Kinetis Microcontrollers Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Kinetis Microcontrollers Knowledge Base

Discussions

Sort by:
Here you can find the code and project files for the GPIO example, in this example the 3 colors of the RGB led are turned on sequentially when the SW2 push button is pressed, the led pin definition is shared throughout all the freedom platforms. The wait function can be defined in seconds, miliseconds or microseconds. Code: #include "mbed.h" //Delay declared in seconds /*GPIO declaration*/ DigitalOut Red(LED1);         DigitalOut Green(LED2); DigitalOut Blue(LED3); DigitalIn sw2(SW2); int main() {     /*Leds OFF*/     Red=1;     Green=1;     Blue=1;         while(1)     {         if(sw2==0)         {             Red = 0;             wait(.2);             Red = 1;             wait(1);                                Green=0;             wait(.2);             Green=1;             wait(1);                         Blue=0;             wait(.2);             Blue=1;             wait(1);         }     } }
View full article
Here you can find both the code and project files for the PWM project, in this example a single PWM channel belonging to the Flextimer 0 (PTC10/FTM_CH12) is enabled to provide a PWM signal with a 500ms period, the signal's duty cycle increases its period every 100ms, to visually observe the signal connect a led from the A5 pin in the J4 connector to GND (J3, pin 14). Code: #include "mbed.h" //PWM output channel PwmOut PWM1(A5); int main() {     PWM1.period_ms(500);     int x;     x=1;         while(1)     {         PWM1.pulsewidth_ms(x);         x=x+1;         wait(.1);         if(x==500)         {             x=1;         }     } }
View full article
Background: NXP SC18IS602B I2C bus to SPI bridge chip is using TSSOP16 package, which is 16 leads; 0.65 mm pitch; 5 mm x 4.4 mm x 1.1 mm body. Customer requires to use a smaller package to emulate the SC18IS602B function. Kinetis L series MKL03Z16VFK4R product uses QFN24 package with 4 mm x 4 mm x 0.58 mm body. Demo Overview The I2C to SPI Bridge demo provides a replacement solution demo of SC18IS602B chip. The demo is based on FRDM-KL03Z board using I2C0 module as I2C slave and SPI0 module as SPI master. Provided data buffer size is 400bytes. The demo software is based on KSDK V2.0 for FRDM-KL03Z software. I2C slave interface: Pin number                 Function              FRDM-KL03Z jumper PTB3                          I2C0_SCL           J2-10 PTB4                          I2C0_SDA           J2-9   SPI master interface: Pin number                 Function              FRDM-KL03Z jumper PTA5                           SPI0_SS             J2_3 PTA6                           SPI0_MISO         J2_5 PTA7                           SPI0_MOSI         J2_4 PTB0                           SPI0_SCK           J2_6   INT pin (indicates if I2C to SPI Bridge allows i2c master start a new i2c transfer, low is active) Pin number                 Function              FRDM-KL03Z jumper PTB11                        GPIO output         J2_2   Connect I2C master with FRDM-KL03Z I2C slave interface and connect SPI slave with FRDM-KL03Z SPI master interface; Connect FRDM-KL03Z GND to I2C master and SPI slave before add power to those boards.  Below is the hardware platform connection way: I2C to SPI Bridge Demo Function For the KL03 chip with one SPI0_PCS0 chip select pin, I2C to SPI Bridge demo only supports function ID 0x01 as SPI write command. For example: if i2c master want to write 8bytes (0x21,0x22...0x28) to SPI slave, the i2c master needs to send below data to FRDM-KL03Z board:   [START] + [I2C Slave address+/W] + [0x01](Function ID) + [0x21](data 1) + [0x22](data 2) + ... +[0x28](data 😎 + [STOP]     I2C to SPI bridge demo supports Function ID 0xF0 to configure SPI interface: There provides four SPI baud rate: 6Mbps/3Mbps/1.5Mbps/1Mbps. More detailed info, please check below picture (picture abstracted from SC18IS602B datasheet): For example: customer could configure SPI baud rate to 3Mbps with send below data to FRDM-KL03Z board:        [START] + [I2C Slave address+/W] + [0Xf0](Function ID) + [0x01](data 1) + [STOP] Hardware Platform The demo is based on FRDM-KL03Z board, using internal IRC48M clock as system and bus clock source. There doesn’t need external clock source. Toolchain supported - IAR embedded Workbench 7.60.1  (Tested) - Keil MDK 5.18a - GCC ARM Embedded 2015-4.9-q3 - Kinetis Development Studio IDE 3.2.0 Running the Demo Connect a USB cable between the host PC and the USB port on the target board. Open a serial terminal with the following settings:     - 9600 baud rate     - 8 data bits     - No parity     - One stop bit     - No flow control Download the program to the target board. I2C master start to configure SPI interface      I2C to SPI bridge board I2C address is 0x7E. I2C master write data to SPI slave    I2C master write 10bytes to SPI slave, it will send 11bytes (includes one function ID 0x01). The first data is 0xAA and the last data is 0x22.    After I2C to SPI Bridge receive the data, it will send 10bytes to SPI slave.        I2C to SPI Bridge receive 10 bytes     I2C to SPI Bridge send 10bytes to SPI slave I2C master read data from SPI slave    I2C master read 10bytes(0x10 to 0x19) from SPI slave need to write data to SPI slave at first, then read data from I2C to SPI bridge data buffer directly.    Here just shows read 10bytes from I2C to SPI bridge data buffer. Attached I2C to SPI Bridge demo software default location is: ..\SDK_2.0_FRDM-KL03Z\boards\frdmkl03z\user_apps\i2c_to_spi
View full article
中文版本:     相信很多博友在调试ARM代码的时候,尤其是涉及到操作底层的时候,由于一些误操作常常会遇到Hard fault错误或者程序跑飞的情况,这些bug采用正常的方法是比较难定位的,往往需要我们逐行去排查测试,最后看的眼花缭乱,永远给人以苦逼程序员的印象,呵呵。此篇内容致力于节省广大程序员的精力,以崭新的一种方法角度或者说是手段来定位跟踪bug(仅限于支持Coresight技术的ARM处理器,本篇只讲针对M0+内核的),故冠之以“原创猛料”之称号,希望能名副其实,好了,闲话不多说,呵呵,开整……     ARM的Coresight技术估计大家有所耳闻(没听过的可以参考我之前的一篇介绍类文章http://blog.chinaaet.com/detail/29770.html),它实际上包括了ARM嵌入到其处理器内核的片上跟踪调试组件和相关的配套系统软件标准之类的,方便我们开发调试ARM产品。可能单说Coresight技术有点太泛了,把它具体化的话就不得不提到ETB(Embeded Trace Buffer)和MTB(Micro Trace Buffer)这两个经典的模块,其中ETB模块是Cortex-M3/M4内核的片上跟踪单元,而MTB模块则是Cortex-M0/M0+内核的跟踪单元。不过估计很多人没有用过,所以我就本着“吃螃蟹”的态度去尝试了一番,结果还是挺让我惊喜的,灰常好用,所以下面我就把使用方法分享给大家供大家评估,本文以MTB模块调试飞思卡尔基于Cortex-M0+内核的Kinetis L系列为例:     在介绍使用方法之前需要提一下,目前我测试的结果是J-link暂不支持MTB模块(但是支持ETB模块),所以我使用了OpenSDA平台的CMSIS-DAP固件来调用MTB模块,所以如果你手中有Kinetis L系列的Freedom板的话就直接可以跟我做了,其中CMSIS-DAP固件在本博客附件中,使用方法仍旧是类似更新OpenSDA的应用,不过换过CMSIS-DAP固件之后OpenSDA的小灯可能不亮,这个纯属正常,不要惊慌,哈哈。 测试环境:IAR6.6 + Freedom OpenSDA(CMSIS-DAP firmware) 测试目标芯片:Kinetis MKL25Z128     1)打开一个KL25的demo例程,然后右键工程Options->Debugger,选择“CMSIS-DAP”调试器,然后其他默认即可,设置完毕,点击“OK”,如下图所示:     2)点击调试按钮,进入调试界面,此时菜单栏会出现CMSIS-DAP选项,选择CMSIS-DAP->ETM Trace,调用MTB模块,弹出跟踪窗口,如下图所示。默认情况下跟踪功能是禁止的,此时点击跟踪窗口ETM Trace左上角的“电源符号”,打开跟踪功能,此时调试界面的左上角的ETM显示绿色,表示已经打开;     3)此时MTB功能已经打开,我们可以点击“全速运行”,然后再点击“暂停”,此时就可以在ETM Trace跟踪窗口看到从运行到断点停止这段时间所有的指令执行情况了,非常直观,如下图所示,此外可以选择同时查看汇编和C语言,也可以保存跟踪的结果,进而分析程序执行情况。     说到这,我们就该想到这种方式的好处了吧,如果遇到Hardfault或者程序跑飞的时候,通过设置断点或者点击暂停,然后就可以捕捉到出现hardfault或者程序跑飞的之前的程序执行情况从而帮助我们快速定位到bug的地方,非常方便实用。此外,实用CMSIS-DAP调试工具还有一个好处是,可以使用很多插件了,比如Timeline等等,灰常不错,哈哈~ English Version:     As we know, ARM Coresight, the ARM debug and trace technology, is the most complete on-chip debug and real-time trace solution for the entire System-On-Chip(SoC), making the ARM processor-based SoCs the easiest to debug and optimize. In this technology, the ETB in  Cortex-M3/M4 and MTB in Cortex-M0/M0+ are representative two units, which can effectively help us to monitor the process of software executing or focus on some hard faults by tracing the instructions.     In the article, I wanna introduce the MTB useage in our product Kineits L series, which may be helpful to some customers using KL chip. But, before that, a CMSIS-DAP firmware for OpenSDA platform is needed, which you can find in the attachment of this article. So far as I know, it seems that J-Link don't support MTB yet, but do support ETB of Cortex-M4. Testing Platform:     IAR EWARM6.6 + FRDM KL25 (OpenSDA with CMSIS-DAP fimware) Testing steps:     1) firstly, update the OpenSDA with CMSIS-DAP fimware, just like other OpenSDA applications;     2) open any KL25 demo with IAR, access project setting "Options->Debugger", and select the "CMSIS-DAP" adapter as the screenshot shown below;     3) click the debug button to access thw debug window, then click the CMSIS-DAP->ETM Trace from the menu bar,  and the ETM trace window will appear. Note that, the trace function is disabled in default, so another step is needed to click the "power port" at the top left corner to enable the trace function. The screenshot shows it below;     4) Now, the MTB is working. We can try it by click "run" and wait a while to click "pause", then the instructions from run to pause are shown in the trace window, it is really convenient. Besides, we can save, clear or zoom the trace results. Conclution:    Through the above method, some painstaking issues like hardfault or program fleet can be captured simply by setting breakpoints or mannuly pause, which can help to positioning the source of the problem. Beyong that, the CMSIS-DAP can support plugs like timeline tool. BTW, it is a pity that MTB unit in the new Kinetis E series is cut out.         Happy Tracing!
