地址将为F000,如果还使用原来的地址,命令将会无效。之前提到的AND、OR、XOR操作,对于GPIO地址空间在FF000还是F000都适用 #define BME_BFI_GPIOA (BIT, WIDTH)        (*(volatile uint32_t *) ((uint32_t) (5<<28) | (BIT<<23) | (WIDTH<<19) | 0xF000)) 例:BME_BFI_GPIOA(0,3) = 0x0a; 结果是GPIO_PDOR从bit0开始,一共4位被1010替换了。 二、读操作方式 5, BME的读操作使某位置1, Load-and-Set 1 Bit// #define PTA1_SET   (void) (*((volatile unsigned char *) (0x4C000000+ (1<<21) + 0xF000))) #define PTA1_SET_I   (void) (*((volatile unsigned int *) (0x4C000000+ (1<<21) + 0xF000))) 例: PTA1_SET;   //效果是GPIOA1高电平         LAS1      第1位    GPIOA_PDOR地址的A0-A15 6, BME的读操作使某位清0, Load-and-Clear 1 Bit #define PTA2_CLR   (void) (*((volatile unsigned char *) (0x48000000 + (2<<21) + 0xF000))) #define PTA2_CLR_I   (void) (*((volatile unsigned int *) (0x48000000 + (2<<21) + 0xF000))) 例: PTA2_CLR;     //效果是GPIOA2低电平        LAC1      第2位     GPIOA_PDOR地址的A0-A15 7, BME同时提取多个bit,Unsigned Bit Field Extract 前8位内                     //UBFX      第1位开始       取1+1位   GPIOA_PDOR地址的A0-A18 #define PTA_OUT    *((volatile unsigned char *) (0x50000000+ (1<<23) + (1<<19) + 0xF000)) 前16位内                   //UBFX      第1位开始       取1+1位   GPIOA_PDOR地址的A0-A18 #define PTA_OUT_I    *((volatile unsigned int *) (0x50000000+ (1<<23) + (1<<19) + 0xF000)) 例: 初始值GPIO_PDOR = 0x3a;   //            11_1010   temp = PTA_OUT; //                    此时temp = 0x01 例: 初始值GPIO_PDOR = 0x35;   //            11_0101   temp = PTA_OUT; //                    此时temp = 0x02 该宏定义UBFX功能是将GPIO_PDOR从bit1开始提取1+1位,并以bit1为最低位赋值到目标变量。          需要注意的是UBFX与BFI一样操作的都是映射内存空间,用来操作GPIO时要以F000为起始地址。         BME执行的是读-修改-写操作,而我们很多寄存器有些位是w1c,也就是所谓的write-1-clear,写1清0的工作方式。使用BME时就需要特别注意和小心了,否则会出现很多不可预料的后果。               如果一个寄存器中有多个连续的W1C位,我们就不要使用LAS1来对寄存器写1清0了,因为在LAS1这个操作中,其中有一步操作是将数据读回(在reference manual中有read data return to core一说)。这一步会将原本不需要清0的位给清了。         下面介绍这个情况的实验。 在我们M0+的PWM模块中,寄存器TPM0_STATUS所有有效位都为w1c,我们模拟一个情景: 系统48MHz,TPM时钟128分频,TPM0定时中断计数器最大值为37499,并使能溢出中断。 通道0设置为output compare模式的match output low,比较值为10000,不触发中断。 通道1设置为output compare模式的match output high,比较值为20000,不触发中断。 上面的设置可以使我们每50ms进入一次中断,需要我们在中断服务程序中清中断标志。 TPM0_STATUS 地址为 0x4003_8050 中断函数中设置断点观察TPM0_STATUS的值,为1_0000_0011 B #define TPM0_STATUS_LAS1   (void) (*((volatile unsigned int *) (0x4C000000| (1<<21) | 0x38050))) 中断程序中用TPM0_STSTUS_LAS1将bit1置1清0,得到的结果是TPM0_STATUS = 0,使用LAS1作用在该寄存器的其他位结果都一样。将其他不需要改动的位都清0了。     我们换种方式。 #define TPM0_ STSTUS_BFI *((volatile unsigned int *) (0x50000000 | (0<<23) | (8<<19) | 0x38050)) =0x001 中断里用BFI去修改该连续的w1c位,从bit0开始,长度为8+1位,执行TPM0_STSTUS_BFI后bit8和bit2仍为1, bit0已经被清0了。这确实是我们想要的效果。         