i.MX RT Crossover MCUs Knowledge Base

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

i.MX RT Crossover MCUs Knowledge Base

ディスカッション

ソート順:
This document describes the different source clocks and the main modules that manage which clock source is used to derive the system clocks that exists on the i.MX RT’s devices. It’s important to know the different clock sources available on our devices, modifying the default clock configuration may have different purposes since increasing the processor performance, achieving specific baud rates for serial communications, power saving, or simply getting a known base reference for a clock timer. The hardware used for this document is the following: i.MX RT: EVK-MIMXRT1060 Keep in mind that the described hardware and management clock modules in this document are a general overview of the different platforms and the devices listed above are used as a reference example, some terms and hardware modules functionality may vary between devices of the same platform. For more detailed information about the device hardware modules, please refer to your specific device Reference Manual. RT platforms The Clock Controller Module(CCM) facilitates the clock generation in the RT platforms, many clocking variations are possible and the maximum clock frequency for the i.MX RT1060 device is @600MHz.The following image shows a block diagram of the CCM, the three marked sub-modules are important to understand all the clock path from the clock generation(oscillators or crystals) to the clock management for all the peripherals of the board.    Figure 1. Clock Controller Module(CCM) Block Diagram        CCM Analog Submodule This submodule contains all the oscillators and several PLL’s that provide a clock source to the principal CMM module. For example, the i.MX RT1060 device supports 2 internal oscillators that combined with suitable external quartz crystal and external load capacitors provide an accurate clock source, another 2 internal oscillators are available for low power modes and as a backup when the system detects a loss of clock. These oscillators provide a fixed frequency for the several PLL’s inside this module. Internal Clock Sources with external components  Crystal Oscillator @24MHz Many of the serial IO modules depend on the fixed frequency of 24 MHz. The reference clock that generates this crystal oscillator provides an accurate clock source for all the PLL inputs.  Crystal Oscillator @32KHz Generally, RTC oscillators are either implemented with 32 kHz or 32.768 kHz crystals. This Oscillator should always be active when the chip is powered on. Internal Clock sources RC Oscillator @24MHz A lower-power RC oscillator module is available on-chip as a possible alternative to the 24 MHz crystal oscillator after a successful power-up sequence. The 24 MHz RC oscillator is a self-tuning circuit that will output the programmed frequency value by using the RTC clock as its reference. While the power consumption of this RC oscillator is much lower than the 24MHz crystal oscillator, one limitation of this RC oscillator module is that its clock frequency is not as accurate. Oscillator @32KHz The internal oscillator is automatically multiplexed in the clocking system when the system detects a loss of clock. The internal oscillator will provide clocks to the same on-chip modules as the external 32kHz oscillator. Also is used to be useful for quicker startup times and tampering prevention. Note. An external 32KHz clock source must be used since the internal oscillator is not precise enough for long term timekeeping. PLLs There are 7 PLLs in the i.MXRT1060 platform, some with specific functions, for example, create a reference clock for the ARM Core, USB peripherals, etc. Below these PLLs are listed. PLL1 - ARM PLL (functional frequency @600 MHz) PLL2 - System PLL (functional frequency @528 MHz)* PLL3 - USB1 PLL (functional frequency @480 MHz)* PLL4 - Audio PLL PLL5 - Video PLL PLL6 - ENET PLL PLL7 - USB2 PLL (functional frequency @480 MHz) * Two of these PLLs are each equipped with four Phase Fractional Dividers (PFDs) in order to generate additional frequencies for many clock roots.  Each PLLs configuration and control functions like Bypass, Output Enable/Disable, and Power Down modes are accessible individually through its PFDs and global configuration and status registers found at the CCM internal memory registers.        Clock Control Module(CCM) The Clock Control Module (CCM) generates and controls clocks to the various modules in the design and manages low power modes. This module uses the available clock sources(PLL reference clocks and PFDs) to generate the clock roots. There are two important sub-blocks inside the CCM listed below. Clock Switcher This sub-block provides the registers that control which PLLs and PFDs outputs are selected as the reference clock for the Clock Root Generator.  Clock Root Generator This sub-block provides the registers that control most of the secondary clock source programming, including both the primary clock source selection and the clock dividers. The clock roots are each individual clocks to the core, system buses, and all other SoC peripherals, among those, are serial clocks, baud clocks, and special function blocks. All of these clock references are delivered to the Low Power Clock Gating unit(LPCG).        