Kinetis Microcontrollers Knowledge Base

cancel
Showing results for 
Search instead for 
Did you mean: 

Kinetis Microcontrollers Knowledge Base

Discussions

Freescale Semiconductor is to demonstrate its Kinetis L series microcontrollers (MCUs) built on the ARM Cortex-M0+ processor at DESIGN West in San Jose, California, with alpha sampling due to start in the second quarter of 2012. Freescale  says the ability to demonstrate these devices is possible due to its  close partnership between ARM during the Cortex-M0+ core development  process and as a lead partner provided  input that helped ARM define and  develop the processor. The devices are slated for applications  such as domestic appliances, portable medical systems, smart meters,  lighting, power and motor control systems. "Our close partnership  with ARM throughout the design and development of their new core has  positioned us as the first MCU supplier to produce and demonstrate an MCU based on the Cortex-M0+ and continues our strategy of driving to  market new products based on the ARM architecture," said Reza  Kazerounian, senior vice president and general manager of Freescale’s  Automotive, Industrial and Multi-Market Solutions Group. Mike  Inglis, executive vice president and general manager of ARM’s Processor  Division, added "With the addition of the L series to their Kinetis  line, Freescale is creating one of the industry’s broadest, most  scalable ARM Cortex-M MCU portfolios, ranging from very low-cost,  entry-level products based on the ARM Cortex-M0+ processor, up to 4 MB,  200 MHz devices based on the Cortex-M4 processor." Manufactured  using Freescale’s low-leakage, 90 nm thin film storage (TFS) process  technology, the Kinetis L series will have a selection of on-chip flash  memory densities and analog, connectivity and HMI peripheral options. Upward  migration through the Kinetis portfolio is available via compatible Kinetis K series devices (built on the ARM Cortex-M4 processor) that  provide access to DSP performance and advanced feature integration. The  ARM Cortex-M0+ processor includes a reduced two-stage pipeline,  allowing faster branch instruction execution, single-cycle access to I/O  and critical peripherals, optimized access to program memory, linear 4  GB address space that removes the need for paging, reducing software  complexity and ensuring a more 8-bit-like user experience and a micro  trace buffer, providing a low-cost trace solution that allows faster bug  identification and correction without the need for additional I/O  resources. Freescale will demonstrate the ARM Cortex-M0+ core at its exhibition booth #1604 at DESIGN West , March 26-29 at the San Jose McEnery Convention Center.
View full article
Freescale's Jeff Bock highlights the awesome features of the Kinetis 32-bit microcontrollers based on the ARM Cortex-M4 core
View full article
by: Carlos Musich, Luis Garabito Microcontrollers Application Engineers with Freescale. This application note is intended to demonstrate http client implementation using Freescale MQX RTOS capabilities. The hardware used to illustrate this is the TWR-K60N512-KIT. The remote controlling and monitoring have become a need rather than an option in the embedded world. This application note takes advantage of two social media interfaces for these purposes. One is used to enter commands to the MCU; http://twitter.com/. The other one is used to pull out data from the MCU; https://www.supertweet.net/. It is important to focus in the fact that with these methods the MCU is reachable through Internet without the need of a public IP address or without mounting a HTTP server in the MCU. The application source code described in this document can be found in the AN4417SW.zip file. For a full description of Freescale MQX RTOS, please visit https://www.freescale.com. This application defines two tasks in MQX. The first task is main. It is meant to configure GPIO, the RTCS and create the second task. The name of this second task is httpclient. The purpose of this task is to carry out the communication with the Twitter server and read the commands to be executed. To retrieve the input commands, the httpclient task reads them from the last tweet published by a specific Twitter account. The command then is parsed and executed according to the implementation. The main task enters into an infinite loop where the httpclient is restarted in each loop to allow a cycle behavior for reading commands. The time for each loop is controlled by a sample rate value that can be configured by the user via a command. Get the full application note...
View full article
This application note provides guidelines on Kinetis K53 family for using the internal Operational Amplifiers (OPAMP), Transimpedance Amplifiers (TRIAMP), and the Analog-to-Digital Converter (ADC) modules to measure the temperature through a thermocouple and a thermistor and the result is shown on a LCD display using the LCD Controller (LCD) module. All these modules are available on the K53 MCU. The application uses different OPAMP configurations, such as internal gain and external gain using external resistor. TWR-K53N512 board was used as base hardware for performing this application. Watch the Freescale Kinetis K53 family in action. The internal Operational Amplifiers (OPAMP), Transimpedance Amplifiers (TRIAMP), and the Analog-to-Digital Converter (ADC) modules are used to measure the temperature through a thermocouple and a thermistor. The result is shown on a LCD display using the LCD Controller (LCD). Get the full Application Note
View full article