此后我们遇上一个寄存器有多个连续w1c时,可以使用BFI的方式来改写寄存器w1c位的值,而位判断则采用UBFX的方式来提取该位域。 下面是针对比较器的CMP0_SCR寄存器操作的例程. CMP0_SCR是8bit的寄存器bit1和bit2是w1c #define CMP_SCR_CFR_CLR *((volatile unsigned char *) (0x50000000+ (1<<23) + (1<<19) + 0x73003)) =4 #define CMP_SCR_CFF_CLR *((volatile unsigned char *) (0x50000000 + (1<<23) + (1<<19) +0x73003)) =2              //           BFI                    第一位开始   1+1位          2对应bit2bit1为01          4对应bit2bit1为10 #define CMP_SCR_CFR    *((volatile unsigned char *) (0x50000000 + (2<<23) + (0<<19) + 0x73003)) #define CMP_SCR_CFF    *((volatile unsigned char *) (0x50000000 + (1<<23) + (0<<19) + 0x73003))             //            UBFX                分别是提取bit2和bit1的值 void CMP_Change(void) { If (CMP_SCR_CFR) { CMP_SCR_CFR_CLR; }                   If (CMP_SCR_CFF) { CMP_SCR_CFF_CLR; } }         总结,BME功能可以有效提高M0+的位操作性能并减少代码占用空间,但用于处理w1c位时要特别小心,总的来说BME是个好东西,在内核资源紧张的时候可以给用户提供一个精简代码的手段。
記事全体を表示
The Kinetis K70 MCU family includes 512KB-1MB of flash memory, a single precision floating point unit, Graphic LCD Controller, IEEE 1588 Ethernet, full- and high-speed USB 2.0 On-The-Go with device charge detect, hardware encryption, tamper detection capabilities and a NAND flash controller. 256-pin devices include a DRAM controller for system expansion. The Kinetis K70 family is available in 196 and 256 pin MAPBGA packages. For more information visit www.freescale.com/kinetis
記事全体を表示
           This is a demo of NFC device to read and write the contactless card. Kinets K60 tower board and NXP PN512 board are used for this test enviroment. These connected pins from K60 tower board to PN512 RF board are listed as below:   SPI1:     SPI1_SIN : PTE1/SDHC0_D0     SPI1_SCK : PTE2/SDHC0_DCLK     SPI1_SOUT : PTE3/SDHC0_CMD     SPI1_PCS0 : PTE4/SDHC0_D3     Reset:     PTB9   External interrupt:     PTA26         Because the SPI1 port is used as the host interface of pn512, it is necessary to enable the SPI1 driver in the user configuration file of MQX.           To open the project file in the /build folder with CW10.5.    And the PSP and BSP libraries had to be built before test image is built, as they are needed in this test project.   The following diagram shows the serial numbers and block data of reading from the test card of Mifare one.
記事全体を表示
You probably have heard of what's new on Kinetis side of the house. YES, talking about KL02, measuring only 1.9mm x 2.0mm. Take a look at the picture in which this powerful ARM based chip gets compared real scale, and being this tiny yet delivers 60 percent more GPIO than the nearest competing MCU. :smileygrin:!!!
