Kinetis Microcontrollers Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Kinetis Microcontrollers Knowledge Base

Discussions

Sort by:
New 32-bit MCUs designed to transform consumer and industrial applications currently using legacy 8- and 16-bit architectures SAN ANTONIO, Jun 19, 2012 (BUSINESS WIRE) -- Freescale Semiconductor FSL +0.80% is now offering alpha samples of its Kinetis L series, the industry's first microcontrollers (MCUs) built on the  ARM(R) Cortex(TM)-M0+ processor. Kinetis L series devices are on display this week at the Freescale        Technology Forum (FTF) Americas and were demonstrated during the event's opening keynote address. As machine-to-machine communication expands and network connectivity  becomes ubiquitous, many of today's standalone, entry-level applications will require more intelligence and functionality. With the Kinetis  L series , Freescale provides the ideal opportunity for users of legacy 8- and 16-bit architectures to migrate to 32-bit platforms and bring additional intelligence to everyday devices without increasing power  consumption and cost or sacrificing space. Applications, such as small  appliances, gaming accessories, portable medical systems, audio systems, smart meters, lighting and power control, can now leverage 32-bit capabilities and the scalability needed to expand future product lines -- all at 8- and 16-bit price and power consumption levels. "In our view, 8- and 16-bit development has reached the end of the road. Those architectures simply can't keep up as the Internet of Things gains traction," said Geoff Lees, vice president and general manager of Freescale's Industrial & Multi-Market MCU business. "Kinetis L series MCUs are ideal for the new wave of connected applications, combining the required energy efficiency, low price, development ease and small  footprint with the enhanced performance, peripherals, enablement and scalability of the Kinetis 32-bit portfolio." Extreme energy efficiency The ARM Cortex-M0+ processor consumes approximately one-third of the energy of any 8- or 16-bit processor available today, while delivering  between two to 40 times more performance. The Kinetis L series supplements the energy efficiency of the core with the latest in  low-power MCU platform design, operating modes and energy-saving peripherals. The result is an MCU that consumes just 50 uA/MHz* in very-low-power run (VLPR) mode and can rapidly wake from a reduced power state, process data and return to sleep, extending application battery life. These advantages are demonstrated in the FTF demo, which compares the energy-efficiency characteristics of the Kinetis L series against solutions from Freescale competitors in a CoreMark benchmark analysis.        The Kinetis L series is also part of the Freescale Energy-Efficient Solutions program. Kinetis L series energy-saving peripherals do more with less power by maintaining functionality even when the MCU is in deep sleep modes. In traditional MCUs, the main clock and processor core must be activated to perform even trivial tasks such as sending or receiving data, capturing or generating waveforms or sampling analog signals. Kinetis L series peripherals are able to perform these functions without involving the core or main system, drastically reducing power consumption and improving battery life. Built using Freescale's innovative, award-winning flash memory technology, the Kinetis L series offers the industry's lowest-power flash memory implementation. This improves upon the conventional silicon-based charge storage approach by creating nano-scale silicon islands to store charge instead of using continuous film, improving the flash memory's immunity to typical sources of data loss. "The Internet of Things needs very low-cost, low-power processors that        can deliver good performance," said Tom R. Halfhill, a senior analyst        with The Linley Group and senior editor of Microprocessor Report. "As  the first 32-bit microcontrollers to use ARM's Cortex-M0+ processor core, Freescale's Kinetis L-series MCUs will bring the energy efficiency and prices typically associated with 8- and 16-bit MCUs to a broad range of consumer and industrial applications." Development simplicity The Kinetis L series addresses the ease-of-use requirement critical for entry-level developers through innovations including: -- The Freescale Freedom development platform, a small, low-power, cost-efficient evaluation and development system for quick application prototyping and demonstration. It combines an industry-standard form factor with a rich set of third-party expansion board options. An integrated USB debug interface offers an easy-to-use mass-storage device mode flash programmer, a virtual serial port and classic programming and run-control capabilities. -- Processor Expert software, a GUI-based, device-aware software generation tool that eliminates the need to write peripheral start-up code or device drivers. Helps developers easily migrate from 8- and 16-bit to 32-bit solutions by simplifying the software architecture and  dramatically reducing application development time. --  The Kinetis MCU Solution Advisor, a web-based application with an interactive MCU product selector that helps identify the best-suited MCU by applying dynamic filters based on operating characteristics, packaging options, memory configuration and peripheral hardware library. Integration and scalability Each Kinetis L series family includes scalable flash memory options, pin-counts and analog, communication, timing and control