View full article
中文版:     想到过使用飞思卡尔的Freedom平台当做昂贵的J-Link调试器吗,好吧,这次给你机会了,呵呵。昨天在去SEGGER官网查资料的时候看到了一个suprise,Segger刚刚为OpenSDA平台release了一个可以兼容Jlink功能的firmware。说白了,就是借用OpenSDA当做J-Link用,当然有部分功能是有所限制的,不过瑕不掩瑜,Jlink的高速、稳定及一些特有的功能一直让接触过它的开发者印象深刻,所以能用low-cost的OpenSDA实现高性能的Jlink实在是让人兴奋,包括在下,哈哈,所以还等什么,赶紧露胳膊抹袖子整整吧,呵呵~     其实这次SEGGER提供的firmware就是OpenSDA的一个Application(我已经上传到本博客最后的附件中了),类似MSD-APP和DBUG-APP等其他的OpenSDA应用,所以它的使用方法类似,具体可以参考我之前的一篇博客《尝鲜OpenSDA方式调试仿真Freedom平台》http://blog.chinaaet.com/detail/31795.html。     (1)将firmware更新到OpenSDA的平台之后,再回到normal mode,这样就可以把OpenSDA当J-Link用了。将硬件连接好之后,打开J-Link Commander,弹出的窗口如下图所示,看吧,有点如假包换的J-Link味道了吧,呵呵,而且还有正版的S/N序列号哦。     (2)当然在IAR环境下使用它还需要简单的设置几步,如下图所示,建议不使用flash loader而是使用jlink自带的调试下载引擎,更稳定且速度杠杠的,呵呵:     (3)一切都准备好之后,就可以按照J-Link的调试方法调试Kinetis了,呵呵。当然有个最大的好处是,借用J-Link的特性,使用OpenSDA也可以支持Live watch了,可以实时更新观察变量,这点灰常灰常给力,如下图: Limitations:     当然我们也会猜到SEGGER不会那么蠢到自断财路(OpenSDA平台可是非常low-cost的),不然谁还会用那么昂贵的正版J-Link啊,呵呵。所以使用SEGGER提供的这个firmware有以下几点限制: 1)只能用在飞思卡尔平台基于ARM的产品上; 2)只可以调试飞思卡尔的评估板,所以貌似如果用在自己画的板子上可能有问题; 3)还有一个比较遗憾的,那就是不支持使用J-Flash软件(我一直觉着J-Flash很好用); 4)SEGGER不提供技术支持(这个我觉着无所谓)。     总体来说,还是利好的消息的,我还是灰常灰常看好OpenSDA的应用前景的,连SEGGER都低头兼容了,看来飞思卡尔以后调试器短板有望得到弥补,加油吧,呵呵。     不聊了,附件为更新的固件,未完待续~ /*****************************************************************************************************************************************/ English Version:    It feels realy good to see that SEGGER has offered a firmware running on the FRDM OpenSDA platform which makes OpenSDA compatible to J-Link lite, allowing users to take advantage of most J-Link features. It means we can do the same things with high-performance by using the low-cost OpenSDA platform. 1) How to do?    The J-Link firmware SEGGER offered is just an OpenSDA Application, so put the FRDM board into Bootloader mode and update the firmware, which is enclosed in the attached, just like other OpenSDA applications. Then put it into normal mode and the J-Link driver will be installed. Open the J-Link Commander, and we will see the diagram below. In IAR IDE, some setup steps need to follow: 2) Why to do?     Most inland customers get used to J-Link to debug ARM based products since ARM7 time and the J-Link is realy good debugger by my experience, althougn the legal J-Link is expensive. So we can help the customer to develop and evaluata products with low-cost OpenSDA platform.    In addition, live watch in IAR, which can update the varibles in time, is only supported with J-Link engine, which is very important to customer.   3) Limitations     May be used with ARM based Freescale devices only;     Only debugging on evaluation boards is allowed. Debugging on custom hardware is not supported and not allowed;     No production flash programming support;     Unlimited breakpoints in flash available for evaluation only;     No support is given. 4) Suggestions     OpenSDA is a very potential platform. USBDM has also released a firmware which is compatible to OpenSDA recently. So an open source OpenSDA  release from P&E is expected and to help customer to custom their own debugger hardware, which can help us to extend our Kinetis products more convenient. Voila, just give a try!
View full article
  当我们在使用Keil 时,经常会遇到无法下载程序的问题,以下对两种常见的情况进行总结:    1. 在我们需要将某工程代码移植到同系列其他型号器件上使用时,如果只是更改了器件型号,这时可能会导致无法正确下载。需要注意的是不仅要在Device中更换型号,还需要在Flash Download栏中选择正确的flash loader 并且设置正确的RAM起始地址。   举个例子:假设我们需要将FRDM_KL26的Sample code中的hello_world工程移植到256K flash的KL26上使用。打开FRDM_KL26的Sample code中hello_world工程,我们可以看到Device中器件为MKL26Z128xxx4,        在Target中可以看到Flash和RAM的起始地址和大小信息。          如果使用Jlink调试接口,选择J-LINK/J-TRACE Cortex  ,之后选择Setting,可以看到flash loader的相关信息。         将此工程移植到到256K flash的器件上,我们需要做的事情是:      在device中进行修改,选择MKL26Z256xxx4               在Target中可以看到这时flash和RAM的起始地址和大小信息已经自动做了更改。不需要再手动修改了。         但是在Flash Download中的设置还是之前的设置,并没有改变。           所以这时是无法正确下载程序的,需要我们手动去修改这里的两处配置。     一是 RAM for Algorithm中的Start应该设置为0x1FFFE000(从Target栏中可以获取该值),Size不用更改。      二是Program Algorithm 删除掉128k的flash loader ,添加256K的flash loader。       2.第二种可能遇到的情况是:本来可以正常下载的程序当复制到另外一台电脑时就无法正常下载了。遇到这种现象时,需要检查一下Flash Download中的相关配置是否正确,很可能会遇到 Program Algorithm中flashloder为空的情况,发生这种情况的原因可能是两个电脑的Keil版本不同,所以flash loader所在路径就会不同,这样flash loader就会变成空白,这时需要自己手动添加一下即可。
View full article
This was a super fun project to work on and is popular around the office and on the road.  Now I have two of these for a truely amazing barrage of Nerf darts!  It's also always a lot of fun to tear things down and the Nerf gun had some cool plastic work and the shooting mechanism is more simple than what I originally guess.  But I digress, this post is about how you can build one of these yourself.  Please leave any questions or comments in the section below and I will try to answer and make refinements to this guide as we go. Say hello to my little friend. The shopping list (aka Bill of Materials or BOM) If you shop around you might be able to find better prices or substitute parts. Type Part Qty Price URL UBEC HKU5 1 $             5.33 http://www.hobbyking.com/hobbyking/store/__16663__HobbyKing_HKU5_5V_5A_UBEC.html LiPo TURNIGY 2200mAh 3S 20C 1 $             7.89 http://www.hobbyking.com/hobbyking/store/__8932__Turnigy_2200mAh_3S_20C_Lipo_Pack.html Servo S5030DX 1 $           28.63 http://www.hobbyking.com/hobbyking/store/__18862__Hobbyking_S5030DX_Digital_MG_Servo_X_Large_HV_164g_0_20s_30kg.html Servo HK15138 1 $             3.12 http://www.hobbyking.com/hobbyking/store/__16269__HK15138_Standard_Analog_Servo_38g_4_3kg_0_17s.html Relay PCB COM-11041 1 $             3.95 https://www.sparkfun.com/products/11041 Relay Components Various 1 $             3.00 https://www.sparkfun.com/wish_lists/36307 Nerf Gun Nerf Dart Tag Swarmfire Blaster 1 $           44.99 http://www.toysrus.com/product/index.jsp?productId=11267568 Controller FRDM-KL64F 1 $           12.95 http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FRDM-K64F Radio Module NRF24L01 2 $             3.00 http://www.dx.com/p/2-4ghz-nrf24l01-wireless-module-black-142224#.U8VIcpRdU1I Servo Arm Double Servo Arm X-Long 1 $             3.20 http://www.hobbyking.com/hobbyking/store/__19468__CNC_Alloy_Double_Servo_Arm_X_Long_Futaba_.html Servo Arm Heavy Duty Alloy Arm 1 $             5.63 http://www.hobbyking.com/hobbyking/store/__18350__Heavy_Duty_Alloy_1in_Servo_Arm_Futaba_Red_.html Servo Linkage Alloy Pushrod with Ball-Link 65mm 1 $             2.10 http://www.hobbyking.com/hobbyking/store/__25834__Alloy_Pushrod_with_Ball_Link_65mm.html Lazy Susan Shepherd 6 in. Lazy-Susan Turntable 1 $             4.49 http://www.homedepot.com/p/Shepherd-6-in-Lazy-Susan-Turntable-9548/100180572#.UYk5UqLql8E Metal Rod 3/8 in. x 36 in. Zinc Threaded Rod 1 $             2.87 http://www.homedepot.com/p/3-8-in-x-36-in-Zinc-Threaded-Rod-17340/202183465#.UYk5pqLql8E Frame 1/2 MDF 2ftx4ft 1 $           10.45 http://www.homedepot.com/p/1-2-in-x-2-ft-x-4-ft-Medium-Density-Fiberboard-Handy-Panel-1508108/202089097?N=btn1#.UYk6CqLql8E The build Two main pieces to construct in this phase.  The base turret and the actual hacking of the Nerf gun. All your base.. The base of the turret is pretty rudimentary, lot's of room for improvement here.  I used 1/2 MDF and some carpentry skills.  Here is an instructable on how to build a MDF box.  Atop the box is a lazy susan (ball bearing ring) so that the top-plate can rotate smoothly.  We considered leaving this element out, but worried that it would put to much strain on the servo. On the subject of servos, a few tidbits of wisdom for you as you build this thing.  First, the left/right servo needs to be dead center of the lazy susan, if your off too much things will start to bind which is not good for your servo.  Second, I used large higher torque servos which cost a bit more, they might be overkill, but it certainly performs well. I did a quick dimensionally accurate rendering of the design in Sketchup. Files are here. Hacking the Nerf Now for the fun stuff. There is no shortage of screws with this Nerf Gun.  So get out your Phillips screwdriver and go to town. There are two electrical systems in the Nerf that we are going to tap into.  One is the power switch and the other is the electrical trigger. This is the electrical trigger.  The trigger goes to our relay, which is either on or off.  We did try at first to use a 7.2V R/C car battery, but the Nerf draws too much power and didn't fire.  Going up to a 11.1V LiPo fixed that right up. This is the power switch. In Nerfinator 1.0 everything was hardwired together, which prevented us from completely pulling the Nerf from the base and made repairs difficult to say the least.  Nerfinator 2.0 we put this handy connector which allowed us to completely and easily remove the Nerf from the base.  Shipping this thing around the country will take a toll on it!  On that subject, Nerf 1.0, stopped cycling to the next position for us at the Austin Mini Maker Faire.  After a through inspection of the operational mechanics inside the Nerf (really cool BTW) it was a little bitty spring that was causing the piston not to fully retract.  We replaced the spring with 1/2 a ballpoint pin spring and to our surprise it all worked again.  Cue the MacGyver theme song... Electrical Connection Diagram [PDF] Code Mbed was the programming tool of choice for this build. Receive Side (RX) - The receiver is the base side.  This one takes input from the remote and controls the servo movement. NerfGun_nRF24L01P_RX - a mercurial repository | mbed Transmit Side (TX) - The transmitter is the remote side.  This one senses the users movement (accelerometer) and sends that data to the base station. NerfGun_nRF24L01P_TX - a mercurial repository | mbed Finishing Touches In the first passes of this build we just used a bare development board as the remote control.  We found that when given the remote they would not orientate it properly.  Angus and Iain CAD'ed up this really sweet controller for us to 3D print. Custom cutouts for the FRDM board and nRF module and powering through USB. Freedom- 3D Printed Controller files on Thingiverse Development Team Deactivated user - Amplification/Motivation CJarvis - Software/Hardware iafg and angusgalloway-b45797 - Design and print of controller Community Developed Improvements Nerf Gun Web Socket Compatibility - Controlling via Web Socket
