MPC5xxx Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

MPC5xxx Knowledge Base

Labels

Discussions

Sort by:
Error Correcting Codes Implemented on MPC5744P Please be aware this is PRELIMINARY document and may be changed without notice.   Related code examples can be found here: Example 1 - MPC5744P 1b+2b_RAM_ECC_error_injection GHS714  Example 2 - MPC5744P 1b+2b_PERRAM_ECC_error_injection GHS614  Example 3 - MPC5744P 1b+2b_FLASH_ECC_error_by_UTEST_area_read GHS614  Example 4 - MPC5744P EDC_after_ECC_error_by_UTEST_area_read GHS714 
View full article
This is simple example of the usage of Flash Array Integrity Check (FAIC) function that is available on all MPC56xx devices.   The FAIC reads data from selected and unlocked flash blocks and calculates the MISR signature. User can compare the MISR signature calculated by flash controller (in runtime) with MISR calculated by offline tool (this is done during development, not in runtime) from s-record file. If the MISR is identical, we know that the content of selected flash blocks corresponds to content in s-record file and that there are no ECC errors (single bit or double bit ECC errors).
View full article
******************************************************************************** * Detailed Description: * Application performs basic initialization, setup PLL to maximum allowed freq., * initializes interrupts, blinking one LED by interrupt, second LED by software * loop, initializes and display notice via UART terminal and then terminal ECHO. * The example configures the device for maximum performance (OPTIMIZATIONS_ON) * by initialization of instruction/data cache and enabling of branch prediction. * Example suppose MCU is configured for LSM (Lock-step mode). * Its intention is to offer advanced startup code additional to CW stationery. * * ------------------------------------------------------------------------------ * Test HW:        MPC5675KEVB * MCU:            PPC5675KFMMSJ in Lock-Step mode * Fsys:           180/150 MHz CORE_CLK * Debugger:       Lauterbach Trace32 *                 PeMicro USB-ML-PPCNEXUS * Target:         RAM, internal_FLASH * Terminal:       19200-8-no parity-1 stop bit-no flow control on eSCI_A * EVB connection: default * ********************************************************************************
View full article
******************************************************************************** * Detailed Description: * * Example gives possible implementation of input signal period/freq measurement. * eTimer channel capture 1 and 2 features are used. CAPT1/CAPT2 capture counter * value on rising/falling edge of input signal. The FIFO is set to 2 entries * and ICF2 is monitored. Free-running mode is used here. * * eTimer channel 0-1 are cascaded to achieve 1sec/1Hz measuring with 32bit counter.   * EVB connection: *   P8.2  - A[1]  .. eTimer0 channel1 input signal *   P8.1  - A[0]  .. GPIO output, used to show measurement period * *   Route LINFlexD_0 TXD/RXD (PB2/PB3) signals to the main board RS-232 transceiver *   Daughtercard: *   J17.11–12 ON  .. Connect LINFlexD_0 TXD (PB2) to main board. *   J17.8–9 ON .. Connect LINFlexD_0 RXD (PB3) to main board. * *   Motherboard *   J14 - SCI_RX ON *   J13 - SCI_TX ON *   J25 - SCI_PWR ON * * connect pulse signal to the P8.2. * See results on PC terminal (19200, 8N1, None). * Change freq/duty of input signal. * * ------------------------------------------------------------------------------ * Test HW:  MPC57xx * Maskset:  1N65H * Target :  internal_FLASH * Fsys:     200 MHz PLL with 40 MHz crystal reference * Terminal: 19200, 8N1, None ********************************************************************************
View full article
******************************************************************************** * Detailed Description: * Application performs basic initialization, setup PLL to maximum allowed freq., * start one Z7 core, interrupts initialization, ICache and DCache are disabled * on both cores because of shared memory, which must not be cached. * * There is 4K shared memory defined in the linker file. This memory is used by * both cores. Both cores access into the structure, which is placed in the shared * memory. This access is marked as a critical section. Only one core can write * to the structure at the same time. To ensure this, there are Gates, which * guarantee data coherence during the access. Only one core can be in critical * section. Second core has to wait, until first core leaves the critical section * * * * ------------------------------------------------------------------------------ * Test HW:         MPC5775K-356DS, MPC57xx Motherboard * MCU:             PPC5775KMMY3B 0N76P * Terminal:        19200-8-no parity-1 stop bit-no flow control on LINFlexD_0 * Fsys:            PLL0 266MHz *                    Z4 Core 133MHz *                    Z7 Core 266MHz * Debugger:        Lauterbach Trace32 *                  PeMicro USB-ML-PPCNEXUS * Target:          internal_FLASH (debug mode, release mode) * EVB connection:  default connection * ********************************************************************************
View full article
Error Correction Codes Implemented on MPC5777C PRELIMINARY INFORMATION, Subject to Change without Notice   Related code examples can be found here: Example MPC5777C-1b+2b_RAM_ECC_error_injection GHS614 Example MPC5777C-1b+2b_FLASH_ECC_error_injection GHS614  
View full article
A requirement of the standard is to detect the accumulation of latent defects. To meet this requirement the MPC5744P has the ability to execute Built-In Self-Test (BIST) procedures.