peripherals, providing easy migration paths for end product line expansion. Features common to the Kinetis L series families include: --         48 MHz ARM Cortex-M0+ core --         High-speed 12/16-bit analog-to-digital converters --         12-bit digital-to-analog converters --         High-speed analog comparators --         Low-power touch sensing with wake-up on touch from reduced power states --         Powerful timers for a broad range of applications including motor control The first three Kinetis L series families: --         Kinetis L0 family -- the entry point into the Kinetis L series. Includes eight to 32 KB of flash memory and ultra-small 4mm x 4mm QFN packages. Pin-compatible with the Freescale 8-bit S08P family. Software- and tool-compatible with all other Kinetis L series families. --         Kinetis L1 family -- with 32 to 256 KB of flash memory and  additional communications and analog peripheral options. Compatible with the Kinetis K10 family. --         Kinetis L2 family -- adds USB 2.0 full-speed host/device/OTG. Compatible with the Kinetis K20 family. The Kinetis L series is pin- and software-compatible with the Kinetis  K series (built on the ARM Cortex-M4 processor), providing a migration path to DSP performance and advanced feature integration. Availability and pricing Kinetis L series alpha samples are available now, with broad market sample and tool availability planned for Q3. Pricing starts at a suggested resale price of 49 cents (USD) in 10,000-unit quantities. The Freescale Freedom development platform is planned for Q3 availability at  a suggested resale price of $12.95 (USD). For more information about Kinetis L series MCUs, visit   www.freescale.com/Kinetis/Lseries    . *Typical current at 25C, 3V supply, for Very Low Power Run at 4MHz core  frequency, 1MHz bus frequency running code from flash with all peripherals off. About the Freescale Technology Forum Created to drive innovation and collaboration, the Freescale Technology Forum (FTF) has become one of the developer events of the year for the embedded systems industry. The Forum has drawn more than 48,000 attendees at FTF events worldwide since its inception in 2005. Our annual flagship event, FTF Americas, takes place June 18-21, 2012, in San Antonio, Texas. About Freescale Semiconductor Freescale Semiconductor  FSL +0.80% is a global leader in embedded processing solutions, providing industry leading products that are advancing the automotive, consumer, industrial and networking markets. From microprocessors and microcontrollers to sensors, analog integrated  circuits and connectivity -- our technologies are the foundation for the innovations that make our world greener, safer, healthier and more connected. Some of our key applications and end-markets include automotive safety, hybrid and all-electric vehicles, next generation wireless infrastructure, smart energy management, portable medical  devices, consumer appliances and smart mobile devices. The company is  based in Austin, Texas, and has design, research and development,        manufacturing and sales operations around the world.   www.freescale.com Freescale, the Freescale logo, Energy Efficient Solutions logo, Kinetis  and Processor Expert are trademarks of Freescale Semiconductor, Inc.,  Reg. U.S. Pat. & Tm. Off. ARM is the registered trademark of ARM  Limited. Cortex is the trademark of ARM Limited. All other product or  service names are the property of their respective owners. (C) 2012   Freescale Semiconductor, Inc. Photos/Multimedia Gallery Available:   http://www.businesswire.com/cgi-bin/mmg.cgi?eid=50313420&lang=en SOURCE: Freescale Semiconductor
View full article
Anis Jarrar, Freescale design engineer, explains how his team developed Kinetis and how the result of their "chasing nanowatts" concept resulted in a highly scalable, ultra low power MCU. 32-bit Kinetis MCUs represent the most scalable portfolio of ARM® Cortex™-M4 MCUs in the industry. The first phase of the portfolio consists of five MCU families with over 200 pin-, peripheral- and software compatible devices with outstanding performance, memory and feature scalability. Enabled by innovative 90nM Thin Film Storage (TFS) flash technologu with unique FlexMemory (configurable embedded EEPROM), Kinetis features the latest low-power innovations and high performance, high precision mixed-signal capability. Kinetis MCUs are supported by a market-leading enablement bundle from Freescale and ARM 3rd party ecosystem partners. http://www.freescale.com/kinetis
View full article
The ARM Cortex-M4 Kinetis K50 MCU integrates an analog measurement engine consisting of integrated operational and transimpedance amplifiers and high-resolution ADC and DAC modules that make it ideal for portable healthcare and medical applications. For more information visit www.freescale.com/kinetis
View full article