記事全体を表示
    类似前段时间我写的两篇关于知识产权保护芯片加密的文章,这次再说说产品量产时常需要考虑的另一个问题——烧写序列号。     在产品批量生产的时候,很多客户会有这样的需求,即将每个芯片烧写一个唯一的ID号(Serial Number),以方便对产品进行跟踪和管理或者满足对芯片进行绑定ID号加密的需要。而为了提高整个批量生产过程的效率,选择一个好的烧写工具则至关重要。对飞思卡尔的Kinetis系列来说,可用的烧写方案包括P&E官方的Cyclone MAX(支持在线烧写和脱机烧写,当然价格较贵)和J-Link(仅支持在线烧写,需要仿真器+上位机配合)等,本篇就以最近比较火的Freescale M0+ Kinetis L系列为例详细介绍一下J-Link+J-Flash批量烧写串号的方案(说到此,不得不感叹J-Link的强大,高速的下载和调试,丰富的IDE支持和调试组件和强有力的调试功能,不是土豪人家是金啊,怎一个强大了得): 开发平台:Kinetis L系列KL15Z128 烧写工具:J-Link + J-Flash(v4.76f) (1) 这里不单独对J-Flash多作介绍,可以参考我之前的一篇文章《教你用J-Flash ARM工具单独烧写程序到Kinetis》,至于包括J-Flash在内的软件包可以直接到SEGGER官网下载http://www.segger.com/jlink-software.html,建议下载最新版的,支持的芯片系列较全,相应的组件功能也更强大; (2) 打开J-Flash(路径为Start->All Programs->SEGGER->J-Link ARM V4.76f->J-Flash),在最新版本中会直接弹出选择已有工程选项卡,根据需要在路径"安装路径\SEGGER\JLinkARM_V476f\Samples\JFlash\ProjectFiles\Freescale”下选择自己的目标芯片(我这里选择MKL15Z128xxx4.jflash),选择如下图: (3) 点击“start J-Flash”进入工程管理界面,然后点击File->Open data file,找到需要下载的bin文件或者S19文件,将其加载到jflash工程里面,加载之后的界面如下图: (4) 万事具备,接下来就开始进行烧写序列号的设置。点击“Options->Project Settings->Production”,选中“Program Serial Number”,设置如下: (5) 点击“OK”,设置完毕(只设置一次即可),然后连接目标芯片“Target->Connect”,连接成功,点击“Auto”,系统会自动将设置好的序列号添加到s19文件相应的地址然后启动下载,同时也会在Jflash的工程目录(之前加载的sample prject的目录)下生成一个“<JFlashProjectName>_Serial.txt”,内容如下图,其中“12345679”为下次要写入的数据,系统自动为其加1了(由“Increment”决定): (6) 我们回读烧写到片子中的数据(Target->Read Back->Entire chip),然后跳转到“0x2000”地址,可以看到序列号(12345678的十六进制)已经写入,如下图: 注意事项: (1) 在烧写的时候,必须点击“Auto”下载,这样才会生成“<JFlashProjectName>_Serial.txt”文件,且会把序列号自动添加到s19文件然后烧进去,直接点击“Program”或者“Program&Verify”等烧写功能只会烧写原始S19文件,不会添加序列号; (2) J-Flash烧写序列号最多支持4个字节,高于四个字节的数据J-Flash会将前四个字节取反再烧进去,所以实际上起作用的还是4个字节,不过单纯作为序列号的话肯定是足够了,4个字节32个比特位,IPv4的地址也就这些吧,呵呵,想不到会有什么产品会超过这个范围,那样的话Freescale超越当年的Motorola也不是问题了啊,哈哈; (3) 关于烧写地址的问题,理论上只要在目标芯片的Code Flash地址范围内并且不与原始运行代码地址重叠即可,因为J-Flash烧写的原理是先添加数据到原始bin或者S19文件相应的位置然后整个文件一块烧写进去,所以写序列号的时候不需要额外的再擦写扇区一次也就是不会破坏同在一个扇区的原始数据,不过当然如果flash空间足够大的话不建议将序列号烧写地址挨着原始代码太近,建议将序列号写到Flash的最后,规避风险; (4) 实际上采用J-Flash也可以烧写多余4个字节的数据,不过这需要手动添加编辑txt文件,这里就不多说了,可以参考附件中文档。
記事全体を表示
ROM Bootloader KL43 chip with Kinetis Bootloader residing in the on on-chip read-only memory (ROM), can interface with USB, I2C, SPI, and LPUART peripherals in slave mode and respond to the commands sent by a master (or host) communicating on one of those ports. When KL43 chip with a blank flash, the Kinetis bootloader will execute automatically. Once the flash is programmed, the value of the FOPT field at Flash address0x40D will determine if the device boots the ROM bootloader or the user application in flash. The FTFA_FOPT [BOOTSRC_SEL] will select if boot from customer application (Flash) or boot from ROM bootloader. For example:       When Flash address 0x40D value is 0xFF, boot source is ROM bootloader;       When Flash address 0x40D value is 0x3D, boot source is Flash (Customer application). There with hardware pin(/BOOTCFG0) to control if boot from user application or ROM bootloader with FTFA_FOPT[BOOTPIN_OPT] bit . When FTFA_FOPT[BOOTPIN_OPT]  = 0, it forces boot from ROM if /BOOTCFG0 pin set to 0. blhost utility application The blhost utility is an