View full article
The aim of the MPC5643L PWM triggered measurement concept is to introduce hardware  subsystem concept of autonomous triggering of ADC measurement by PWM module in desired time intervals and automatic storing of measured data into buffer located in SRAM. This autonomous measurement concept will offload the microprocessor’s core and presents the very precise way how to achieve the ADC time critical measurement synchronized with PWM signal generated by FlexPWM module.
View full article
Hello    If you want to do nothing on MCU, no-operation is used generally.     Additional mnemonics are provided for the preferred forms of no-op, like nop, e_nop, se_nop. (Where the semantics are similar but the binary encoding differ, the standard mnemonic is typically preceded with an e_ to denote a VLE instruction. To distinguish between similar instructions available in both 16- and 32-bit forms under VLE and standard instructions, VLE instructions encoded with 16 bits have an se_ prefix.)    When you compile these code within IDE, you can get the results as below. The code could run correctly except __asm__ ("nop").  Some MPC5xxx will stop at __asm__ ("nop").    "nop"         gives Book E NOP instruction which isn't valid on VLE only cores. "e_nop"     gives 32bit VLE instruction. "se_nop"   gives 16bit VLE instruction. Based on the summary within AN4802 (thanks for Randy Dee's working), Qorivva MPC57xx e200zx Core Differences, Book E is not supported by MPC57xx. VLE instruction set is supported only.   This is the reason that user should use "e_nop" or "se_nop" except "nop" on MPC57xx or S32R2xx. Cheers! Oliver
View full article
******************************************************************************** * Detailed Description: * A simple example configures eTPU engine B channels 0/1 for GPO/GPI. It is * needed to connect these pins by wire. Output wave is generated by eTPU GPIO * output function and inputs are read by fs_etpu_gpio_input_immed function * latching just current pin state. Pin history is displayed in ISR. * * Note: It is needed to configure IGF module, otherwise inputs does not pass * to eTPU module. * * ------------------------------------------------------------------------------ * Test HW:         MPC5777C-512DS Rev.A + MPC57xx MOTHER BOARD Rev.C * MCU:             PPC5777CMM03 2N45H CTZZS1521A * Fsys:            PLL1 = core_clk = 264MHz, PLL0 = 192MHz * Debugger:        Lauterbach Trace32 * Target:          internal_FLASH * Terminal:        19200-8-no parity-1 stop bit-no flow control on eSCI_A * EVB connection:  ETPUB0 (PortR P25-1) --> ETPUB1 (PortR P25-0) by wire * ********************************************************************************
View full article
******************************************************************************** * Detailed Description: * Application performs basic initialization, setup PLL to maximum allowed * frequency * * * Mode transition to LPU_STOP is executed. CAN_0 is configured to wake up from *  LPU_STOP to LPU_RUN using message with standard IDE = 0 as a wake up *  preselected matching criteria. After wake up from LPU_STOP, user *  LED1 is blinking.   * * Modified files: mem.ld, sections.ld, startup.s, added file z2_restart.s * * * ------------------------------------------------------------------------------ * Test HW:         MPC5748G-324DS, MPC574xG Motherboard * MCU:             PPC5748GMMN6A 1N81M * Fsys:            PLL0 160MHz * Debugger:        Lauterbach Trace32 *                  PeMicro USB-ML-PPCNEXUS * Target:          internal_FLASH (debug mode, release mode) * EVB connection:  Default * * * ********************************************************************************
View full article
This demo performs a communication on LIN bus between two MPC5604B EVBs.   LinFlex0 LIN Master ******************************************************************************** * Detailed Description: * - send header from a LIN Master * - either receive data from a LIN Slave or transmit a data * - no interrupt is used, just SW pooling * * ------------------------------------------------------------------------------ * Test HW:  XPC560B 144 LQFP MINIMODULE, XPC56XX EVB MOTHERBOARD, SPC5604B 2M27V * Target :  internal_RAM, Flash * LinFlex0: Lin Master, 19200 baudrate * Fsys:     64 MHz PLL with 8 MHz crystal reference * * ------------------------------------------------------------------------------ * EVB connections and jumper configuration * * XPC56XX EVB MOTHERBOARD * for