View full article
This document shows the implementation of the infrared on the UART0 using the FRDM-KE02Z platform. The FRDM-KE02Z platform is a developing platform for rapid prototyping. The board has a MKE02Z64VQH2 MCU a Kinetis E series MCU which is the first 5-Volt MCU built on the ARM Cortex-M0+ core. You can check the evaluation board in the Freescale’s webpage (FRDM-KE02Z: Kinetis E Series Freedom Development Platform) The Freedom Board has a lot of great features and one of this is an IrDA transmitter and receiver on it. Check this out! One of the features of the MCU is that the UART0 module can implement Infrared functions just following some tricks (MCU-magic tricks). According to the Reference Manual (Document Number: MKE02Z64M20SF0RM) this tricks are:      UART0_TX modulation: UART0_TX output can be modulated by FTM0 channel 0 PWM output      UART0_RX Tag: UART0_RX input can be tagged to FTM0 channel 1 or filtered by ACMP0 module For this example we are going to use the ACMP0 module to implement the UART0_RX functionality. Note1: The Core is configured to run at the maximum frequency: 20 Mhz Note2: Refer to the reference manual document for more information about the registers. Configuring the FTM0. The next lines show the configuration of the FTM0; the module is configured with a Frequency of 38 KHz which is the ideal frequency for an infrared led. The FTM0_CH0 is in Edge_Aligned PWM mode (EPWM).           #define IR_FREQUENCY       38000 //hz      #define FTM0_CLOCK                BUS_CLK_HZ      #define FTM0_MOD_VALUE            FTM0_CLOCK/IR_FREQUENCY      #define FTM0_C0V_VALUE            FTM0_MOD_VALUE/2      void FTM0CH0_Init( void )      {        SIM_SCGC |= SIM_SCGC_FTM0_MASK;             // Init FTM0 to PWM output,frequency is 38khz        FTM0_MOD= FTM0_MOD_VALUE;        FTM0_C0SC = 0x28;        FTM0_C0V = FTM0_C0V_VALUE;        FTM0_SC = 0x08; // bus clock divide by 2      } With this we accomplish the UART0_TX modulation through a PWM on the FTM0_CH0. Configuring the ACMP0. The configuration of the ACMP0 is using a DAC and allowing the ACMP0 can be driven by an analog input.      void ACMP_Init ( void )      {        SIM_SCGC |= SIM_SCGC_ACMP0_MASK;        ACMP0_C1 |= ACMP_C1_DACEN_MASK |                   ACMP_C1_DACREF_MASK|                   ACMP_C1_DACVAL(21);    // enable DAC        ACMP0_C0 |= ACMP_C0_ACPSEL(0x03)|                            ACMP_C0_ACNSEL(0x01);        ACMP0_C2 |= ACMP_C2_ACIPE(0x02);  // enable ACMP1 connect to PIN        ACMP0_CS |= ACMP_CS_ACE_MASK;     // enable ACMP                } With this we have now implemented the UART0_RX.     IrDA initialization. Now the important thing is to initialize the UART0 to work together with these tricks and implement the irDA functions. Basically we initialize the UART0 like when we use normal serial communication (this is not the topic of this post, refer to the project to see the UART_init function) and we write to the most important registers:         SIM_SOPT |= SIM_SOPT_RXDFE_MASK; UART0_RX input signal is filtered by ACMP, then injected to UART0.      SIM_SOPT |= SIM_SOPT_TXDME_MASK; UART0_TX output is modulated by FTM0 channel 0 before mapped to pinout. The configuration is as follows:      void IrDA_Init( void )      { // initialize UART0, 2400 baudrate        UART_init(UART0_BASE_PTR,BUS_CLK_HZ/1000,2400);                  // clear RDRF flag        UART0_S1 |= UART_S1_RDRF_MASK;                  // initialize FTM0CH1 as 38k PWM output        FTM0CH0_Init();                      // enable ACMP        ACMP_Init(); SIM_SOPT |= SIM_SOPT_RXDFE_MASK;  //UART0_RX input signal is filtered by ACMP, then injected to UART0.        UART0_S2 &= ~UART_S2_RXINV_MASK;  //inverse data input SIM_SOPT |= SIM_SOPT_TXDME_MASK;  //UART0_TX output is modulated by FTM0 channel 0 before mapped to pinout.      } With the irDA initialization we got the infrared features on the UART0. Philosophy of the Example In the attachments of this post you can find the example which shows the use of these functions in a basic application; the project was compiled in CodeWarrior 10.6 and the philosophy is: I hope that the information presented on this document could be useful for you. Thank you! Best Regards!
View full article
USB secondary ISP bootloader for LPC11U68  Overview        A Secondary Bootloader (SBL) is a piece of code that allows a user application code to be downloaded using alternative channels other than the standard UART0 used by the internal bootloader (on chip). Possible secondary bootloaders can be written for USB, Ethernet, SPI, SSP, CAN, and even I/Os. The secondary bootloader utilizes IAP as a method to update the user’s application code.        The internal bootloader is the firmware that resides in the microcontroller’s boot ROM block and is executed on power-up and resets. After the boot ROM’s execution, the secondary bootloader would be executed, which will then execute the user application.      The purpose of this document is to use USB as an example for developing the secondary bootloader and the code was tested using the LPCXpresso 11U68 evaluation board.       The MSCD presents easy integration with a PC‘s operating systems. This class allows the embedded system’s flash memory space be represented as a folder in Windows/Linux. The user can update the flash with the binary image using drag and drop, so the following sections will present a guideline for development and implementation of the USB secondary bootloader design, configuration, and test.      USB secondary bootloader code is base on the USB Mass Storage Class demo. However in this application note, we do not attempt to explain how the Mass Storage Class is implemented. Fig 1 LPCXpresso Board for LPC11U68 Setup file (sbl_config.h)       This file configures the secondary bootloader. The user should change this according to their application.       Some definitions and explanation: MAX_USER_SECTOR – This parameter is device dependent. In a 256 KB device, it will be 29 sectors, however the size of the last 5 sectors become the 32 KB instead of the 4 KB, so in the application, MAX_USER_SECTOR chooses 23 (Fig 2). CRP – Code Read Protection. This parameter allows select the desired CRP level. Choosing CRP3, the primary bootloader’s entry mechanism check will be bypassed. Fig 3 for CRP details. Fig 2 Flash sectors in LPC11U68 Fig 3 Code Read Protection (CRP) Secondary bootloader entry        The boot sequence shown below is used when entering the secondary USB bootloader. Fig 4 Using an entry pin      The secondary USB bootloader will check the status of a GPIO pin to determine if it should enter into programming mode. This is the easiest way since no post processing is needed. And this secondary bootloader uses P0.16. Automatic secondary bootloader entry       If the secondary USB bootloader detects that no user application is present upon reset, it will automatically enter programming mode. ISP entry disabled     If the secondary USB bootloader detects that a user application has already been installed and that CRP is set to level 3, then it will not enter ISP mode. Bootloader size        Since the bootloader resides within user programmable flash, it should be designed as small as possible. The larger the secondary USB bootloader is the less flash space is available to the user application. By default, the USB bootloader has been designed to fit within the first two flash sectors (Sector 0-1) so that the user application can start from sector 2. Code placement in flash       The secondary bootloader is placed at the starting address 0x0 so that it will be executed by the LPC11U68 after reset. Flash programming is based on a sector-by-sector basis. This means that the code for the user application should not be stored in any of the same flash sectors as the secondary bootloader and for efficient use of the flash space, the user application should be flashed into the next available empty sector after the bootloader.        In the application, the start sector is 3 (0x0000_3000) which is used to store the user application code. User application execution        If the SW2 button is not depressed, the secondary bootloader will start the execution of the user application. Execution of the user application is performed by updating the stack pointer (SP) and program counter (PC) registers. The SP points to the new location where the user application has allocated the top of its stack .The PC on the other hand contains the location of the first executable instruction in the user application. From here on the CPU will continue normal execution and initializations specified on the user application. By default, the bootloader uses 2 flash sectors. Therefore, to utilize the remaining flash, the secondary bootloader will look for the user application at 0x00003000 Handing interrupts      The LPC11U68 contains a NVIC (Nested Vectored Interrupt Controller) that handles all interrupts. When an interrupt occurs the processor uses the vector table to locate the address of the handler.      On the LPC11U68 the vector table is located in the same area of flash memory as the secondary bootloader. The secondary bootloader is designed to be permanently resident in flash memory and therefore it is not possible to update the contents of the vector table every time a new application is downloaded.       