example host program used to interface with devices running the Kinetis bootloader. The blhost application is released as part of Kinetis bootloader release package available on www.freescale.com/KBOOT . The blhost application default located at C:\Freescale\FSL_Kinetis_Bootloader_1_1_0\bin\win folder. About how to use blhost application, please check KBLHOSTUG document for more detailed info. Call Rom Bootloader from customer application In general, if customer application was programmed, the boot option should be change to Boot from Flash. If customer want to call the ROM bootloader during the application running, customer can refer below example. Set a signal for application code to call the ROM bootloader, such as press a button. In this demo, we use FRDM-KL43Z board SW3 (PTC3) to call the ROM bootloader. //Initalize PTEC3 as GPIO button PORT_Init (PORTC, PORT_MODULE_BUTTON_MODE, PIN_3, 0, NULL); GPIO_Init (GPIOC, GPIO_PIN_INPUT, PIN_3); The bootloader entry point for customer application to call the ROM bootloader.  //prototype of the entry point definition void run_bootloader(void * arg); //Variables uint32_t runBootloaderAddress; void (*runBootloader)(void * arg);   // Read the function address from the ROM API tree. runBootloaderAddress = **(uint32_t **)(0x1c00001c); runBootloader = (void (*)(void * arg))runBootloaderAddress; in <main.c> routine to call the ROM bootloader:   while (1)   {     if ((GPIOC_PDIR & (1 << 3)) == 0)     {       // Start the bootloader. runBootloader(NULL);     }   } Press SW3 button of FRDM-KL43Z board will call ROM bootloader.  Customer could continue to debug the code until the ROM bootloader be called. If customer debug into the runBootloader(NULL) function, there will stop at fixed address: 0x1C00_00C0. In fact, during call the ROM bootloader function , there will setting some parameters and then reset the KL43. When KL43 back from reset, it will boot from ROM bootloader. That reset will cause debugger disconnect with the KL43 product. More detailed info, please check attached demo code. BTW: The demo project is [frdm_led_test] inside of KL43 baremetal sample code, which could be downloaded from here.
記事全体を表示
Este proyecto está siendo desarrollado por alumnos del Tecnológico de Monterrey Campus Guadalajara, el cual está orientado para servir como un tipo de terapia para personas discapacitadas. El proyecto en sí consiste en el control de un vehículo de juguete por medio de pulsaciones que serán realizadas con pelotas anti-estrés, de esta forma la persona podrá realizar un ejercicio de fortalecimiento en sus extremidades superiores de una forma más entretenida y menos tediosa que las clásicas terapias. Es importante mencionar que para poder realizar este proyecto es necesario el uso de dos tarjetas Freedom KL25Z de Freescale®, dos módulos Bluetooth®, dos servomotores de rotación continua y dos sensores de presión, los cuales serán incorporados dentro de las pelotas anti-estrés. El vehículo de juguete estará compuesto por los servomotores, que servirán como llantas; un módulo Bluetooth®, el