LinFlex0 connection to the MC33661 LIN transceiver: * - RXDA_SEL (near SCI !!!!) jumper over pins 1-2 * - TXDA_SEL (near SCI) jumper over 1-2 * * for LIN Master functionality * - VSUP (J6) jumper fitted *   lin xceiver will get +12V from the EVB * - V_BUS (J14) jumper not fitted * - MASTER_EN jumper fitted * - LIN_EN jumper fitted * ********************************************************************************     LinFlex0 LIN Slave ******************************************************************************** * Detailed Description: * - receive header from a LIN Master * - either receive data from a LIN Master or transmit a data * - Filter can be enabled with the FILT_EN = 1 * - If filter is enabled TX interrupt is used to prepare data to send and *    RX interrupt to read received data * - If filter is disabled SW polling is used * * ------------------------------------------------------------------------------ * Test HW:  XPC560B 144 LQFP MINIMODULE, XPC56XX EVB MOTHERBOARD, SPC5604B 2M27V * Target :  internal_RAM * LinFlex0: Lin Slave, 19200 baudrate * Fsys:     64 MHz PLL with 8 MHz crystal reference * * ------------------------------------------------------------------------------ * EVB connections and jumper configuration * * XPC56XX EVB MOTHERBOARD * for LinFlex0 connection to the MC33661 LIN transceiver: * - RXDA_SEL (near SCI !!!!) jumper over pins 1-2 * - TXDA_SEL (near SCI) jumper over pins 1-2 * * for LIN Slave functionality * - VSUP (J6) jumper not fitted ...LIN transceiver will get +12V from the Master * - V_BUS jumper not fitted * - MASTER_EN jumper not fitted * - LIN_EN jumper fitted * ********************************************************************************
View full article
This document summarizes simple I2C driver implementation for MPC5xxx devices. The code follows Reference Manual's Flow-Chart of Typical I2C Interrupt Routine.
View full article
******************************************************************************** * Detailed Description: * Purpose of the example is to show how to generate Multi-bit or Single-bit ECC * error in internal FLASH (user must choose it in the option at the end of main * function). * ECC error is injected by reading of pre-defined patterns in UTEST area at * addresses 0x00400040 and 0x00400060. * When corrupted data is accessed the IVOR1 exception handler is called in case * of multi-bit ECC error (IVOR1 exception occurs) and FCCU_Alarm_Interrupt * handler is called in case of single-bit ECC error (FCCU interrupt occurs). * Both function calls MEMU handler. * The example displays notices in the terminal window (connector J19 on * MPC57xx_Motherboard)(19200-8-no parity-1 stop bit-no flow control on eSCI_A). * No other external connection is required. * ------------------------------------------------------------------------------ * Test HW:         MPC57xx_Motherboard + MPC5744P-144DC * MCU:             PPC5744PFMLQ8,0N15P,QQAA1515N, Rev2.1B * Fsys:            200 MHz PLL with 40 MHz crystal reference * Debugger:        Lauterbach Trace32 * Target:          internal_FLASH, RAM * Terminal:        19200-8-no parity-1 stop bit-no flow control * EVB connection:  default ********************************************************************************
View full article
Detailed Description:                      This config tool simplifies DCF records calculation for MPC5777C device.                 Look at HowToUse sheet for simple guideline, then work with DCF sheet                 Notes: - Macros have to be enabled!       - Programming more than 104 DCF records on Cut1.0b will result in incorrect device operation (FCCU faults, SSCM[CER] bit set, etc)       BR, Petr
View full article
******************************************************************************** * Detailed Description: * Application performs basic initialization, setup PLL to maximum allowed freq., * initializes interrupts, blinking one LED by interrupt, * initializes and display notice via UART terminal and then terminals ECHO. * * * Test HW:        X-MPC5744PE257DC, MPC57xx motherboard * MCU:              PPC5744PFMMM8 1N65H * Terminal:        19200-8-no parity-1 stop bit-no flow control on LINFlexD_0 * Fsys:             200 MHz * Debugger:      Lauterbach Trace32 *                       PeMicro USB-ML-PPCNEXUS * Target:          internal_FLASH (debug mode, release mode) * EVB connection:  User LED 1 connected to A0 (P8.0), * ********************************************************************************
View full article