Low Power Clock Gating unit(LPCG) The LPCG block receives the root clocks from CCM and splits them to clock branches for each peripheral. The clock branches are individually gated clocks. The following image shows a detailed block diagram of the CMM with the previously described submodules and how they link together. Figure 2. Clock Management System Example: Configure The ARM Core Clock (PLL1) to a different frequency. The Clock tools available in MCUXpresso IDE, allows you to understand and configure the clock source for the peripherals in the platform. The following diagram shows the default PLL1 mode configured @600MHz, the yellow path shows all the internal modules involved in the clock configuration.  Figure 3. Default PLL configuration after reset. From the previous image notice that PLL1 is attached from the 24MHz oscillator, then the PLL1 is configured with a pre-scaler of 50 to achieve a frequency @1.2GHz, finally, a frequency divider by 2 let a final frequency @600MHz. 1.1 Modify the PLL1 frequency For example, you can use the Clock tools to configure the PLL pre-scaler to 30, select the PLL1 block and then edit the pre-scaler value, therefore, the final clock frequency is @360MHz, these modifications are shown in the following figure.  Figure 4. PLL1 @720MHz, final frequency @360MHz    1.2 Export clock configuration to the project After you complete the clock configuration, the Clock Tool will update the source code in clock_config.c and clock_config.h, including all the clock functional groups that we created with the tool. This will include the clock source for specific peripherals. In the previous example, we configured the PLL1 (ARM PLL) to a functional frequency @360MHz; this is translated to the following structure in source code: “armPllConfig_BOARD_BootClockRUN” and it’s used by “CLOCK_InitArmPll();” inside the “BOARD_BootClockPLL150MRUN();” function.     Figure 5. PLL1 configuration struct  Figure 6. PLL configuration function Example: The next steps describe how to select a clock source for a specific peripheral. 1.1 Configure clock for specific peripheral For example, using the GPT(General Purpose Timer) the available clock sources are the following: Clock Source Off Peripheral Clock High-Frequency Reference Clock Clock Source from an external pin Low-Frequency Reference Clock Crystal Oscillator Figure 7. General Purpose Timer Clocks Diagram Using the available SDK example project “evkmimxrt1060_gpt_timer” a configuration struct for the peripheral “gptConfig” is called from the main initialization function inside the gpt_timer.c source file, the default configuration function with the configuration struct as a parameter, is shown in the following figure. Figure 8. Function that returns a GPT default configuration parameters The function loads several parameters to the configuration struct(gptConfig), one of the fields is the Clock Source configuration, modifying this field will let us select an appropriate clock source for our application, the following figure shows the default configuration parameters inside the “GPT_GetDefaultConfig();” function.  Figure 9. Configuration struct In the default GPT configuration struct, the Peripheral Clock(kGPT_CLockSource_Periph) is selected, the SDK comes with several macros located at “fsl_gpt.h” header file, that helps to select an appropriate clock source. The next figure shows an enumerated type of data that contains the possible clock sources for the GPT.  Figure 10. Available clock sources of the GPT. For example, to select the Low-Frequency Reference Clock the source code looks like the following figure.  Figure 11. Low-Frequency Reference Clock attached to GPT Notice that all the peripherals come with a specific configuration struct and from that struct fields the default clocking parameters can be modified to fit with our timing requirements. 1.2 Modify the Peripheral Clock frequency from Clock Tools One of the GPT clock sources is the “Peripheral Clock Source” this clock line can be modified from the Clock Tools, the following figure shows the default frequency configuration from Clock Tools view. Figure 12. GPT Clock Root inside CMM In the previous figure, the GPT clock line is @75MHz, notice that this is sourced from the primary peripheral clock line that is @600MHz attached to the ARM core clocks. For example, modify the PERCLK_PODF divider selecting it and changing the divider value to 4, the resulting frequency is @37.5Mhz, the following figure illustrates these changes.  Figure 13. GPT & PIT clock line @37.5MHz 1.3 Export clock configuration to the project After you complete the clock configuration, the Clock Tool will update the source code in clock_config.c and clock_config.h, including all the clock functional groups that we created with the tool. This will include the clock source for specific peripherals. In the previous example, we configured the GPT clock root divider by a dividing factor of 4 to achieve a 37.5MHz frequency; this is translated to the following instruction in source code: “CLOCK_SetDiv(kCLOCK_PerclkDiv,3);” inside the “BOARD_BootClockRUN();” function.                Figure 14. Frequency divider function References i.MX RT1060 Processor Reference Manual Also visit LPC's System Clocks  Kinetis System Clocks
記事全体を表示
This is the recording of the Crossover Code challenge Webinar presented on December 10.
記事全体を表示
The i.MX RT600 crossover MCU combines an ultra-low power MCU with a high performance DSP to enable the next generation of ML/AI, voice and audio applications. Get started today and order your MIMXRT685-EVK.
記事全体を表示
Get 500 MHz for just $1 with NXP's new i.MX RT1010 crossover MCU.  Targeted for a variety of applications, this video highlights two very popular example use-cases for i.MX RT1010 -audio and motor control.