Freescale Semiconductor is to demonstrate its Kinetis L series microcontrollers (MCUs) built on the ARM Cortex-M0+ processor at DESIGN West in San Jose, California, with alpha sampling due to start in the second quarter of 2012. Freescale  says the ability to demonstrate these devices is possible due to its  close partnership between ARM during the Cortex-M0+ core development  process and as a lead partner provided  input that helped ARM define and  develop the processor. The devices are slated for applications  such as domestic appliances, portable medical systems, smart meters,  lighting, power and motor control systems. "Our close partnership  with ARM throughout the design and development of their new core has  positioned us as the first MCU supplier to produce and demonstrate an MCU based on the Cortex-M0+ and continues our strategy of driving to  market new products based on the ARM architecture," said Reza  Kazerounian, senior vice president and general manager of Freescale’s  Automotive, Industrial and Multi-Market Solutions Group. Mike  Inglis, executive vice president and general manager of ARM’s Processor  Division, added "With the addition of the L series to their Kinetis  line, Freescale is creating one of the industry’s broadest, most  scalable ARM Cortex-M MCU portfolios, ranging from very low-cost,  entry-level products based on the ARM Cortex-M0+ processor, up to 4 MB,  200 MHz devices based on the Cortex-M4 processor." Manufactured  using Freescale’s low-leakage, 90 nm thin film storage (TFS) process  technology, the Kinetis L series will have a selection of on-chip flash  memory densities and analog, connectivity and HMI peripheral options. Upward  migration through the Kinetis portfolio is available via compatible Kinetis K series devices (built on the ARM Cortex-M4 processor) that  provide access to DSP performance and advanced feature integration. The  ARM Cortex-M0+ processor includes a reduced two-stage pipeline,  allowing faster branch instruction execution, single-cycle access to I/O  and critical peripherals, optimized access to program memory, linear 4  GB address space that removes the need for paging, reducing software  complexity and ensuring a more 8-bit-like user experience and a micro  trace buffer, providing a low-cost trace solution that allows faster bug  identification and correction without the need for additional I/O  resources. Freescale will demonstrate the ARM Cortex-M0+ core at its exhibition booth #1604 at DESIGN West , March 26-29 at the San Jose McEnery Convention Center.
View full article
Freescale's Jeff Bock highlights the awesome features of the Kinetis 32-bit microcontrollers based on the ARM Cortex-M4 core
View full article
by: Carlos Musich, Luis Garabito Microcontrollers Application Engineers with Freescale. This application note is intended to demonstrate http client implementation using Freescale MQX RTOS capabilities. The hardware used to illustrate this is the TWR-K60N512-KIT. The remote controlling and monitoring have become a need rather than an option in the embedded world. This application note takes advantage of two social media interfaces for these purposes. One is used to enter commands to the MCU; http://twitter.com/. The other one is used to pull out data from the MCU; https://www.supertweet.net/. It is important to focus in the fact that with these methods the MCU is reachable through Internet without the need of a public IP address or without mounting a HTTP server in the MCU. The application source code described in this document can be found in the AN4417SW.zip file. For a full description of Freescale MQX RTOS, please visit https://www.freescale.com. This application defines two tasks in MQX. The first task is main. It is meant to configure GPIO, the RTCS and create the second task. The name of this second task is httpclient. The purpose of this task is to carry out the communication with the Twitter server and read the commands to be executed. To retrieve the input commands, the httpclient task reads them from the last tweet published by a specific Twitter account. The command then is parsed and executed according to the implementation. The main task enters into an infinite loop where the httpclient is restarted in each loop to allow a cycle behavior for reading commands. The time for each loop is controlled by a sample rate value that can be configured by the user via a command. Get the full application note...
View full article
This application note provides guidelines on Kinetis K53 family for using the internal Operational Amplifiers (OPAMP), Transimpedance Amplifiers (TRIAMP), and the Analog-to-Digital Converter (ADC) modules to measure the temperature through a thermocouple and a thermistor and the result is shown on a LCD display using the LCD Controller (LCD) module. All these modules are available on the K53 MCU. The application uses different OPAMP configurations, such as internal gain and external gain using external resistor. TWR-K53N512 board was used as base hardware for performing this application. Watch the Freescale Kinetis K53 family in action. The internal Operational Amplifiers (OPAMP), Transimpedance Amplifiers (TRIAMP), and the Analog-to-Digital Converter (ADC) modules are used to measure the temperature through a thermocouple and a thermistor. The result is shown on a LCD display using the LCD Controller (LCD). Get the full Application Note
View full article
Symptoms As we know: Flash must be programmed after an erase operation. Violation of this rule will cause programming fail and even hardfault(when AHB reading) on Kinetis K64 parts. Customer accidently uses SDK’s API programming same sector twice(over-programming) without an erase operation. Then when perform AHB reading of this sector(include using JFLash to read this sector), an Hardfault occurs. Diagnosis K64 flash has internal ECC on each sector. When over-programming happens, ECC will be crushed and trigger Hardfault when AHB reading of this sector. Solution Using SDK API FLASH_VerifyErase to check if this sector is erased. Call FLASH_VerifyErase every time before you want to program the flash. This problem will impact all Kinetis device which has FTFE flash module.   Thanks for Alex Yang provide the material.