The Cortex-M3 core allows the vector table to be remapped; however this is not the case with the Cortex-M0. Because of this, the secondary bootloader has been designed to redirect the processor to the handler listed in a vector table located in the application area of flash memory, see Fig 5. Fig 5 User application       To execute the user application the secondary USB bootloader will load the new SP and PC values into their respective registers, allowing the CPU to execute the new code correctly. Therefore, the user application must be built so that it can run from that starting address. In the application, this address is 0x00003E00. So relocate the user application storage area by following corresponding IDE’s User Guide.  Testing  Creating the binary file             In this application, I build the demos_switch_blinky which is from the LPCOpen library to create the binary which is compatible with the secondary USB bootloader. The binary see Table 1. 08 04 00 10 B5 09 00 00 07 07 00 00 9B 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 A1 E1 FF EF 00 00 00 00 00 00 00 00 00 00 00 00 A7 09 00 00 00 00 00 00 00 00 00 00 E5 09 00 00 27 03 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 01 03 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E3 09 00 00 E1 09 00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 38 B5 63 4C 25 68 28 07 07 D5 96 20 E0 60 61 48 00 78 00 28 01 D1 00 F0 F7 F8 20 68 0C 21 29 40 01 43 21 60 31 BD 38 B5 5A 4C A0 78 40 1C A0 70 C0 B2 65 28 34 DB 00 25 A5 70 20 78 00 28 2F D0 60 78 00 28 03 D0 02 28 16 D0 0A D3 20 E0 01 21 00 F0 CA F8 00 21 01 20 00 F0 C6 F8 00 21 02 20 13 E0 01 21 01 20 00 F0 BF F8 00 21 00 20 00 F0 BB F8 00 21 02 20 08 E0 01 21 00 F0 B5 F8 00 21 01 20 00 F0 B1 F8 00 21 01 20 00 F0 AD F8 00 E0 65 70 60 78 40 1C 60 70 C0 B2 03 28 00 DB 65 70 31 BD F8 B5 00 F0 36 F9 00 F0 C2 F8 3A 48 01 68 02 22 91 43 01 60 01 68 38 4A 0A 40 02 60 35 4F 01 20 38 70 36 48 00 68 0A 21 00 F0 2B F9 1E 21 00 F0 28 F9 40 1E 00 26 80 21 49 04 88 42 0C D2 30 49 48 60 30 48 02 68 12 02 12 0A C0 23 1B 06 13 43 03 60 8E 60 07 20 08 60 01 20 2B 49 08 60 23 4C 20 00 00 F0 18 F9 29 48 01 68 80 22 12 03 0A 43 02 60 20 68 01 21 01 43 21 60 20 68 01 21 88 43 20 60 20 68 80 21 88 43 20 60 A6 60 FA 20 80 00 60 60 20 68 40 21 01 43 21 60 20 68 80 21 01 43 21 60 20 68 80 20 80 04 1A 49 08 60 20 68 30 21 01 43 21 60 18 4D 28 78 00 28 12 D1 38 78 00 28 0E D0 00 21 00 20 00 F0 3E F8 00 21 01 20 00 F0 3A F8 00 21 02 20 00 F0 36 F8 FA 20 80 00 E0 60 3E 70 E8 7B 00 28 E6 D1 01 20 38 70 E3 E7 00 40 02 40 04 00 00 10 00 20 00 A0 FF FF FE FF 00 00 00 10 10 E0 00 E0 20 ED 00 E0 1C 80 04 40 14 82 04 40 00 E1 00 E0 01 00 00 A0 49 01 40 18 83 54 70 47 10 B5 32 4C 20 00 00 F0 BF F8 E1 21 49 02 20 00 00 F0 C7 F8 03 20 E0 60 81 20 A0 60 80 20 20 63 10 BD 00 00 03 28 00 DB 70 47 80 B5 01 23 4B 40 2D A1 0A 5C 2B A1 09 5C A0 20 00 06 FF F7 DC FF 01 BD 00 00 03 28 00 DB 70 47 10 B5 A0 21 09 06 24 A2 12 5C 92 00 89 18 8C 22 92 01 01 23 00 BF 21 A4 20 5C 83 40 8B 50 10 BD 00 00 F8 B5 FF F7 C7 FF A0 25 2D 06 28 00 00 F0 B6 F8 00 24 00 BF 18 A6 31 5D 88 00 28 18 80 22 92 01 80 18 00 BF 15 A2 12 5D 03 68 01 27 97 40 1F 43 07 60 01 23 28 00 FF F7 A9 FF 64 1C 03 2C EA DB F1 BD 00 00 80 B5 07 48 01 68 80 22 52 02 0A 43 02 60 19 22 0A A1 04 48 00 F0 98 F8 01 BD 00 00 00 80 00 40 80 80 04 40 00 40 04 40 80 B5 FF F7 E9 FF 00 F0 B1 F8 01 BD 02 02 02 00 11 10 12 00 00 03 81 00 00 04 81 00 00 05 81 00 00 08 81 00 00 09 81 00 00 0B 02 00 00 0C 02 00 00 0D 02 00 00 0E 02 00 00 12 81 00 00 13 81 00 00 17 01 00 01 09 01 00 01 0B 81 00 01 0E 81 00 01 14 82 00 01 15 82 00 01 16 81 00 01 17 82 00 01 1A 81 00 01 1B 81 00 01 1D 81 00 02 00 01 00 02 01 01 00 02 03 82 00 80 B5 00 F0 EF F8 01 49 08 60 01 BD 00 00 00 10 80 B5 03 4A 12 68 12 69 52 68 90 47 02 BD 00 00 F8 1F FF 1F 03 48 01 68 80 22 D2 05 0A 43 02 60 70 47 00 00 80 80 04 40 15 49 01 22 8A 61 0A 68 80 23 5B 01 13 43 0B 60 07 21 81 60 10 21 81 62 70 47 70 B5 04 00 0D 00 01 20 0E 49 08 60 00 F0 8F F8 06 00 29 01 FF F7 D3 FF 01 00 E0 68 80 22 02 43 E2 60 C8 B2 20 60 08 04 00 0E 60 60 E0 68 80 22 90 43 E0 60 30 00 FF F7 C2 FF 70 BD 00 00 80 80 04 40 98 80 04 40 02 48 01 68 40 22 0A 43 02 60 70 47 80 80 04 40 00 2A 00 D1 70 47 30 B4 0C 68 23 0C 25 0A E4 B2 00 2C 12 D0 02 2C 01 D0 0A D3 11 E0 ED B2 AC 00 04 19 02 2D 01 DB F4 25 00 E0 F0 25 63 51 07 E0 2D 06 AC 0D 04 19 23 66 02 E0 2D 06 AC 0D 03 51 09 1D 52 1E E0 D1 30 BC 70 47 FE E7 38 B5 20 20 00 F0 E8 F8 00 20 00 90 11 48 02 E0 00 99 49 1C 00 91 00 99 81 42 F9 DB 01 20 00 F0 1F F8 0D 48 01 68 01 24 03 22 91 43 21 43 01 60 80 20 00 F0 C7 F8 09 4D 23 20 28 60 80 20 00 F0 CB F8 68 68 C0 07 FC D5 2C 67 03 20 00 F0 10 F8 31 BD 00 00 C4 09 00 00 10 C0 03 40 08 80 04 40 42 49 FF E7 08 60 00 20 48 60 01 20 48 60 70 47 3F 49 F7 E7 43 A0 CA 05 12 0F 92 00 80 58 C9 06 C9 0E 49 1C 49 00 FF F7 49 FF 00 BD 00 B5 00 20 3B 49 03 22 8B 6E 13 40 11 D0 02 2B 11 D0 02 D3 03 2B 10 D0 00 BD 89 6B 0A 40 08 D0 01 2A 03 D0 03 2A 1A D1 31 48 00 E0 2F 48 00 68 00 BD 2D 48 00 BD C9 69 D6 E7 8B 6B 1A 40 08 D0 01 2A 03 D0 03 2A 05 D1 29 48 00 E0 27 48 00 68 00 E0 25 48 09 68 C9 06 C9 0E 49 1C 48 43 00 BD 00 00 00 00 10 B5 00 20 22 4C 03 21 A2 6E 0A 40 30 D0 02 2A 15 D0 21 D3 03 2A 2C D1 A2 6B 11 40 08 D0 01 29 03 D0 03 29 05 D1 19 48 00 E0 17 48 00 68 00 E0 14 48 21 68 C9 06 C9 0E 49 1C 48 43 19 E0 E1 69 14 A0 CA 05 12 0F 92 00 80 58 C9 06 C9 0E 49 1C 49 00 FF F7 EB FE 0C E0 A2 6B 11 40 08 D0 01 29 03 D0 03 29 05 D1 09 48 00 E0 07 48 00 68 00 E0 04 48 21 6F FF F7 DA FE 10 BD 00 00 40 80 04 40 70 80 04 40 00 1B B7 00 D0 09 00 00 D4 09 00 00 08 80 04 40 00 00 00 00 C0 27 09 00 90 05 10 00 C0 5C 15 00 F0 B3 1A 00 20 0B 20 00 00 9F 24 00 E0 32 29 00 C0 C6 2D 00 50 97 31 00 E0 67 35 00 70 38 39 00 00 09 3D 00 40 16 40 00 80 23 43 00 C0 30 46 00 0B 49 0A 68 10 43 09 4A 02 40 C8 20 00 02 10 43 08 60 70 47 06 49 0A 68 82 43 04 48 10 40 C8 22 12 02 02 43 0A 60 70 47 00 00 00 00 FF 25 00 00 38 82 04 40 70 B4 01 21 00 22 13 E0 04 68 00 1D 0C 42 02 D0 4D 46 6D 1E 64 19 22 60 24 1D 1B 1F 04 2B FA D2 25 00 9E 07 01 D5 22 80 AD 1C 0B 40 00 D0 2A 70 03 68 00 1D 00 2B E7 D1 70 BC 70 47 10 B5 07 49 79 44 18 31 06 4C 7C 44 16 34 04 E0 08 1D 0A 68 89 18 88 47 01 00 A1 42 F8 D1 10 BD 08 00 00 00 14 00 00 00 9D FF FF FF 08 00 00 00 00 00 00 10 00 00 00 00 00 F0 0B F8 00 28 01 D0 FF F7 DE FF 00 20 00 BF 00 BF FF F7 0C FD 00 F0 02 F8 01 20 70 47 80 B5 00 F0 02 F8 01 BD FE E7 07 46 38 46 00 F0 02 F8 FB E7 FE E7 20 21 09 03 26 31 18 20 AB BE F9 E7 01 48 80 47 01 48 00 47 D9 09 00 00 C5 09 00 00 00 BF 00 BF 00 BF 00 BF FF F7 D2 FF 00 1B B7 00 00 80 00 00 80 B5 FF F7 DF FD 01 BD FE E7 FE E7 FE E7                                                    Table 1 Drag and drop the binary file Running the secondary bootloader, and connect a USB cable between the PC and the J3, see Fig 6; Fig 6 Drag and drop the binary file to the driver, see Fig 7;    Fig 7 Review the values of the user application in the relative area , see Fig 8; Fig 8
View full article
最近有客户问到如何移植PE生成的TSI代码到IAR中,按照常规的方法在把头文件和库文件意义一一包含进来,非常繁琐,于是研究了一下相关的操作。在早期的IAR版本中,需要用户自己手动添加芯片名称,链接文件和包含的路径信息,特别是在PE增加或者删除组件后,需要用户去增减相应的文件,更增加了难度。而在最新版本的 IAR 6.7中集成了对PE工程的链接机制,它可以方便的读取PE工程的XML文件,从而实现移植PE生成的代码到 IAR Embedded Workbench中,相对于早期的IAR版本,主要完成以下几个工作: 自动检测使用的芯片类型; 自动添加PE的LCF连接配置文件; 自动更新包含的头文件路径; PE增加或者删除Component组件后,IAR工程会自动Add 或Delete 相应的组件代码; 尽管IAR完成了一些繁琐的工作,但网上没有太多的资源可以参考,对于首次使用的用户来说还是需要一些探索,为节省大家的时间,下面以一个具体的示例Step By Step的介绍如何在IAR中集成PE的工程。 1. 打开Processor Expert software 新建一个PE的工程并保存生成代码,这个过程比较简单,此处不再赘述,重点讲述一下在IAR中的使用步骤; 2. 在IAR Workbench中"Creat New Project"新建一个空的工程。 3. 保存新建的工程文件到PE工程的文件夹中,需要注意的是此处也可以选择其他路径,但为简便和易维护性上还是建议直接存放到PE工程中。 4. 打开Tools->Options->Project选项,勾选“Enable project connects”,这个选项的目的在于使能 IAR 能够读取Freescale Processor Expert和Infineon DAVE等第三方工具生成.XML文件。 5. 添加PE工程的XML文件,选择Project->Add Project Connection,会弹出链接选择对话框,选择使用Freescale Processor Expert,默认是IAR Project Connection; 6. 点击OK后,选择建立PE工程时生成的工程描述符文件Projectinfo.xml; 7. 完成上面步骤后,在IAR中自动完成以下三方面工作:自动加载PE生成的文件到IAR中,自动安装LCF链接配置文件,自动包含头文件路径。这几个步骤在之前版本的IAR中需要自己手动添加,并且当在PE中重新生成Code时需要重新添加对应的文件; 8. 完成上面步骤之后,需要根据实际情况配置采用的下载/调试器,Project->Options->Debugger->Setup 选择下载Driver,实验中使用的是KL25的FRDM板,所以在PE Macro中选择OpenSDA,点击OK,完成设置; 9. 编译工程,下载Debug; 总结下来,主要完成两个工作:(1)配置使能 Project connection,并导入PE生成的XML文件; (2)配置调试的下载器仿真器;
View full article
This document covers some of the more common questions about the new Kinetis K8x family. Any new specific issues or questions should be posted into it's own thread, and will be added to this document as appropriate. Kinetis K80 Basics What is the K8x family? It is a new Kinetis family of Cortex-M4F devices, running up to 150MHz, that include 256K of Flash and 256K of SRAM. It features FS USB, SDRAM, QuadSPI, SPI, I2C, LPUART, and much much more. How does the Kinetis K8x family differ from other Kinetis K families? The K8x family offers the same advantages and compatibility as other Kinetis K families, but also offers several new features not found on other Kinetis K families: QuadSPI Support Dual Voltage Domains (independent VDDIO domain down to 1.8V for QuadSPI or other interfaces) EMVSIM (Euro, MasterCard, Visa Serial Interface Module) FlexIO Additionally the K81 and K82 families offer the following new security modules: LTC (Low Power Trusted Cryptography) Encryption / Decryption algorithms in hardware (as opposed to using mmCAU s/w libs) OTFAD (On The Fly AES Decryption) Zero latency decryption when executing encrypted code from QuadSPI Secure RAM 2KB of Secure Session RAM Because of the addition of a second voltage domain and QuadSPI, there is no hardware pin compatibility with previous Kinetis derivatives. However there is significant module and enablement re-use, so if you’re familiar with other Kinetis devices, it will be easy to get started with the K80. Where can I find reference manuals, datasheets, and errata? These can be found on the K8x documentation pages. Detailed information on the K81 is under NDA, so please contact your NXP sales representative for those documents. What’s the difference between the different K8x devices? K80 is the base version, which includes QuadSPI controller, SDRAM controller, FS USB, and much more. K81 adds DryIce Tamper Detect and the LTC/OTFAD modules K82 adds just the LTC/OTFAD modules K80 and K82 families have the same pin out for their respective packages. The pinout for