cual recibirá las señales del otro módulo; y una de las tarjetas Freedom KL25Z. Por otro lado una de las tarjetas Freedom KL25Z estará conectada con los sensores integrados en las pelotas anti-estrés y a un módulo cuya función es mandar la información capturada por los sensores al vehículo de juguete. La mecánica del proyecto depende de la pelota que sea presionada, pues si se presiona solamente una pelota, el vehículo avanzará, por otro lado si se presiona la otra pelota, el vehículo girará sobre su propio eje. Este proyecto tiene como fin la implementación de conocimiento prácticos y teóricos en busca de una aportación en beneficio de la sociedad. También es relevante comentar que las visiones a futuro de este proyecto es que pueda ser implementado como una especie de control para una silla de ruedas, con el fin de facilitar la movilidad y aumentar la comodidad al momento de usar este tipo de vehículo. Original Attachment has been moved to: Codigo-tarjetas-freedom.zip
記事全体を表示
中文版本:     在KL25的官方Demo 源代码中只有I2C驱动的PE代码而没有I2C驱动的baremental代码,对于不习惯用PE生成代码的用户直接上手有难度,于是考虑将K60的 I2C baremental 驱动代码中移植到KL25上,以供大家参考。但在移植过程中遇到了两个比较典型的问题,所以这里分享出来,希望能帮助遇到同样问题的用户迅速定位并解决问题。 测试硬件:TWR-K60D100M开发板  K60+MMA8451(MMA8451为三轴加速传感器,与K60通过I2C总线连接。K60作为master,MMA8451作为slave)                 FRDM-KL25Z开发板       KL25+MMA8451 开发环境:IAR 6.6 1.问题描述: 配置I2Cx_F寄存器MULT位不为0时,Repeat start信号无法产生 问题提出: K60示例代码(如附件1)中I2C demo的功能是通过I2C接口读取板载的加速度传感器MMA8451的数据,并且I2C数据控制采用查询ACK标志位的方式,在TWR-K60D100M开发板上运行该Demo一切正常。使用几乎相同的I2C驱动代码,在FRDM-KL25Z开发板上执行发现:程序总是停在如下Function 1的红色字体行i2c_wait(I2C0_B),进入这个函数内部,它实际上是停在while((p->S & I2C_S_IICIF_MASK)==0),一直等待传输完成的中断标志IICIF置位。 Function 1. u8 hal_dev_mma8451_read_reg(u8 addr) {     u8 result;     i2c_start(I2C0_B);     i2c_write_byte(I2C0_B, I2C_ADDR_MMA8451 | I2C_WRITE);     i2c_wait(I2C0_B);     i2c_get_ack(I2C0_B);     i2c_write_byte(I2C0_B, addr);     i2c_wait(I2C0_B);     i2c_get_ack(I2C0_B);     i2c_repeated_start(I2C0_B);     i2c_write_byte(I2C0_B, I2C_ADDR_MMA8451 | I2C_READ);     i2c_wait(I2C0_B);     i2c_get_ack(I2C0_B);     i2c_set_rx_mode(I2C0_B);     i2c_give_nack(I2C0_B);     result = i2c_read_byte(I2C0_B);     i2c_wait(I2C0_B);     i2c_stop(I2C0_B);     result = i2c_read_byte(I2C0_B);     pause();     return result; } Function 2. void i2c_wait(I2C_MemMapPtr p) {     while((p->S & I2C_S_IICIF_MASK)==0)  ; // wait flag     p->S |= I2C_S_IICIF_MASK;    // clear flag } 原因分析:      初步判断可能是上一步数据的传输 i2c_write_byte()没有完成,导致IICIF未能被置位。于是通过示波器去捕捉这个过程,发现在执行 i2c_repeated_start(I2C0_B)时,KL25并没有产生一个 Repeat start信号。经过一番谷哥和度娘,终于在Kinetis L的Errata中找到了答案:Repeat start cannot be generated if the I2Cx_F[MULT] field is set to a non-zero value. 这也就意味着,当 I2Cx_F[MULT]位被设置为非0值时,I2C Master不能产生一个Repeat start信号。而在应用程序的I2C初始化I2C_init()代码中, 我恰好设置I2Cx_F[MULT]=01,这正好是符合了Errata描述的错误产生的条件。 解决方案:      I2C的C1寄存器中MULT位是I2C SCL时钟的倍乘因子,用于控制I2C的波特率。为解决上面的问题,FSL官方提供了两种workaround的办法: 1)如果repeat start必须产生时,配置 I2Cx_F[MULT]为0; 2)在置位 I2Cx_F register (I2Cx_C1[RSTA]=1)的Repeat START产生位之前临时设置 I2Cx_F [MULT],然后再在repeated start信号产生后恢复I2Cx_F [MULT]位的设置。 