記事全体を表示
The newly announced i.MX RT1170 is a dual-core Arm® Cortex®-M based crossover MCU that breaks the gigahertz (GHz) barrier and accelerates advanced Machine Learning (ML) applications at the edge.  Built using advanced 28nm FD-SOI technology for lower active and static power requirements, i.MX RT1170 MCU family integrates a GHz Arm Cortex-M7 and power-efficient Cortex-M4, advanced 2D vector graphics, together with NXP’s signature EdgeLock security solution.  The i.MX RT1170 delivers a total CoreMark score of 6468 and address the growing performance needs of edge computing for industrial, Internet-of-Things (IoT) and automotive applications
記事全体を表示
RT1050 SDRAM app code boot from SDcard burn with 3 tools Abstract       This document is about the RT series app running on the external SDRAM, but boot from SD card. The content contains SDRAM app code generate with the RT1050 SDK MCUXpresso IDE project, burn the code to the external SD card with flashloader MFG tool, and MCUXPresso Secure Provisioning. The MCUBootUtility method can be found from this post: https://community.nxp.com/docs/DOC-346194       Software and Hardware platform: SDK 2.7.0_EVKB-IMXRT1050 MCUXpresso IDE MXRT1050_GA MCUBootUtility MCUXPresso Secure Provisioning MIMXRT1050-EVKB 2 RT1050 SDRAM app image generation     Porting SDK_2.7.0_EVKB-IMXRT1050 iled_blinky project to the MCUXPresso IDE, to generate the code which is located in SDRAM, the configuration is modified like the following items:       2.1 Copy code to RAM 2.2  Modify memory location to SDRAM address 0X80002000 The code which boots from SD card and running in the SDRAM is the non-xip code, so the IVT offset is 0X400, in our test, we put the image from the SDRAM memory address 0x800002000, the configuration is: 2.3 Modify the symbol 2.4 Generate the .s19 file      After build has no problems, then generate the app.s19 file:   Rename the app.19 image file to evkbimxrt1050_iled_blinky_sdram_0x2000.s19, and copy it to the flashloader folder: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\elftosb\win   3, Flashloader configuration and download    This chapter will use flashloader to configure the image which can download the SDRAM app code to the external SD card with MFGTool.       We need to prepare the following files: SDRAM interface configuration file CFG_DCD.bin imx-sdram-unsigned-dcd.bd program_sdcard_image.bd 3.1 SDRAM DCD file preparation      MIMXRT1050-EVKB on board SDRAM is IS42S16160J, we can use the attached dcd_model\ISSI_IS42S16160J\dcd.cfg and dcdgen.exe tool to generate the CFG_DCD.bin, the commander is: dcdgen -inputfile=dcd.cfg -bout -cout   Copy CFG_DCD.bin file to the flashloader path: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\elftosb\win 3.2 imx-sdram-unsigned-dcd.bd file Prepare the imx-sdram-unsigned-dcd.bd file content as: options {     flags = 0x00;     startAddress = 0x80000000;     ivtOffset = 0x400;     initialLoadSize = 0x2000;     DCDFilePath = "CFG_DCD.bin";     # Note: This is required if the default entrypoint is not the Reset_Handler     #       Please set the entryPointAddress to Reset_Handler address     entryPointAddress = 0x800022f1; }   sources {     elfFile = extern(0); }   section (0) { }  The above entrypointAddress data is from the .s19 reset handler(0X80002000+4 address data): Copy imx-sdram-unsigned-dcd.bd file to flashloader path: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\elftosb\win Open cmd, run the following command: elftosb.exe -f imx -V -c imx-sdram-unsigned-dcd.bd -o ivt_evkbimxrt1050_iled_blinky_sdram_0x2000.bin evkbimxrt1050_iled_blinky_sdram_0x2000.s19 After running the command, two app IVT files will be generated: 3.3 program_sdcard_image.bd file Prepare the program_sdcard_image.bd file content as: # The source block assign file name to identifiers sources {  myBootImageFile = extern (0); }   # The section block specifies the sequence of boot commands to be written to the SB file section (0) {       #1. Prepare SDCard option block     load 0xd0000000 > 0x100;     load 0x00000000 > 0x104;       #2. Configure SDCard     enable sdcard 0x100;       #3. Erase blocks as needed.     erase sdcard 0x400..0x14000;       #4. Program SDCard Image     load sdcard myBootImageFile > 0x400;         #5. Program Efuse for optimal read performance (optional)     # Note: It is just a template, please program the actual Fuse required in the application     # and remove the # to enable the command     #load fuse 0x00000000 > 0x07;   } Copy program_sdcard_image.bd to the flashloader path: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\elftosb\win Open cmd, run the following command: elftosb.exe -f kinetis -V -c program_sdcard_image.bd -o boot_image.sb ivt_evkbimxrt1050_iled_blinky_sdram_0x2000_nopadding.bin Copy the generated boot_image.sb file to the following flashloader path: \Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\mfgtools-rel\Profiles\MXRT105X\OS Firmware 3.4 MFGTool burn code to SD card    Prepare one SD card, insert it to J20, let the board enter the serial download mode, SW7:1-ON 2-OFF 3-OFF 4-ON. Find two USB cable, one is connected to J28, another is connected to J9, we use the HID to download the image.    Open MFGTool.exe, and click the start button:          Modify the boot mode to internal boot, and boot from the external SD card, SW7:1-ON 2-OFF 3-ON 4-OFF.      Power off and power on the board again, you will find the onboard LED D18 is blinking, it means the external SDRAM APP code is boot from external SD card successfully. 4, MCUBootUtility configuration and code download    Please check this community document: https://community.nxp.com/docs/DOC-346194     Here just give one image readout memory map, it will be useful to understand the image location information:     After download, we can readout the SD card image, from 0X400 is the IVT, BD, DCD data, from 0X1000 is the image which is the same as the app.s19 file.     5, MCUXpresso Secure Provisioning configuration and download   This software is released in the NXP official website, it is also the GUI version, which can realize the normal code and the secure code downloading, it will be more easy to use than the flashloader tool, customer don’t need to input the command, the tool help the customer to do it, the function is similar to the MCUBootUtility, MCUBootUtility tool is the opensource tool which is shared in the github, but is not released in the NXP official website.   Now, we use the new official realized tool to download the SDRAM app code to the external SD card, the board still need to enter the serial download mode, just like the flashloader and the MCUBootUtility too, the detail operation is:  We can find this tool is also very easy to use, customer still need to provide the app.19 and the dcd.bin, then give the related boot device configuration is OK.    After the code is downloaded successfully, modify the boot mode to internal boot, and boot from the external SD card, SW7:1-ON 2-OFF 3-ON 4-OFF.     Power off and power on the board again, you will find the onboard LED D18 is blinking, it means the external SDRAM APP code is boot from external SD card successfully.   Until now, all the three methods to download the SDRAM app code to the SD card is working, flashloader is the command based tool, MCUBootUtility and MCUXPresso Secure Provisioning is the GUI tool, which is more easy to use.        