K81 is slightly different but can still be compatible. What boards are available to evaluate the K80 family? FRDM-K82F: A Freedom board with a 100LQFP K82 device. Also includes dual QuadSPI, touch pad, Arduino compatible footprint, and FlexIO header compatible with OV7670 camera. TWR-K80F150M: A Tower board with 121XFBGA K80 device. Includes dual QuadSPI, SDRAM, EVMSIM, SDCard holder, touch pads, and more. TWR-POS-K81: A Point of Sale reference design board in tower form factor. This board is only available via your NXP sales representative. The K8x MCU Family Hardware Tools selection guide has more details on board differences. What packages are available? The 100 LQFP and 121 XFBGA packages are lead packages available today. The 144 LQFP package and the WLCSP are part of the Package Your Way (PYW) program, and you should contact your NXP sales representative if interested in those packages. What is the difference between K8x and KL8x families? The KL8x family shares many of the same features as the K8x family. The biggest differences are that the KL8x family uses the Cortex-M0+ core (instead of Cortex-M4F), has a lower max clock speed, and has less internal Flash and RAM. It also reduces the instances of peripherals available, but still includes QuadSPI, FlexIO, LTC, and BootROM peripherals like on the K80. See the KL8x Fact Sheet for more details. KL8x devices will be available in the first quarter of 2016. Software/Tools Where can I find instructions and details on the hardware used to evaluate the K8x family? FRDM-K82F: http://nxp.com/frdm-k82f/startnow​ TWR-K80F150M: http://nxp.com/twr-k80f150m/startnow ​ Which version of Kinetis SDK supports the K8x family? Kinetis Software Development Kit (KSDK) support is split depending on the evaluation platform. For TWR-K80F150M, support can be found in the Kinetis SDK 1.3 Mainline Release. For FRDM-K82F, support can be found in the Kinetis SDK FRDM-K82F Stand-alone release. Note that the FRDM-K82 standalone release is truly standalone, and does not require the mainline release to be installed. How do I run the FRDM-K82F OV7670 camera demo? See this Community post: https://community.freescale.com/docs/DOC-329438 How can I use the micro SD card reader on the TWR-K80F150M? Because the SD card signals are shared with the QuadSPI signals, the SD card slot is not connected by default. See section 3.14 of the TWR-K80F150M User Guide for details on how to connect it, with the understanding that QuadSPI will not be available on the board while using SDHC. How do I use the SDRAM on the TWR-K80F150M? See section 3.9 of the TWR-K80F150M User Guide. Due to the layout of the board, the OpenSDA UART feature cannot be used while running the SDRAM as jumpers J6 and J8 need to be removed. QuadSPI What is QuadSPI Flash? Why should I use it? QuadSPI is a name for a popular type of serial NOR flash memory that is SPI compatible, but also allows for multiple data lines (up to 4 per device, or 8 if done in parallel) with bi-directional data for increased memory bandwidth. The QuadSPI controller on the K8x also allows for Execute-In-Place (XIP) mode so that code can be executed out of this external memory. QuadSPI memory can be used for either extra memory storage or for extra code space, or a combination of both. After initialization, it appears as a readable area of memory starting at 0x6800_0000 (as well as at the alias regions). How can I program the QuadSPI? There is an example application in Kinetis SDK that shows how to program the QuadSPI at C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\driver_examples\qspi For programming an entire application, the ROM bootloader can be used. Details are in the K80 Bootloader Tools Package. The Kinetis Bootloader QuadSPI User's Guide that comes as part of that package describes all the steps needed to get up and running with QuadSPI. There is also an example Kinetis SDK application that runs out of QuadSPI at C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\hello_world_qspi_alias What performance tips are there if doing QuadSPI XIP? A few key performance factors: Ensure both the data and instruction cache is enabled Use as many data lines as possible (4, or 8 if available in dual/octal modes) Use DDR mode Any critical code should be placed in Flash/RAM for fastest performance If using XIP, code should be executed out of the QuadSPI aliased address space which starts at 0x0400_0000. A more detailed app note is under development. How do I debug code located in QuadSPI? You must make use of the aliased QuadSPI address space at 0x0400_0000. There is an example of this in the hello_world_qspi_alias example in Kinetis SDK. Due to the architecture of the M4 core on Kinetis, breakpoints cannot be set in the 6800_0000 address space, which is why the alias address space is provided. What app notes are available for the QuadSPI? Because the QuadSPI module found on the K8x family has also been used on other NXP devices, there are some app notes available that can be useful for QuadSPI development. Note that some of the implementation details and features as described in the app notes will be different for K8x, so please use the K8x reference manual for full details. AN4186​ AN4512​ AN4777​ ROM Bootloader Where can I find more information on the bootloader that comes built into the silicon of the K8x family? Download the K80 Bootloader Tools package. If interested in QuadSPI, the Kinetis Bootloader QuadSPI User's Guide that comes as part of that package describes all the steps needed to get up and running with QuadSPI. The other information found on the Kinetis Bootloader website is also useful as this is what the ROM Bootloader is based off of. What interfaces does the ROM Bootloader support? The ROM Bootloader on the K8x family can interface via LPUART, I2C, SPI, or USB HID (via BLHost) to erase and program both the internal flash and/or QuadSPI flash. This is the same bootloader found on other Kinetis devices, but also includes some more advanced features to support QuadSPI. How can I enter bootloader mode? By default, when using a Kinetis SDK project, the bootloader is disabled and the code immediately jumps to the address in Flash pointed at location 0x4. By asserting the NMI pin at reset though, the part can be forced to enter bootloader mode. This is useful for programming the QuadSPI or interfacing with the bootloader in other ways. This feature is controlled via the FOPT[BOOTPIN_OPT] bit, which the Kinetis SDK code sets to '0' to enable the NMI pin to enter bootloader mode. The NMI button on each board is: FRDM-K82F: SW2 TWR-K80F150M: SW2 The FOPT register (at 0x40C) can be modified to always go into Bootloader mode if desired. Details are in boot chapter of the K80 reference manual. Where is the bootloader configuration data found in Kinetis SDK? The Bootloader Configuration Area (BCA), which begins at address 0x3C0, is defined in C:\Freescale\KSDK_1.3.0\platform\devices\MK80F25615\startup\system_MK80F25615.c starting on line 133. You must also add the define BOOTLOADER_CONFIG in the project settings to let the linker files know to program this BCA area. The FOPT configuration register (at 0x40D) is defined in C:\Freescale\KSDK_1.3.0_K82\platform\devices\MK82F25615\startup\<compiler>\startup_MK80F25615.s and by default is set to 0x3D which disables the bootloader, but does enable the option to enter bootloader via the NMI pin at reset (see previous question) How can I use the UART port on the FRDM-K82F with the BootROM? The OpenSDA/UART lines on the FRDM-K82F use LPUART4, which is not used by the BootROM. If you would like to use the serial UART lines to interact with the BootROM, you can blue wire a connection from either J24 or J1, and connect to R32 (RX) and R36 (TX). This was due to muxing trade-offs. The OpenSDA/UART lines on the TWR-K80F150M are connected to UART1 and thus no modification is necessary for that board. Also keep in mind that you can use the USB interface with the BLHost tool on both boards with no modification. The examples in Kinetis SDK setup the QuadSPI Configuration Block (QCB) data using a qspi_config.bin file. How can I generate my own custom QCB file? There is a C file that come as part of Kinetis SDK (C:\Freescale\KSDK_1.3.0\examples\twrk80f150m\demo_apps\hello_world_qspi\qspi_config_block_generator.c) or in the KBoot zip file, that can be compiled with various toolchains on a host computer, that will then produce a .bin file. You could import this file, and then after compilation, run it, and it will write out the new .bin to your hard drive. There is a tool under development that simplifies this process by reading in that example .bin file and then you can modify the fields in the app, and then it will write out the modified .bin file. Can I jump directly to QuadSPI for Execute in Place (XiP) after booting? Yes. However note that you must still put the Bootloader Configuration Area (BCA) into internal flash. And you also may want to put the QuadSPI Configuration Block (QCB) in flash as well since it needs to be read before the QuadSPI is setup. Thus even if all your code is in QuadSPI address space, the internal flash must also be written at least once to put in the configuration data. Once you have that set though, then you can develop code by only programming the QuadSPI address space. Troubleshooting I’m having debugger connection issues when using an external debugger, like a Segger JLink. Why? It’s likely that the OpenSDA circuit is interfering, and thus needs to be isolated via jumpers on the board. For TWR-K80F150M: Pull J16 and J17 For FRDM-K82F: Pull J6 and J7 Also make sure you are using the correct debug header for the K8x device on the board: For TWR-K80F150M: J11 For FRDM-K82F: J19 Where is the CMSIS-DAP/OpenOCD debug configuration for the K8x family in Kinetis Design Studio? KDS 3.0 does not support programming the K8x family via the CMSIS-DAP interface. You will need to change the OpenSDA app on the board to either J-Link