View full article
Making and Downloading Security Image for Kinetis Device   Introduction KINETIS devices have Flash base bootloader or ROM bootloader. They have same structure and same download tools. MCUBOOT shows supported device. The bootloader not only support plaintext image, but also encrypted image which is encrypted by AES. This can protect user’s application code from unauthorized using. Due to different internal Flash structure, security image making, key download and image download flow is a bit different to each Kinetis devices. This hands-on will introduce Flash base bootloader and ROM base bootloader security image making and downloading.   2 Security image to Flash bootloader Many NXP Kinetis device SDK have integrated bootloader. Take FRDM-K64F as example, the bootloader project is in SDK_2.8.0_FRDM-K64F\boards\frdmk64f\bootloader_examples\freedom_bootloader The bootloader support security format image by default. User can download security format image via UART and USB interface. In K64 bootloader, the key is stored in 0xb000. But the application code is start from 0xa000. That means each time the application is upgraded, key file need to be download again.   2.1 Generate key The elftosb tool can generate a key. But of course, you can take any string as key.     2.2 Image encryption Use the key to encrypt application image. Here is the bd file. options {  flags = 0x4; // 0x8 encrypted + signed, 0x4 encrypted  buildNumber = 0x1;  productVersion = "1.00.00";  componentVersion = "1.00.00";  keyCount = 1; }   sources {  inputFile = extern(0);  sbkey = extern(1); }   section (0) {  erase 0xa000..0xF6000; load inputFile > 0xa000; }       2.3 Download key and image Connect FRDM-K64F openSDA usb port. Then download key and image.     2.4 Download key with KinetisFlashTool Use keyboard to input key is really annoying. There is a GUI tool named KinetisFlashTool which can download image same as blhost.exe. To download encrypted image by this tool, we can make a sb file to download key first. Here is the bd file.   sources { } section (0) {        erase 0xb000..0xc000;        load {{E0BAA2C8231283CAF1D327CEDB82AFF9}} > 0xb000; }   Using elftosb to generate the sb file. The elftosb command line is as below \>Elftosb -V -c program_key.bd -o program_key.sb   This sb file should be download at first, then download the encrypted application image. When customer want to download security image via USB MSC or HID, this is the only way to download key. There is a limitation in those bootloader which version is lower or equal to v2.7.0. MSC function and HID function can’t be enabled together. Otherwise bootloader will fail when copy encrypted sb file to MSC disk.   2.5 About the key But it is really strange that key file should always come with encrypted file. It is reasonable to keep the key in secure status, for example, an untouched place in flash. K64 has a program once field which is located in program flash IFR. This is a standalone space different from main space. It’s address is from 0x3C0 to 0x3FF. MCU core can read or write this area by special flash command. We can put the AES key here. Again, we can use sb file to download this key. sources { } section (0) {        load ifr 0xE0BAA2C8 > 0x3c0;        load ifr 0x231283CA > 0x3c1;        load ifr 0xF1D327CE > 0x3c2;        load ifr 0xDB82AFF9 > 0x3c3; } Then we should modify sbloader_init() in sbloader.c. The source code only read key form 0xb000. We should have it read key from IFR.   Security image to ROM bootloader Some Kinetis device has ROM bootloader. They are different with flash base bootloader. This document use FRDM-K32L2A as example.   3.1 Generate AES key and download the key The key can be set as 0x112233445566778899aabbccddeeff00. Besides sb file, it can also be programmed to IFR by blhost command. \>blhost -p COM9 – flash-program-once 0x30 4 11223344 msb \>blhost -p COM9 – flash-program-once 0x31 4 55667788 msb \>blhost -p COM9 – flash-program-once 0x32 4 99aabbcc msb \>blhost -p COM9 – flash-program-once 0x33 4 ddeeff00 msb If you do not write anything to IFR, the ROM bootloader will use all-zero key. Here I use all-zero key.   3.2 Encryption algorithm The ROM bootloader hasn’t encryption algorithm. Application should include algorithm code and assign the address to bootloader, or preprogram BCA table and MMCAU code into flash. You can find MMCAU code (mmcau_cm0p.bin) and BCA(BCA_mmcau_cm0p.bin) table in MCUBoot2.0.0 package. Before you program these code into flash, new address must be written into it. For example, we put MMCAU code into 0x7f800, then we should modify the BCA table as below     And then, according this new address, modify the MMCAU_function_info structure in mmcau_cm0p.bin.   After that, download BCA to 0x3c0 and mmcau_cm0p.bin to 0x7f800.   In order to avoid using manual operation in production, above steps can be integrate in a single sb file.   3.3 Encrypt the image and download The bd file in K64 example can be reused, just need to change the image address to 0x00.   Press the reset button, after 5 second, the led will blink.   References: Kinetis Bootloader v2.0.0 Reference Manual Kinetis Elftosb User's Guide Kinetis Bootloader QuadSPI User's Guide Kinetis blhost User's Guide
View full article