按照第一种方法,我修改程序中I2Cx_F[MULT]的设置从01到00,然后程序在FRDM-KL25Z 开发板上运行正常,能正常读取板载的加速度传感器MMA8451的数据。 2.问题描述: I2C单字节读取时序问题 问题提出: 在上面的Function 1中, KL25读取MMA8451的基本过程是:发送要访问的从机地址及对从机的写命令->发送要访问的从机的寄存器地址->发送Repeat Start信号到从机->发送要访问的从机地址及读命令->读取从机返回的数据,如下Figure1 MMA8451的单周期读时序图所示,其过程和上面代码的描述一致。但是有一点值得注意的是Figure 1中红色方框部分,按照Figure 1的表述,Master是在从Slave从机读取DATA[7:0]之后返回NAK信号的,用于指示本数据是Master要接收的最后一个DATA,最后发送stop signal终止数据的传送。按照这个思路得到的KL25的程序代码如下Section 2,它首先去读取从机返回的数据 i2c_read_byte(I2C0_B),然后发送NACK信号到从机i2c_give_nack(I2C0_B)。然而从KL25实际的物理时序的角度看,这个顺序是错误的,正确的应该是如下Section 1,应该在读取从机返回的数据 i2c_read_byte(I2C0_B)之前,首先发送NACK信号到从机i2c_give_nack(I2C0_B)。 Section 1.   i2c_set_rx_mode(I2C0_B);   i2c_give_nack(I2C0_B);----line1   result = i2c_read_byte(I2C0_B);----line2   i2c_wait(I2C0_B);----line3   i2c_stop(I2C0_B);----line4   result = i2c_read_byte(I2C0_B);----line5 Section 2.   i2c_set_rx_mode(I2C0_B);   result = i2c_read_byte(I2C0_B);-   i2c_wait(I2C0_B);   i2c_give_nack(I2C0_B);-   i2c_stop(I2C0_B); 原因: 主机发送的NACK信号只有在下一个数据接收之后才会被push到总线上,KL25的RM手册中的描述为the No acknowledge signal is sent to the bus after the following receiving data byte (if FACK is cleared)。 具体分析: 按照两个时序分别做了一个测试,并用示波器捕捉了相应的波形:执行Section 1的代码得到的波形如下Figure 2所示,NACK(1)信号刚好在第9个pluse脉冲上升沿被push总线上,然后在Stop信号后总线处于idle状态(SCL和SDA均为高)。执行Section 2的代码得到的波形如下Figure 3所示,ACK(0)信号在第9个pluse脉冲上升沿被push总线上,说明后面还有数据要传输,一直处于等待MMA8451数据的再次传送中,这明显违背了读取单字节数据的原本意图。总之,KL的I2C应用中Section 1的代码操作顺序是正确的,实际的物理时序和 Figure 1的示意图时序是不一样的,这点需要特别注意。 Figure 1. MMA8451's 单周期读时序示意图 Figuire 2. Section 1 代码对应的时序 Figure 3. Section 2 代码对应的时序 为方便大家验证这些问题,我这里在附件中一并上传了K60的I2C的示例代码,KL25的示例代码,以及Kinetis L关于I2C的Errata。 —————————————————————————————————————————————————————————————————————— English Version:      Recently, I migrate the K60’s I2C demo code to the KL25, but found it can't works when the same demo code runs on FRDM-KL25Z board while it runs well on the K60 board. After a painful struggling, I finally get the cause, so here I make a record, wish it could be helpful when other users happen to meet same problem. Repeat start can't be generated when configure I2Cx_F[MULT] to non-zero      The K60’s demo( the attached 1) is to communicate with the onboard accelerometer MMA8451 by I2C, and in the demo it finish a data transmission by quering I2C’s flag bit. With almost same code, it always stops at below Function 1's red line i2c_wait(I2C0_B), also this function's defination is shown as below Function 2, it stops at while((p->S & I2C_S_IICIF_MASK)==0) to wait IICIF flag. Function 1. u8 hal_dev_mma8451_read_reg(u8 addr) {     u8 result;     i2c_start(I2C0_B);     i2c_write_byte(I2C0_B, I2C_ADDR_MMA8451 | I2C_WRITE);     i2c_wait(I2C0_B);     i2c_get_ack(I2C0_B);     i2c_write_byte(I2C0_B, addr);    i2c_wait(I2C0_B);     i2c_get_ack(I2C0_B);     i2c_repeated_start(I2C0_B);     i2c_write_byte(I2C0_B, I2C_ADDR_MMA8451 | I2C_READ);     i2c_wait(I2C0_B);     i2c_get_ack(I2C0_B);     i2c_set_rx_mode(I2C0_B);     i2c_give_nack(I2C0_B);     result = i2c_read_byte(I2C0_B);     i2c_wait(I2C0_B);     i2c_stop(I2C0_B);     result = i2c_read_byte(I2C0_B);     pause();     return