or P&E as described in the K8x Getting Started guides (Part 3). I can't get OpenSDA on the FRDM-K82F into bootloader mode. Make sure jumper J23 is on pins 1-2 to connect the reset signal to the OpenSDA circuit. On some early versions of the board this was incorrectly installed on pins 2-3 instead. When using IAR with the default CMSIS-DAP debug interface, I sometimes get the error: “Fatal error: CPU did not power up” This is an issue in some older versions of IAR. Upgrade to at least version 7.40.5 which fixes this. When using KDS with the JLink interface with the FRDM-K82F board, I get an error. If you see the error "The selected device 'MK82FN256XXX15' is unknown to this version of the J-Link software." it's because the J-Link driver that comes with KDS 3.0.0 does not know about the K82 family. You can either select a MK80FN256XXX15 device (which is compatible with the K82 on the board) or update the JLink software by downloading and installing the latest JLink Software and documentation pack. At the end of the installation process it will ask to update the DLLs used by the IDEs installed on your computer, so make sure to check the KDS checkbox on that screen. I’m using the P&E OpenSDA App and debugging is not working. I get either "Error reading data from OpenSDA hardware. E17925" or “The system tried to join a drive to a directory on a joined drive” in KDS If using IAR, make sure you have the latest version (7.40.7 or later) If using KDS, you need to update the P&E plugin in KDS. Go to Help->Check for Updates, and select the P&E debug update. Make sure not to select the other debugger updates as it will break it in KDS 3.0.0 (see this thread)
View full article
FINALISTAS Después de un profundo análisis de todos los proyectos, nuestros jueces realizaron la difícil selección de los finalistas del Kinetis L MCU Challenge México entre los que el público elegirá al ganador; gracias a la excelente respuesta decidimos nombrar 16 finalistas.  Ellos son: Project Name Contestan Name Description Video Sistema de monitoreo de la contaminación acústica #MonitoreoAcustico Lucio Canche Diseño de una placa para monitoreo de niveles de ruido utilizando un sensor de sonido. Permite el estudio detallado de los patrones de propagación del sonido. Movimiento de un carro controlado #CarroPelotasAntiestres Emilio Jiménez Auto de juguete controlado por medio de pulsaciones realizadas con 2 pelotas anti-estrés, el presionar una pelota hará que el vehículo avance hacia adelante y la otra hará que gire sobre su propio eje. Viking lever #VikingLever Ma. Fernanda Gutierrez Consiste en un sistema de una palanca con contrapeso; tendrá en la punta una pelota con una led que indicará cuando el usuario tiene que golpearla. Controlador para el suministro de agua de una vivienda #ControladorAgua Rogelio Rosales El objetivo es el ahorro de agua. En un tinaco se colocan 2 sensores, uno a nivel alto y el otro a nivel bajo de agua. Dependiendo del nivel del agua los sensores mandan la señal a la bomba para que se encienda o apague. Rehab glove #RehabGlove Alexis Castañón Guante que posee sensores de flexión en las articulaciones de los dedos y de fuerza en las yemas, con el fin de enviar instrucciones a algún aparato, mientras el usuario realiza ejercicios como cerrar el puño o tocar las yemas de los dedos con el pulgar. Tablet braile para invidentes #TabletBraille Andres Gafford Tableta para leer ebooks braile con botones para cambiar de página, apagar y encender, que sean fáciles de percatar por un invidente; así como botones interactivos que desplieguen opciones del menú. Tapete interactivo para discapacitados #TapeteInteractivo Angel Campoy Este tapete interactivo, contribuye al desarrollo motriz. El teclado cuenta con cuatro botones, los cuales tienen un led que se enciende indicando al paciente que debe presionar el boton. Si activo el boton indicado,se enciende un LED verde o rojo si se equivocó. Neck remote control wheel chair #NeckControl Francisco Javier Pérez Corona Silla de ruedas controlada moviendo el cuello a la izquierda o derecha, presionando un botón con la cabeza, que a su vez haga avanzar o girar. Control de sensores infrarrojos para silla de ruedas #SensoresSilla Jesús Lizárraga Silla de ruedas diseñado para personas con parálisis cerebral. El usuario debe colocar las dos manos al ifgual que los codos por encima de los espacios indicados, los sensores se activarán haciendo que la silla avance o gire hacia el lado en que la persona posicionó la mano. N-drid uleta #NdridRuleta Jorge Rodriguez Rodriguez Juego de ruleta de leds de 4 colores, el usuario acumulará puntos cada vez que logre presionar el botón del color en donde parará la ruleta. KMA #KMA Luis Castellanos Prototipo para silla de ruedas que será controlada con un dispositivo de fácil manejo,  comunicado a la silla por bluethooth. Sensilla #Sensilla Miguel Rogel Silla móvil manipulada por sensores y con esto lograr desplazarse de una manera más accesible a sus capacidades. Pest control using Freescale #PestControl Pablo Yerena Este proyecto consiste en el control de plagas de manera ecológica, con la implementación de un aparato electrónico que emite frecuencias ultrasónicas evitando que animales e insectos invadan espacios físicos. Tren de colores musical #TrenColores Ricardo Villaseñor Juguete donde se utiliza un sensor óptico para la lectura de pequeños cubos de colores, donde cada color es una nota musical. Al colocar el lector sobre el cubo de color se emitirá la nota correspondiente. Morse deaf-mute communication system #MorseDeafMute Roberto Vite Ruiz Dispositivo de escritura basado en el código morse. Se muestra un código morse para cada letra del alfabeto permitiendo a una persona sorda o muda darse a entender de manera escrita.       Casco acelerómetro #CascoAcelerometro José Ramón Rodriguez Dispositivo  para silla de ruedas que  permite al paciente transportarse autónomamente mediante una especie de casco que detecte la dirección deseada, además de que sea una manera recreativa de trasladarse Podrás participar calificando cada proyecto a través de redes sociales y la herramienta RankTab; la votación se abrirá el día del evento a partir de las 9:00am, espera las instrucciones a través de la Comunidad Freescale,  Facebook y durante el evento. A todos los finalistas los esperamos el 07 de Diciembre a las 8:00hrs en el Centro de Congresos del Tecnológico de Monterrey Campus Guadalajara, donde se develará el misterio y conoceremos al ganador del viaje al Freescale Technology Forum (FTF) en Dallas, Texas del 08 al 11 de Abril del 2014. Para solicitar mayor información, favor de enviar un correo a cristina.garcia@mclgx.comA
View full article
Since the mbed Ethernet library and interface for FRDM-K64 have not yet been fully tested, instead of using mbed we will use one of the latest demo codes from MQX specifically developed for the FRDM-K64 platform. Before starting please make sure you have the following files and software installed in your computer: CodeWarrior 10.6 (professional or evaluation edition) MQX 4.1 for FRDM-K64 (it is not necessary to install full MQX 4.1) JLink_OpenSDA_V2.bin (this is the debugger application) * If you don't have a valid license, you can find a temporary license below, it will only be valid until 7/30/2014 and it will only be available online until 7/05/2014. Building the project The first step to use an MQX project is to compile the target/IDE libraries for the specific platform: 1. Open CodeWarrior and drag the file from the following path C:\Freescale\Freescale_MQX_4_1_FRDMK64F\build\frdmk64f\cw10gcc onto your project area: This will load all the necessary libraries to build the project, once they are loaded build them it is necessary to modify a couple of paths on the BSP: 2. Right click on the BSP project and then click on properties 3. Once the properties are displayed, expand the C/C++ Build option, click on settings, on the right pane expand the ARM Ltd Windows GCC Assembler and select the directories folder, this will display all the libraries paths the compiler is using 4. Double click on the "C\Freescale\CW MCU v10.6\MCU\ProcessorExpert\lib\Kinetis\pdd_100331\inc" path to modify it, once the editor window is open, change the path from "pdd_100331" to "pdd" 5. Repeat steps 2 and 3 for the ARM Ltd Windows GCC Compiler 6. Now you can build the libraries, build them one at a time by right clicking on the library and selecting build project, build them in the following order, it is imperative you do it in that order. BSP PSP MFS RTCS SHELL USBD USBH 7. Once all the libraries are built, import the web hvac demo, do it by dragging the .project file to your project area; the project is located in the following directory:                     C:\Freescale\Freescale_MQX_4_1_FRDMK64F\demo\web_hvac\build\cw10gcc\web_hvac_frdmk64f 8. Once the project is loaded, build it by right clicking on the project folder and select Build project Debugging the project To debug the project it is necessary to update the FRDM-K64 debugging application: Press the reset button on the board and connect the USB cable Once the board enumerates as "BOOTLOADER" copy the JLink_OpenSDA_vs.bin file to the unit Disconnect and reconnect the board On CodeWarrior (having previously compiled the libraries and project) click on debug configurations 5. Select the connection and click on debug 6. Open HVAC.h and change the IP Address to 192.168.1.202 Now the demo code has been downloaded to the platform you will need the following to access all the demo features: Router Ethernet Cable Serial Terminal The code enables a shell access through the serial terminal, it also provides web server access with a series of options to simulate an Heating Air Conditioning Ventilation System, the system was implemented using MQX and a series of tasks, for more details on how the task are created, the information regarding how to modify the code please check the attached document: Freescale MQX RTOS Example guide.