記事全体を表示
Introduction The RT1064 is the only Crossover MCU from the RT family that comes with an on-chip flash, it has a 4MB Winbond W25Q32JV memory. It's important to remark that it's not an internal memory but an on-chip flash connected to the RT1064 through the FlexSPI2 interface. Having this flash eliminates the need of an external memory. Although the intended use of the on-chip flash is to store your application and do XiP, there might be cases where you would like to use some space of this memory as NVM. This document will explain how to modify one of the SDK example projects to achieve this.  Prerequisites RT1064-EVK  The latest SDK which you can download from the following link: Welcome | MCUXpresso SDK Builder. In this document, I will use MCUXpresso IDE but you can use the IDE of your preference. The modifications that you need to make are the same despite the IDE that you are using.  Importing the SDK example  The RT1064-EVK comes with two external flash memories, 512 Mb Hyper Flash and 64 Mb QSPI Flash. The RT1064-SDK includes two example projects that demonstrate how to use any of these two external flash memories as NVM. In this document, we will take as a base one of these examples to modify it to use the on-chip flash as NVM. Once you downloaded and imported the SDK into MCUXpresso IDE, you will need to import the example flexspi_nor_polling_transfer into your workspace.    Modifying the SDK example The external NOR Flash memory of the EVK is connected to the RT1064 through the FlexSPI1 interface. Due to this, the example project that we just imported initializes the FlexSPI1 interface pins. In our case, we want to use the on-chip flash that is connected through the FlexSPI2 instance, since we will boot from this memory, the ROM bootloader will configure the pins of this FlexSPI interface. So, in the function BOARD_InitPins we can delete all the pins that were related to the FlexSPI1 interface. At the end your function should look like the following:  void BOARD_InitPins(void) { CLOCK_EnableClock(kCLOCK_Iomuxc); /* iomuxc clock (iomuxc_clk_enable): 0x03u */ IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B0_12_LPUART1_TX, /* GPIO_AD_B0_12 is configured as LPUART1_TX */ 0U); /* Software Input On Field: Input Path is determined by functionality */ IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B0_13_LPUART1_RX, /* GPIO_AD_B0_13 is configured as LPUART1_RX */ 0U); /* Software Input On Field: Input Path is determined by functionality */ /* Software Input On Field: Force input path of pad GPIO_SD_B1_11 */ IOMUXC_SetPinConfig( IOMUXC_GPIO_AD_B0_12_LPUART1_TX, /* GPIO_AD_B0_12 PAD functional properties : */ 0x10B0u); /* Slew Rate Field: Slow Slew Rate Drive Strength Field: R0/6 Speed Field: medium(100MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Keeper Pull Up / Down Config. Field: 100K Ohm Pull Down Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_AD_B0_13_LPUART1_RX, /* GPIO_AD_B0_13 PAD functional properties : */ 0x10B0u); /* Slew Rate Field: Slow Slew Rate Drive Strength Field: R0/6 Speed Field: medium(100MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Keeper Pull Up / Down Config. Field: 100K Ohm Pull Down Hyst. Enable Field: Hysteresis Disabled */ } ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Function flexspi_nor_flash_init initializes the FlexSPI interface but in our case, the ROM bootloader already did this for us. So we need to make some modifications to this function as well. The only things that we will need from this function are to update the LUT and to do a software reset of the FlexSPI2 interface. At the end your function should look like the following:  void flexspi_nor_flash_init(FLEXSPI_Type *base) { /* Update LUT table. */ FLEXSPI_UpdateLUT(base, 0, customLUT, CUSTOM_LUT_LENGTH); /* Do software reset. */ FLEXSPI_SoftwareReset(base); } ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Inside the file app.h, we need to change some macros since now we will use a different memory and a different FlexSPI interface. The following macros are the ones that you need to modify:  Macro Before After Observations EXAMPLE_FLEXPI FLEXSPI FLEXSPI2 On-chip flash is connected through FlexSPI2 interface  FLASH_SIZE 0x2000 0x200 The size of the on-chip flash is different from the external NOR flash  EXAMPLE_FLEXSPI_AMBA_BASE FlexSPI_AMBA_BASE FlexSPI2_AMBA_BASE On-chip flash is connected through FlexSPI2 interface  EXAMPLE_SECTOR 4 100 The size of the on-chip flash is less than the external NOR flash, hence we will decrease the sector size to avoid erasing our application  Everything else in this file remains the same.  Finally, there are two changes that we need to make in the customLUT. To understand these changes you need to analyze the datasheets of the memories. But in the end, the two modifications are the followings:  Erase sector command of the on-chip flash is 0x20 instead of 0xD7.  Exchange the FLEXSPI command index for NOR_CMD_LUT_SEQ_IDX_READ_FAST_QUAD and NOR_CMD_LUT_SEQ_IDX_READ_NORMAL to align with XIP settings. At the end your customLUT should look like the following:  const uint32_t customLUT[CUSTOM_LUT_LENGTH] = { /* Fast read quad mode - SDR */ [4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST_QUAD] = FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x6B, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18), [4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST_QUAD + 1] = FLEXSPI_LUT_SEQ( kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_4PAD, 0x08, kFLEXSPI_Command_READ_SDR, kFLEXSPI_4PAD, 0x04), /* Fast read mode - SDR */ [4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST] = FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x0B, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18), [4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST + 1] = FLEXSPI_LUT_SEQ( kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_1PAD, 0x08, kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04), /* Normal read mode -SDR */ [4 * NOR_CMD_LUT_SEQ_IDX_READ_NORMAL] = FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x03, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18), [4 * NOR_CMD_LUT_SEQ_IDX_READ_NORMAL + 1] = FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0), /* Read extend parameters */ [4 * NOR_CMD_LUT_SEQ_IDX_READSTATUS] = FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x81, kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04), /* Write Enable */ [4 * NOR_CMD_LUT_SEQ_IDX_WRITEENABLE] = FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x06, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0), /* Erase Sector */ [4 * NOR_CMD_LUT_SEQ_IDX_ERASESECTOR] = FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x20, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18), /* Page Program - single mode */ [4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_SINGLE] = FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x02, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18), [4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_SINGLE + 1] = FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0), /* Page Program - quad mode */ [4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_QUAD] = FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x32, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18), [4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_QUAD + 1] = FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_4PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0), /* Read ID */ [4 * NOR_CMD_LUT_SEQ_IDX_READID] = FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x9F, kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04), /* Enable Quad mode */ [4 * NOR_CMD_LUT_SEQ_IDX_WRITESTATUSREG] = FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x01, kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04), /* Enter QPI mode */ [4 * NOR_CMD_LUT_SEQ_IDX_ENTERQPI] = FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x35, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0), /* Exit QPI mode */ [4 * NOR_CMD_LUT_SEQ_IDX_EXITQPI] = FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_4PAD, 0xF5, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0), /* Read status register */ [4 * NOR_CMD_LUT_SEQ_IDX_READSTATUSREG] = FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x05, kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04), /* Erase whole chip */ [4 * NOR_CMD_LUT_SEQ_IDX_ERASECHIP] = FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xC7, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0), }; ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ These are all the changes that you need to make to the flexspi_nor_polling_transfer to use the on-chip flash as NVM instead of the external NOR flash.  Important notes It's important to mention that you cannot write, erase or read the on-chip flash while making XiP from this memory. So, you need to reallocate all the instructions that read, write and erase the flash to the internal FlexRAM. Fortunately, the example that we use as a base (flexspi_nor_polling_transfer) already does this. This is accomplished thanks to the files located in the linkscritps folder. To learn more about how this works, please refer to section 17.15 of the MCUXpresso IDE User Guide.  Additional resources Datasheet of the on-chip memory (Winbond W25Q32JV).  MCUXpresso IDE User Guide.  I hope that you find this document useful!  Regards,  Victor 
記事全体を表示
This guide will walk through how to do connect the camera and LCD modules to i.MX RT boards and how to test to ensure the camera and LCD are connected properly. Update May 2022: There are now updated versions of these LCD panels that have an impact on software. See this post for more details. The physical connections are the same for both the original and new panels however so there are no changes to this guide.   This first part of this guide is for the i.MX RT1050, i.MX RT1060, i.MX RT1064 EVKs. The second part of this guide is for i.MX RT595, i.MX RT1160 and i.MX RT1170 EVKs.      Part 1: Camera and LCD for i.MX RT1050, i.MX RT1060, and i.MX RT1064:  The camera used by the RT1050, RT1060, and RT1064 EVKs are the same. However this camera only comes with the RT1060 and RT1064 EVKs. There are alternatives available for the RT1050 as discussed in this blog post.    The LCD screen compatible with these boards is the RK043FN66HS-CTG    Camera:  1) The camera connector is on the front of the board. Flip the black connector up so it's 90 degrees from its original position.  2) Then slide in the flat ribbon connector of the camera 3) Flip the black connector back down. It should keep the ribbon cable snug.   LCD: 1) On the back of the board, slide the black connector for the LCD ribbon forward. 2) Then slide in the flat LCD ribbon cable underneath the black connector. 3) Slide the black connector back to its original position. The cable should be snug. 4) Do the same for the touch controller connector and slide the black connector forward Then insert the cable between the black connector and the white top so that the cable is in the middle. It might take a few tries as its somewhat difficult. You could also use needle nose pliers to help guide in the cable but be careful about damaging the cable. 5) Then slide the black connector back to the original position. The cable should be snug. 6) It should look like the following when complete.   Testing: 1) To test the camera and LCD, use the CSI driver examples in the MCUXpresso SDK.  2) The camera will likely be out of focus the first time you use it. Adjust it by rotating the lens clockwise until the image is in focus. You can use your fingers or some needle nose pliers. It could take up to two rotations and it should turn easily. Also remove the plastic cover.    3) To test the touch controller, use the emwin temperature control example in the MCUXpresso SDK   Tape: 1) Once the LCD has been confirmed to work, you can use two layers of thick double sided foam tape to securely attach it to the board.      Part 2: Camera and LCD for i.MX RT1160 and i.MX RT1170 EVKs:  The i.MX RT1160 and i.MX RT1170 EVKs both come with a OV5640 MIPI camera module in the box.    The LCD screen compatible with the i.MX RT1160 and i.MX RT1170-EVK is the RK055HDMIPI4MA0 and it can be found here.   i.MX RT1170-EVK Camera:  1) The camera connector is on the front of the board at J2. It connects by simply pressing the camera down onto the connector. It takes a bit of force but should not be too difficult.    i.MX RT1170-EVK LCD: 1) On the back of the board, slide the black connector (J40) for the LCD ribbon forward towards the edge of the board.    2) Then carefully slide in the flat LCD ribbon cable into the connector. The blue writing should be facing up like in the photo. It should go above the black part of the connector that you just slid out, and under the white part of the connector.  3) Slide the black plastic connector back to its original position. The cable should be snug if pulled. It should look like the following:    i.MX RT1170-EVK Power: 1) If using the LCD, then the external power adapter must be used with the board. Connect the barrel connector to J43 on the board. 2) Also change the jumper on J38 to be on pins 1-2 so that it uses the external power.  3) Connect a micro-USB cable to J11, which will cause the board to enumerate as a COM port and as a debug interface for downloading and debugging code   i.MX RT1170-EVK Camera and LCD Testing: 1) To test the camera and LCD, use the csi_mipi_rgb_cm7 driver example that can be found in the MCUXpresso SDK for i.MX RT1170. The camera input should be displayed on the LCD screen if everything is connected properly.          