result; } Function 2. void i2c_wait(I2C_MemMapPtr p) {     while((p->S & I2C_S_IICIF_MASK)==0)  ; // wait flag     p->S |= I2C_S_IICIF_MASK;    // clear flag }      Then what's the matter? when I capture the I2C's wave form, found it didn't generate a Repeat start signal when excute i2c_repeated_start(I2C0_B);  After a struggle, In the Kinetis L's Errata do I find the answer: Repeat start cannot be generated if the I2Cx_F[MULT] field is set to a non-zero value. That means there is a bug in KL's design, if the I2Cx_F[MULT] field is set to a non-zero value, the I2C master can't generate a Repeat start signal. Coincidentally, in the I2C_init function I happen to set theI2Cx_F[MULT]=01, so it just meets the I2C's Errata.      Considering the MULT bits define the multiplier factor mul. and  used along with the SCL divider to generate the I2C baud rate. In the Errata, FSL gives two possible workarounds: 1) Configure I2Cx_F[MULT] to zero if a repeat start has to be generated. 2) Temporarily set I2Cx_F [MULT] to zero immediately before setting the Repeat START bit in the I2C C1 register (I2Cx_C1[RSTA]=1) and restore the I2Cx_F [MULT] field to the original value after the repeated start has occurred. To verify it easily, I revise the I2Cx_F[MULT] from 01 to 00. After that the same code runs well on FRDM-KL25Z board.    2. The Timing Sequence Of I2C's single byte Reading      In the above Function 1, there are a MMA8451 data read section like below after  Write Device Address->Write Register Address->Repeat Start->Write Device Address, and these steps is same as MMA8451's single byte read Timing Sequence requirment which is shown as below Figure 1. But referring to Figure 1, it looks like Section2 we should first excute below line2 to read the data, and then line1 give a nack  to suggest it's the last data, at last excute line4 to send a I2C stop signal. But unfortunately the idea is wrong, because in the phasical timing sequence the No acknowledge signal is sent to the bus after the following receiving data byte (if FACK is cleared) ,which means we need to give NACK signal before a read. And the captured wave form is like below Figure 2, you can find the NACK in the Ninth pluse, while the captured wave form is like below Figure 3 if excute Section 2 code instesd of Section 1 code, you can find the ACK in the Ninth pluse. it means the master will read another data, but the original intention is to read only one byte, so the I2C bus blocks. In a word, the section 1 code is right, the physical timing is different from the Figure 1's sketch map. Section 1.     i2c_set_rx_mode(I2C0_B);     i2c_give_nack(I2C0_B);----line1     result = i2c_read_byte(I2C0_B);----line2     i2c_wait(I2C0_B);----line3     i2c_stop(I2C0_B);----line4     result = i2c_read_byte(I2C0_B);----line5 Section 2.    i2c_set_rx_mode(I2C0_B);    result = i2c_read_byte(I2C0_B);-    i2c_wait(I2C0_B);    i2c_give_nack(I2C0_B);-    i2c_stop(I2C0_B); Figure 1. MMA8451's single byte read Timing sketch map Figuire 2. Section 1 code's Timing Figure 3. Section 2 code's Timing
記事全体を表示