******************************************************************************** * Detailed Description: * Example show simple flash programming routine. During runtime it changes * content of field of constants 'test' (thus located in internal flash). * Also it shows how to relocate code into RAM a data into FLASH (used linker * command file is MPC5643L_my_sections.lcf and MPC5643L_DEBUG_my_sections.lcf). * * Note: For complex tasks use SSD driver (Freescale site for particular device, * Software&Tools/Run-Time Software/Middleware-Device Drivers * * ------------------------------------------------------------------------------ * Test HW:         xPC564xLKIT, PPC5643L Cut3 silicon * Target :         internal_FLASH, RAM * Fsys:            120 MHz PLL0 * Debugger:        Lauterbach Trace32 *                  PeMicro USB-ML-PPCNEXUS * Terminal:        19200-8-no parity-1 stop bit-no flow control via LINFlex0 * EVB connection:  default * ********************************************************************************
View full article
External Bus Interface FAQs related to MPC55xx and MPC56xx MCUs Preliminary version
View full article
******************************************************************************** * Detailed Description: * * LINFlexD_1 configured as Master *   - sends Header *   - either transmits a data to LIN Slave or receives data from a LIN Slave *   - no interrupt is used, just SW pooling * * LINFlexD_0 as Slave *   - receives header from a LIN Master *   - either receives data from a LIN Master or transmits a data to Master *   - filter is enabled *   - TX interrupt is used to prepare data to send and *   - RX interrupt to read received data * * EVB connection: * *   Switches on Motherboard: *   P6.1 to P8.1  ... SW1 to PA0 *   P6.2 to P8.2  ... SW2 to PA1 *   P6.3 to P8.3  ... SW3 to PA2 *   P6.4 to P8.4  ... SW4 to PA3 * *   Unconnect LINFlexD_0 from UART transceiver *   J14 SCI_RX open *   J13 SCI_TX open * *   As only single LIN transceiver is available LINFlex modules are connected *   together before this transceiver in the way TX pins together and RX pins together. *   TX pins must be configured as open drain and use a pullup resistor. * *   P11.15 to P12.8    TX pins *   P11.16 to P12.7    RX pins * *   Connect LINFlexD_1 to LIN transceiver on Motherboard *   J17 - LIN_TX ON *   J16 - LIN_RX ON *   J15 - LIN_EN ON *   P3 1-2 ON ... VSUP to 12V ** *   See LIN signal on P3.3 or J4.4. * * ------------------------------------------------------------------------------ * Test HW:  MPC5744P * Maskset:  1N65H * Target :  RAM, internal_FLASH * Fsys:     200 MHz PLL with 40 MHz crystal reference * Terminal: None ******************************************************************************** Revision History: 1.0     Feb-22-2016     PetrS          Initial Version of LIN example *******************************************************************************/ Original Attachment has been moved to: Example-MPC5744P-LINFlex-LIN-Master-Slave-test-v1_0-GHS614.zip
View full article
******************************************************************************** * Detailed Description: * * ------------------------------------------------------------------------------ * Test HW:  TRK-MPC5604P, SPC5604P * Maskset:  0M36W * Target :  RAM * Terminal: no * Fsys:     64 MHz PLL with 8 MHz crystal reference in RUN0. IRC in DRUN * * 1. you have to use an external power supply to the board (SBC power)   2. The SBC chip must be initialized (via SPI interface) to turn on the CAN transceiver.   3. For ease of use, install the VSUP shunt on (jumper J5). This it to put 9 V on the SBC's DBG pin - refer to the SBC Data Sheet for more details about the DBG pin of the SBC chip.   4. This code initializes the MCU, then sends commands to the SBC chip over the SPI bus to turn on the CAN transceiver, then the FlexCAN_0 module transmits a message out of the board.   I/O configuration for the TRK-MPC5604P CAN example:   MCU_PB0 -> SBC_TXD  (MPC5604P CAN0TX PCR[16] ALT1 function) MCU_PB1 <- SBC_RXD  (MPC5604P CAN0RX PCR[17] input function)   SPI bus between the MCU and SBC:   MCU_PC4 -> SBC_!CS    (MPC5604P DSPI_0 CS0  ALT1 function PCR[36]) MCU_PC5 -> SBC_CLK    (MPC5604P DSPI_0 SCK  ALT1 function PCR[37]) MCU_PC6 -> SBC_MOSI   (MPC5604P DSPI_0 SOUT ALT1 function PCR[38]) MCU_PC7 <- SBC_MISO   (MPC5604P DSPI_0 SIN  input function PCR[39])  * ********************************************************************************
View full article