記事全体を表示
In case you missed our recent webinar, you can check out the slides and comment below with any questions.
記事全体を表示
Slides from webinar hosted by NXP on Dec 10, 2019.
記事全体を表示
i.MXRT1050 MCU supports 10M/100M Ethernet MAC. Nowadays, LAN8720A is a very common PHY used in many networking design. In this document, I will show you how to use LAN8720A with i.MXRT1050.  1. Schematic   In this design example,  ENET_RST  is connected to GPIO_AD_B1_04      ENET_INT is connected to GPIO_AD_B0_15      2. Source code modification In the i.MXRT1050 SDK, the source code files of the PHY are fsl_phy.c and fsl_phy.h. The registers of LAN8720A need to be added into the source code. Below is the registers of LAN8720A. The details can be found in the LAN8720A datasheet. ( The modified fsl_phy.c and fsl_phy.h are attached)   In the pinmux.c, modify the GPIO Mux setting of the ENET_INT and ENET_RST.   IOMUXC_SetPinMux(IOMUXC_GPIO_AD_B1_04_GPIO1_IO20, 0U);                                      IOMUXC_SetPinMux(IOMUXC_GPIO_AD_B0_15_GPIO1_IO15, 0U);                                      IOMUXC_SetPinConfig(IOMUXC_GPIO_AD_B1_04_GPIO1_IO20, 0xB0A9u);                                  IOMUXC_SetPinConfig(IOMUXC_GPIO_AD_B0_15_GPIO1_IO15, 0xB0A9u);                               This is the part of the source code to reset the PHY in the main() function. gpio_pin_config_t gpio_config = {kGPIO_DigitalOutput, 0, kGPIO_NoIntmode}; GPIO_PinInit(GPIO1, 20, &gpio_config); GPIO_PinInit(GPIO1, 15, &gpio_config); GPIO_WritePinOutput(GPIO1, 15, 1); GPIO_WritePinOutput(GPIO1, 20, 0); delay(); GPIO_WritePinOutput(GPIO1, 20, 1); For more example codes, please refer to the demo_apps/lwip in the i.MXRT SDK package. Reference: i.MXRT1050 web page : i.MX RT1050 MCU/Applications Crossover Processor | Arm® Cortex®-M7 @600 MHz, 512KB SRAM |NXP  MCUXpresso SDK web page : MCUXpresso SDK|NXP 
記事全体を表示
This is a guide line to run both the master core and slave core projects as XIP targets from one flash.
記事全体を表示
Recovery Methods for RT595 and RT685 Development Boards When Programming Fails During the development and use of RT595 and RT685 development boards, developers often encounter a common issue reported by users: persistent errors during programming via a debugger, making it impossible to reprogram the board and effectively rendering it “bricked.” These issues can arise from various causes, such as incorrect FCB writing, interruptions during the download process, or other unknown anomalies. This article introduces two effective recovery methods: Using the SEC TOOL utility. Using an external J-Link programmer. Note: Both methods require setting the RT595 and RT685 boards to Serial ISP mode beforehand. NXP has released two RT685-based development boards (MIMXRT685-AUD-EVK and MIMXRT685-EVK) and one RT595 board. Since the RT595 board operates similarly to the RT685 boards, this article uses the MIMXRT685-AUD-EVK board for demonstration. Ensure the SDK version is correct during the process. 1. Preparation: Entering Serial ISP Mode Using the MIMXRT685-AUD-EVK board as an example, set switches SW5[1-3] to “ON OFF OFF” to enter Serial ISP mode. This corresponds to the following pin levels: PIO1_17: High PIO1_16: High PIO1_15: Low Refer to the RT600 User Manual for detailed mappings between ISP pins and boot modes.   2. Method 1: Recovery Using SEC TOOL  1. Preparation: Generate APP Image Import SDK Demo: Open MCUXpresso IDE and import the demo project mimxrt685audevk_lpc_gpio_led_output_cm33.   Modify Project Settings: Make two key configuration changes to ensure successful image generation. Generate Hex File: After configuration, build the project to generate a Hex file for use with SEC TOOL. 2. Using SEC TOOL Download SEC TOOL: https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING Create Workspace: Launch SEC TOOL and create a new workspace for MIMXRT685S. Select Connection Method: RT500 and RT600 support USB, UART, SPI, and I2C. Choose one (e.g., UART via J5 or USB via J7). Only one protocol can be used at a time. If switching, power cycle the board. Configure Flash Type and Test: Select the default external NOR Flash for MIMXRT685-AUD-EVK, apply settings, and run a test. Build Image: Use the previously generated App image and click “Build Image.”    Program Image: Flash the image to the RT685 chip.   Switch Boot Mode: Power off the board and set Boot mode to FlexSPI Boot from PortB: PIO1_17: Low PIO1_16: High PIO1_15: Low SW5[1-3]: “ON OFF ON” Power on the board again. It should now operate normally and run the program successfully. 3. Method 2: Recovery Using J-Link Programmer 1. Preparation: Generate Flashable File Import the same demo project into MCUXpresso IDE and compile it without modifications to generate a Hex or S19 file. Download and install SEGGER J-Flash from SEGGER Official Website. 2. Hardware Setup Board Modifications: Connect pins 2 and 3 of JP2. Remove jumpers JP17, JP18, JP19 (ensure p3 is disconnected). Set SW5 to “ON OFF OFF”. Device Connection: Connect J-Link Plus to J19 on the board. Connect J6 to the PC to power the board. 3. Programming with J-Flash Create New Project: Open J-Flash and create a new project for MIMXRT685S. Note: RT685 supports only SWD, not JTAG. Flash Program: Load the Hex file and flash it to the board.   Switch Boot Mode: After flashing, power off the board and set Boot mode to FlexSPI Boot from PortB: PIO1_17: Low PIO1_16: High PIO1_15: Low SW5[1-3]: “ON OFF ON” Power on the board again. It should now function normally and run the program successfully.   Conclusion By following either of the two methods described above, developers can effectively recover RT595 and RT685 development boards from programming failures and restore normal operation. Choose the method that best suits your specific situation. 