View full article
This is an update to the KE0x Driver Library package with the example projects ported to Kinetis Design Studio (KDS).  These examples support the following boards: FRDM-KE02 FRDM-KE04 FRDM-KE06 The examples were tested with KDS v3.0.0
View full article
As K2 – The Next Generation of Kinetis Solutions continues to build momentum around new applications within the Internet of Things (IoT), the ARM® mbed™-enabled Freescale Freedom development platform, FRDM-K64F, is taking center stage. With the FRDM-K64F platform now in the hands of thousands of engineers across the globe, we already are learning about how this platform is powering new and inventive applications. To help illustrate this powerful and fun-sized platform, coming every Monday (beginning on Monday, May 19) for five consecutive Mondays, we invite you to join us for MountainMondays and scale K2 where we'll be giving away 20 FRDM-K64F development platforms each week - that's 100 in all! Join us to begin the ascent on Monday, May 19, by following Freescale's Facebook, Twitter and Google+ pages to find out what you have to do to win one of these development platforms! For complete contest rules, click here. Thanks to everyone who have participated in #MountainMondays! Great ideas from everyone! Below is our list of winners thus far for each week. If your name is on any of the following lists, be sure to email your shipping address to socialmedia@freescale.com and continue the ascent with us each Monday through June 16! Week 1 - May 19, 2014: Basecamp FRDM And the winners for week 1 are ... On Facebook ... Ahmed Felhi Naga Kishanmv Raleigh Sea Illgen Austin Chen Rahul Karnik Derrick Beaven David Pereira Anhell Barragán Valentín Korenblit Олег Лаврухин Hector Fabian Joanna Kurki Jozef Humaj Wojtek Stoduly Google+ ... Gurinder Singh Gill Mark McDonnell Niklas Stoyke Twitter ... kumisaappaat cledic evemuller92 Week 2 - May 26, 2014: Basecamp K And the winners for week 2 are ... From Facebook … Gaurav Chaudhary Bhuvanesh Nick Pyrosster Pyrosster Federico Lo Grasso Florencia Caruso Nick Defensor Laura Mándola SuperKing Tříska  From Twitter … Antonio Quevedo Jayprakash Shet Fahad Mirza Jonathan Chadwick Gordon Margulieux Hector Fabian C Zahir Parkar Attila Kozmári From Google+… Sergey Gridnewskiy Paul Nykiel Matías Dell'Oso Manishi Barosee Week 3 - June 2, 2014: Basecamp 6 And the winners for week 3 are ... From Facebook … Robert Bui Trong Nguyen Alexandre Ferri Michal Wertheim Petr Vítek Gerald Fry Jr Leśniewicz Wojciech Adriana Errico Trong Nguyen Emnics Erwin Kuhn Maliganis Nikolaos Dushyant Arora Štefan Knotek Hom Flann James Braga From Twitter… Gaurav Singh From Google+ … Soputtra San Clovis Fritzen Cristina Pérez Week 4 - June 9, 2014: Basecamp 4 And the winners for week 4 are ... From Facebook … Ivan Ruiz Robin Wohlers-Reichel Tony Anderson Łukasz Bittner Laura Chijlis Earl Orlando Jaime Pérez Rak San Gabriel Korenblit Tobiasz Dworak Sean Emerald Ghulam Mirosław Szymczyk Bhaumik Bhatt Jenius Nghia From Google+ … prithvi ganesh Evangelia Karagianni Vandy San Greg Steiert Titvirak San Joji John Varghese Week 5 - June 16, 2014: Basecamp F And the winners for week 5 are ... Evangelia Karagianni Shady Trần Kasia Michalowska Nghia Nguyen Saudin Dizdarevic Navin Bhaskar Thank you to everyone who has participated in the past five weeks of #MountainMondays – we’ve finally reached the summit of K2! Your energy, inventiveness and contributions have all been fantastic! Congratulations to all winners! We hope you enjoy your development platform and look forward to hearing about what you build using the FRDM-K64F platform. Happy designing!
View full article
    以DMA方式通过UART发送数据应该是工程应用中很常用的一种方式了,尤其是在需要频繁发送数据或者数据包长度较大的场合,如果使用传统的UART查询或者中断方式发送和接收数据,对CPU资源的占用将是极大的浪费,带操作系统的应用还好些,如果是纯粹的前后台程序有时不能容忍的,所以DMA方式是很恰当的选择。而本篇以Kinetis L系列为例介绍一下以DMA方式通过UART端口发送长数据包,当然不同于K系列复杂强大的eDMA功能,L系列的DMA模块配置起来还是比较简单的。 测试平台:IAR6.7 + KL26 FRDM 测试代码:FRDM-KL26Z_SC\FRDM-KL26Z_SC_Rev_1.0\klxx-sc-baremetal\build\iar\uart0_dma        其实KL26的官方sample code中是自带uart0_dma例程的,但是实现的功能只是将UART口接收到的每一个字节的数据通过DMA方式再发送出去(即环形缓冲),这样用来作为一个功能演示的demo是可以,但是往往我们需要的是将某缓冲区的数据以DMA方式发送出去或者将接收到的数据以DMA方式写到某缓冲区这样的功能,为此我们就需要在原有的例程上进行修改从而达到我们的应用目的,这里给出几点需要修改的地方,并做了相关注释(整个工程见最后附件): 1)定义待发送缓冲区: /* array to be sended */ uint8 testdata[]={"\nFreescale Kinetis KL26\n"}; 2)设置DMA源地址: #define DMA0_DESTINATION  0x4006A007    /* the memory adress of UART0_D register */ #define DMA0_SOURCE_ADDR  (uint32)testdata    /* define the source data array address */ 3) 在DMA0_init()函数中修改发送数据包的长度: DMA_SAR0 = DMA0_SOURCE_ADDR;    //Set source address to UART0_D REG DMA_DSR_BCR0 = DMA_DSR_BCR_BCR(sizeof(testdata));    //Set BCR to know how many bytes to transfer DMA_DCR0 &= ~(DMA_DCR_SSIZE_MASK | DMA_DCR_DSIZE_MASK);    //Clear source size and destination size fields 4)添加源地址自动加1功能,因为之前的环形缓冲方式只是单字节数据,所以不需要源地址递增,但是由于我们这次需要发送整个数据包,所以这里我们就需要将源地址递增功能打开,而具体递增1,2还是4则取决于发送数据的最小单位(8bit,16bit or 32bit): /* Set DMA as follows: Source size is 8-bit size Destination size is 8-bit size Cycle steal mode External requests are enabled source address increments 1 automatically */ DMA_DCR0 |= (DMA_DCR_SSIZE(1) | DMA_DCR_DSIZE(1) | DMA_DCR_CS_MASK | DMA_DCR_ERQ_MASK | DMA_DCR_EINT_MASK | DMA_DCR_SINC_MASK); 5)配置DMAMUX通道为UART0 TX即发送通道(通道号为3),因为我们需要的是UART0_TX触发DMA传送: DMA_DAR0 = DMA0_DESTINATION;    //Set source address to UART0_D REG DMAMUX0_CHCFG0 = DMAMUX_CHCFG_SOURCE(3);    //Select UART0 TX as channel source DMAMUX0_CHCFG0 |= DMAMUX_CHCFG_ENBL_MASK;    //Enable the DMA MUX channel 6)在UART0_DMA_init()函数中修改UART0发送缓冲区为空时即触发DMA发送: void UART0_DMA_init(void) { UART0_C2 &= ~(UART0_C2_TE_MASK | UART0_C2_RE_MASK);  //Disable UART0 UART0_C5 |= UART0_C5_TDMAE_MASK;                      // Turn on DMA request(Transmit) for UART0 UART0_C2 |= (UART0_C2_TE_MASK | UART0_C2_RE_MASK);  //Enable UART0 } 7)在DMA发送完成中断服务函数中禁掉DMA通道,实现单次发送,即每个数据包发送完成之后即停止发送,否则不禁掉的话会一直触发DMA发送,造成串口堵塞: void DMA0_IRQHandler(void) {  /* Create pointer & variable for reading DMA_DSR register */ volatile uint32_t* dma_dsr_bcr0_reg = &DMA_DSR_BCR0; uint32_t dma_dsr_bcr0_val = *dma_dsr_bcr0_reg; if (((dma_dsr_bcr0_val & DMA_DSR_BCR_DONE_MASK) == DMA_DSR_BCR_DONE_MASK)      | ((dma_dsr_bcr0_val & DMA_DSR_BCR_BES_MASK) == DMA_DSR_BCR_BES_MASK)      | ((dma_dsr_bcr0_val & DMA_DSR_BCR_BED_MASK) == DMA_DSR_BCR_BED_MASK)      | ((dma_dsr_bcr0_val & DMA_DSR_BCR_CE_MASK) == DMA_DSR_BCR_CE_MASK)) { DMA_DSR_BCR0 |= DMA_DSR_BCR_DONE_MASK;                //Clear Done bit DMA_DSR_BCR0 = DMA_DSR_BCR_BCR(sizeof(testdata));      //Reset BCR dma0_done = 1; } /* once the array complete the transfer, then disable the DMA channel.*/ DMAMUX0_CHCFG0 &= ~DMAMUX_CHCFG_ENBL_MASK; }        将上述代码做完相应修改即可实现单次将内存缓冲区数据以DMA方式通过UART0发送出去,效果如下。此外,如果想周期性触发或者条件性触发,则只需再相应位置添加“DMAMUX0_CHCFG0 |= DMAMUX_CHCFG_ENBL_MASK;”这句代码即可打开通道,然后立即会触发UART0_TX发送数据,然后待数据包发送完之后再次停止等待下次使能。 另外,关于DMA的传输速度的话,因为其独立占用一条自己的总线,其搬运时钟为系统时钟(即coreclock/Systemclock),相比于总线上的传输速度,本例程中整个数据包的发送时间主要是取决于UART串口的波特率*数据包长度。 附件为修改好后的完整工程:
View full article
Problem Analysis and solutions for booting from ROM BOOTLOADER in KL series 1 Abstract      When customer use the kinetis chip KL43, KL27 and KL17 which flash size is above 128K, they have found a problem that if the code boot from the ROM instead of the flash, the application code about the LPUART and I2C will run in abnormal state, especially when use PTA1 as the  LPUART receive pin, UART transmit function has no problem, but when the PTA1 receive the UART data, the code will run to the abnormal area and can’t return back, the code will be crash. This problem only happens on booting from the ROM and the uart and i2c peripheral are enabled in BCA 0x3d0 address, uart peripheral enablement in BCA area will influence the application PTA1 uart receive, i2c peripheral enablement in BCA area will influence the i2c0 module in the application code. If booting from the flash or booting from ROM but the uart and I2C peripheral are disabled in the BCA 0x3d0 address, everything is working ok in the application code.      This document will take the UART problem as an example, give details of the problem reproduction, testing, analysis and the solutions. The I2C problem is the same when booting from the ROM bootloader. 2 Problem reproduction and analysis  Testing preparation: IDE: KDS 和IAR Hardware: FRDM-KL43 Software: 3.0 and KSDK2.0_FRDM-KL43      We mainly reproduce the uart receive problem in two ways: new KDS PE project based on KSDK1.3.0 and official newest sample code package KSDK2.0_FRDM-KL43. 2.1 Problem reproduction in new creating kds project Because the KSDK2.0 still doesn’t support the PE function in the KDS IDE, so we use the KSDK1.3.0 as the PE KSDK to create the new KDS project. 2.1.1 Create KDS KL43 project The new KDS PE project creating is very simple, here just describe the important points which is relate to the UART problem after booting from the ROM. At first create a new KDS PE project which is based on KSDK1.3.0, and choose the chip as MKL43Z256VLH4, select the MCG mode as HIRC, and configure core clock to 48Mhz, bus clock to 24Mhz. Then add the uart module fls_debug_console for testing, because the FRDM_KL43 is using PTA1 and PTA2, the console module can be configured like the following picture, after the module is configured, press the code generation button to generate the project code. Then add the simple code in file main.c main function for testing: char a; for(;;) {                 PRINTF(" test!\n");                 a= GETCHAR();                 PUTCHAR(a);               } The code function is: printf the “test!” to the COM port in the PC, then wait the uart data, if receive the data, then printf the received data back and run this loop function again.   2.1.2 Add the BCA area    From the KL43 reference manual, we can get that, BCA start address is 0X3C0:     The KDS newly created project didn’t contain the BCA area in the link file, so we need to add this area in the link file and add the BCA data in the start file by ourselves. 2.1.2.1 Divide the BCA flash are in .ld file Add the following code to define the BCA start flash address and the flash size in the ProcessorExpert.ld memory area: m_bca                 (RX)  : ORIGIN = 0x000003C0, LENGTH = 0x00000040 Then add this code in the SECTIONS area:   .bca :            {              . = ALIGN(4);              KEEP(*(.bca)) /* Bootloader Configuration Area (BCA) */              . = ALIGN(4);            } > m_bca At last, the ld file is like this: For the ld file protection, we can change the ld file properties to read-only, then this file won’t be changed to the initial one after building. 