記事全体を表示
4-TX Line Audio Playback via SAI1 on MIMXRT1170 and CS42448 1. Introduction This document focuses on utilizing the MIMXRT1170-EVKB development board and the CS42448 audio expansion board to achieve specific audio playback functionality through four TX data lines of the SAI1 module. With its real-time performance and high integration, the i.MX RT1170 is widely used in automotive, industrial, and IoT fields. The Arm Cortex-M7 core runs at up to 1GHz, features 2MB on-chip RAM, and offers various memory and connectivity interfaces. It supports multiple audio interfaces, including SAI-1, SAI-2, SAI-3, SAI-4, PDM, ASRC, SPDIF, and MQS. This document details the implementation of 8-channel audio output using the RT1170 EVKB development board and CS42448 Audio Card via four TX data lines of the SAI1 module. It also explains how to generate 8-channel audio data compatible with SDK example requirements. The CS42448 Audio Card can be directly connected to the RT1170 EVKB board, enabling developers to build more complex audio applications. The NXP SDK provides the example 'evkbmimxrt1170_sai_edma_multi_channel_transfer_cm7,' which by default enables two transmission channels (TX_DATA0 and TX_DATA1). When running, 1kHz sine wave audio signals can be heard from the J6 and J7 interfaces of the CS42448 Audio Card. However, when customer requirements demand four TX data lines (TX_DATA0 to TX_DATA3), each transmitting different audio, how can this be achieved? This document explores and validates this scenario in depth. 2. SAI Overview (1) RT1170 Chip SAI Module Features According to the IMXRT1170RM datasheet, SAI2, SAI3, and SAI4 modules each have only one data line for input/output, while SAI1 has four, making it the only module supporting multi-line communication. (2) Configuration Highlights To implement the four TX data line solution, it is crucial to configure the Transmit Configuration 3 (TCR3) TCE register correctly. According to IMXRT1170RM Table 54-2, Option0 should be selected for pin configuration. To enable TX_DATA0 to TX_DATA3, set bits 16–19 of the SAI1 TCR3 register to '1111'. Similarly, for multiple Rx data lines, configure bits 16–19 of the SAI1 RCR3 register (RCE).   3. Hardware Preparation (1) Required Hardware - Mini/micro USB cable - MIMXRT1170-EVKB development board - Personal computer - Headphones (OMTP standard) - CS42448 Audio Card (2) Hardware Modifications on MIMXRT1170-EVKB Solder Resistors: R2008, R2022, R2011, R2021, R2009, R2010, R2012, R2016, R1998, R2013, R2014, R2018, R2017, R2000 Remove Resistors: R2001, R2002, R2003, R2004, R2005, R2006, R2007 After completing the hardware modifications, connect the CS42448 Audio Card to the J76 interface of the MIMXRT1170-EVKB board. 4. Audio Source Preparation The free and powerful audio editing software Audacity is used to convert MP3 files to .wav format. Since each TX data line transmits two audio channels, a total of 8 channels are needed. (1) Audio Channel Allocation Strategy Using Audacity, multiple audio channels were generated. 'HelloWorld' is mono and reused. Allocation is as follows: - TX_DATA0: HelloWorld → Channel 1 & Channel 5 - TX_DATA1: Audio1 → Left: Channel 2, Right: Channel 6 - TX_DATA2: Audio2 → Left: Channel 3, Right: Channel 7 - TX_DATA3: Audio3 → Left: Channel 4, Right: Channel 8 On the CS42448 Audio Card: - J6 plays TX_DATA0 (HelloWorld) - J7 plays  TX_DATA1(Audio1) - J8 plays TX_DATA2(Audio2) - J9 plays TX_DATA3(Audio3) (2) Audio Format Requirements The converted .wav files must match the format used in the NXP SDK example: 48kHz sampling rate and 16-bit width. Ensure these parameters are correctly set in Audacity during conversion. (3) Audio Data Processing To convert the generated HelloWorld-8-channel.wav file into a C language array using WinHex, you need to remove the first 44 bytes, which constitute the standard WAV file header. This step is crucial because the SDK example utilizes raw audio data. For those interested, examining the structure of a WAV file can provide deeper insight into this process. Alternatively, this conversion from WAV format to a C array can also be accomplished using other tools or methods. 5. Software Modifications (1) Configure SAI1 Module Registers To enable four TX data lines, set the TCE bits in the SAI1 TCR3 register. In the NXP SDK code, modify the macro DEMO_SAI_CHANNEL_MASK and configure saiConfig in I2S mode. The function SAI_TransferSendEDMA will set the TCR3 TCE register accordingly. (2) Replace Audio Data and Modify Macros Replace the uint8_t music[] array in the SDK example’s music.h file with the C array generated earlier. Also, update the macro MUSIC_LEN to match the byte length of the new array, ensuring it is a multiple of 1600. After completing all steps, compile and flash the program to the MIMXRT1170-EVKB board. Connect headphones to the CS42448 Audio Card’s J6,J7,J8,J9 interfaces to hear the respective audio outputs.   6. Conclusion This project successfully implements the transmission of four TX data lines via the SAI1 module using the CS42448 Audio Card and MIMXRT1170-EVKB development board. Experimental validation confirms support for multi-channel independent audio output. Each TX data line can output distinct audio content through the CS42448’s physical interfaces (J6–J9), meeting the needs of complex audio scenarios.