2.1.2.2 Add the BCA data in the start file      After add the BCA flash area divide code, we still need to define the BCA data in the start file:    /* BCA Area */     .section .bca, "a"                 .ascii "kcfg"                            // [00:03] tag                 .long 0xFFFFFFFF // [07:04] crcStartAddress                 .long 0xFFFFFFFF // [0B:08] crcByteCount                 .long 0xFFFFFFFF // [0F:0C] crcExpectedValue                 .byte 0x03                                             // [10] enabledPeripherals  I2C and UART                 .byte 0xFF                                              // [11] i2cSlaveAddress                 .short 3000                           // [13:12] peripheralDetectionTimeout (milliseconds)                 .short 0xFFFF                        // [15:14] usbVid                 .short 0xFFFF                        // [17:16] usbPid                 .long 0xFFFFFFFF  // [1B:18] usbStringsPointer                 .byte 0xFF                                              // [1C] clockFlags                 .byte 0xFF                                              // [1D] clockDivider                 .byte 0xFF                                              // [1E] bootFlags                 .byte 0xFF                                              // [1F] reserved*/    More details, please refer to this picture:       So far, we have create the FRDM-KL43 test project which contains the BCA area, and boot from the ROM that can be modified in the flash address 0X40D, bit 6-7 in 0X40D is the BOOTSRC_SEL bits, 00 boot from flash, 10 and 11 boot from ROM, more details about the FOPT, please refer to Table 6-2. Flash Option Register (FTFA_FOPT) definition in reference manual.     2.1.3 Test result and analysis       Now, list the test result after booting from ROM or flash, and boot from ROM but enable the peripherals. Boot from: ROM peripheral Test Result Flash XX OK ROM 0XFF, enable all NO, UART can’t receive 0X08, enable USB Yes, UART can receive 0X04, enable SPI Yes, UART can receive 0X02, enable I2C Yes, UART can receive 0X01, enable LPUART NO, UART can’t receive      From the test result, we can reproduce the problem. The UART receive problem just happens on booting from ROM and the LPUART is enabled, when we run it with debugger, and test it step by step, we can find after the PTA1 have received the data, the code will run to the abnormal area. Note: when debug this code, please choose the JLINK as the debugger, because the P&E tool will protect the FOPT area automatically in the KDS IDE when do debugging, the code will still run from flash, so if customer use the P&E tool, they will found the PTA1 still can receive the data, this is not the real result, but the JLINK won’t protect FOPT area in the KDS IDE, it can reflect the real result.      After using the JLINK as the debugger, and we have found after PTA1 getting data or pulling low, the code will enter to the abnormal area like this:      We can get that the code run to the defaultISR, and display with USB_IRQHander, but this is not really the USB_IRQHander, just caused by the PC abnormal. Normally, it is caused by the missing of interrupt service function.       Now, we test the NVIC data to check which module interrupt caused this, the following picture is the result by enabling the LPUART and I2C peripheral in the ROM BCA area. We can find, even we didn’t do the cpu and peripheral initialization after booting from ROM, there still have peripheral be enabled, what the interrupt is enabled? From the definitive guide to the ARM Cortex-M0.pdf: NVIC_ISER = 0x40000100, Vector46=IRQ30 and vector24=IRQ8 is enabled, it should be not disabled after booting from the ROM. Now check the KL43 reference manual, Table 3-2. Interrupt vector assignments, we can get that the I2C0 and PORTA interrupt is enabled. Checking the PORTA register before do the cpu and peripheral initialization, PTA1 is enabled the port interrupt, and choose Flag and Interrupt on falling-edge.     This can tell us why the PTA1 pin have the problem of uart receive data or give a falling edge in PTA1 will run abnormal, because in default, even we configure the PTA1 as the uart receive function, but the code didn’t clear IRQ and NVIC register, when the signal happens on PTA1 pin, it will caused the PORTA interrupt, but we didn’t add the PORTA interrupt ISR function, it is also not useful to us, then PC don’t know where to go, so it will run abnormal, enter the defaultISR, and can’t recover. If you have interest, you can add the PORTA_IRQHandler function, you will find the code will run to this function. 2.2 Problem reproduction in KSDK2.0 IAR project  Test project: SDK_2.0_FRDM-KL43Z\boards\frdmkl43z\demo_apps\hello_world  Test the official project just to make sure, it is really the chip hardware function, not only the problem from new generated code in KDS.   Because the IAR IDE will protect the 0X400 area, then if we want to modify the FOPT, we need to modify the .board, add –enable_config_write at first.    Then modify the FOPT in startup_MKL43Z.s: __FlashConfig         DCD 0xFFFFFFFF         DCD 0xFFFFFFFF         DCD 0xFFFFFFFF         DCD 0xFFFFFFFE   ; 0xFFFF3FFE   __FlashConfig_End   Because the BCA peripheral area is in default as 0XFF, it enables all the peripheral, we don’t need to define the BCA area independently.  For getting the real test result, we add the NVIC and PORTA_PCR1 register printf code in the main function,    PRINTF("PORTA_PCR1=%X \n", PORTA->PCR[1]);    PRINTF("NVIC=%X \n", NVIC->ICER[0U]); And download the modified KSDK sample code to the chip, after testing, we get this result: hello world. PORTA_PCR1=A0205 NVIC=40000100 It is the same result as the new created project after booting from the ROM, PORTA interrupt and I2C interrupt is enabled, and it caused the PTA1 receive data problem.  3 Solutions and test result 3.1 Solutions      From the Chapter 2 testing and analysis, we can get that UART receive problem is caused by the PORT interrupt and NVIC is enabled after booting from the ROM, this should be caused by exiting the ROM, the ROM forget to disable it. We also can find some descriptions from the KL43 reference manual page 211: So, if customer want to solve this problem, to avoid the application enter to the abnormal area, we can disable the NVIC in the application code like this, the I2C NVIC is the same:     NVIC_DisableIRQ(8);//disable I2C0 interrupt     NVIC_DisableIRQ(30); //disable PTA interrupt 3.2 Test result   From the test result after adding the NVIC I2C and PORTA disable code, we can get the uart can works ok, if you have interest to test, the I2C will also work ok. 4 Conclusion When customer use the kinetis chip KL43, KL27 and KL17 which flash size is above 128K, and want to boot from the ROM and enable the LPUART and I2C in BCA area, please add the NVIC I2C(IRQ8) and PORTA(IRQ30) disable code in the application code:     NVIC_DisableIRQ(8);//disable I2C0 interrupt     NVIC_DisableIRQ(30); //disable PTA interrupt So far, I just find KL43, KL27 and KL17 which flash size is above 128K have this problem, other kinetis chip which have ROM bootloader don’t have this problem.
View full article
The documentation is only for eFlexPWM module of KV58, it describes the feature of nano-edge PWM, the mechanism of nano-edge PWM, and give the waveform which can describe the feature of nano-edge PWM. The attachment includes the brief introduction of nano edge PWM, the waveform of nano edge PWM, and the code which runs on TWR-KV58 and KDS3.0. Original Attachment has been moved to: eFlexPWMNanoEdgeKV58_2.rar
View full article
There is new amazing feature in FreeMaster ver 1.4 ( www.freescale.com/freemaster ) - you can do the debugging and visualization of your application in FreeMASTER without adding any code in there (you do not need a serial driver of any kind to achieve the connection), just using the communication plug-in to OSDA embedded in new version of Freemaster connected instead of the debugger from IDE. The driverless use of Freemaster use is easy to use, just open the FreeMaster, assuming you have your own application, without any Freemaster driver in it. Load the application into flash memory of the KL device and close debugging session from IDE. Open FreeMaster and  go to Project/Options/Comm, use setup from picture below Choose Plug-in - use the FreeMASTER BDM Communication Plug-in, hit configure and take P&E Kinetis. you can test the connection there too. The next step is to go to Options/MAP files, navigate to *.ELF file of your project and set file format to ELF/DWARF (I have chosen .elf from some usb demo project just to show the way how to do so) well, the connection is established, now there is need to choose variables for display and visualization. Go to project/Variables and choose variables you want to follow (hit Generate.. to do so, list of variables available in your project will appear and you can choose the desired one and hit generate - it will check and generate the variable connection, you can do it for single variable, array or more variables - it is intuitive ) When desired variables are generated, close the dialog. You can make a scope or add variables to watch. To add variable to variable watch window click by right mouse button in watch area go to watch properties, Watch tab and hit Add---->> to add it between watched wariables and hit OK and value appears in the Variable Watch window. To create scope, go to project tree window and use right mouse button on NewProject, choose Create Scope... In scope properties chose the name for this scope and go to  Setup tab. You can add your variable to the scope here by choosing in drop down menu Hit OK and start the session (Ctrl+K) or hitting Stop icon in the menu, the variable is displayed in the window. The value in my case stays 0 however displays correctly... Pavel
View full article
Hi All, This Kinetis Design Tips and Tricks document is used for those needing to have a checklist or troubleshooting document for their Kinetis hardware designs.  This will be a living document that is updated as needed. Enjoy all! Please give any and all feedback on this forum. Mike Steffen
View full article