記事全体を表示
This article uses i.MXRT1170 as an example, but the rules apply to the i.MX RT series. 1. Backgroud and Questions DataSheets (e.g, RT1170A , RT1170B) show the 'NON JEDEC'  Package as following, but the Product quality page (e.g MIMXRT1172AVM8A) is marked as WSL 3 (Moisture Sensitivity Level 3), which is one of the moisture sensitivity levels defined in JEDEC-STD-020. Is there a contradiction? Does the product comply with JEDEC-STD-020?  2. What is JEDEC-STD-020? JEDEC-STD-020 is a standard that defines the moisture sensitivity level (MSL) and preconditioning requirements for surface-mount devices (SMDs) during the reflow soldering process. Compliance with this standard means that the device's storage and handling before reflow soldering meet industry specifications, making it suitable for automated manufacturing environments. 3. WSL 3 and JEDEC-STD-020 Compliance  On NXP’s product quality page, some i.MX RT1170 variants are marked as WSL 3 (Moisture Sensitivity Level 3), which is one of the levels defined in JEDEC-STD-020. This means: The device can be exposed to ambient conditions for 168 hours before reflow soldering;  It must be stored in dry-pack packaging; It complies with JEDEC-STD-020 handling and processing requirements. This indicates that i.MX RT1170 series have been tested and qualified according to JEDEC-STD-020. Key parameters from NXP Product pages: MSL (Moisture Sensitivity Level): 3 Peak Package Body Temperature: 260°C Time at Peak: 40 seconds 4. “NON JEDEC” Packge in the Datasheet In the i.MX RT1170 datasheet, some package types are labeled as “NON JEDEC”, which typically means: The package dimensions or layout do not strictly follow JEDEC standard outlines; The device has not undergone the formal JEDEC-STD-020 certification process. For example, the IMXRT1170BCEC Rev.1 datasheet states: Package Information: Plastic Package 289-pin MAPBGA, 14 x 14 mm, 0.8 mm pitch Package Type: NON JEDEC [1] This indicates that the package is not a JEDEC-standard mechanical outline. However, it does not necessarily mean the device fails to meet the moisture sensitivity requirements defined in JEDEC-STD-020. 5. In summary 'NON JEDEC' refers only to mechanical form, not to reliability standards. The "NON JEDEC" marking on a datasheet refers to the ​​physical package outline​​, while the MSL 3 rating on the product quality page is a ​​reliability and handling specification​​ determined through JEDEC test methods. JEDEC-STD-020 is a moisture sensitivity level testing standard for non-hermetic surface-mount devices. i.MX RT explicitly states that its MSL rating is based on the JEDEC-STD-020 testing process. Whether a package conforms to a JEDEC standard (such as MO-220) has no direct bearing on whether it can be tested under JEDEC-STD-020. ‘NON JEDEC’是指物理封装中的机械形式,不是可靠性标准。 JEDEC-STD-020 是针对非气密性表面贴装器件的湿敏等级测试标准; NXP 明确表示i.MX RT产品 MSL 等级是依据 JEDEC-STD-020 测试流程; 封装是否为 JEDEC 标准(如 MO-220)与是否能进行 JEDEC-STD-020 测试无直接关系。 6. Reference NXP i.MX RT1170 Product Page: https://www.nxp.com/part/MIMXRT1172AVM8A  i.MX RT1170 Datasheet: https://www.nxp.com/docs/en/data-sheet/IMXRT1170CEC.pdf  JEDEC-STD-020 Standard: https://www.jedec.org/document_search/field_doc_type/151?search_api_views_fulltext=%E2%80%8BJ-STD-020&order=title&sort=asc       
記事全体を表示
There are two version of the i.MX RT1170 Evaluation Kit:  MIMXRT1170-EVK (no longer available for purchase) MIMXRT1170-EVKB   The key differences between the two versions of are laid out in the MIMXRT1170-EVKB Board Hardware User Guide:    One important change is the QuadSPI flash used on each board. This means that if you attempt to use SDK projects created for the RT1170-EVKB, it will not run properly on an older RT1170-EVK board due to using the mismatched QSPI configuration data. And new releases of MCUXpresso SDK only support the newer EVKB board.  However there is a simple fix to get those newer i.MX RT1170 EVKB MCUXpresso SDK projects to run on the older i.MX RT1170 EVK hardware. Simply download the MCUXpresso SDK 2.16.00 for the original RT1170-EVK board, unzip the archive file, and then copy the evkmimxrt1170_flexspi_nor_config.h and evkmimxrt1170_flexspi_nor_config.c files found in \SDK_2_16_000_MIMXRT1170-EVK\boards\evkmimxrt1170\xip into your EVKB project's xip folder. Then either delete/rename the EVKB version of the evkbmimxrt1170_flexspi_nor_config.c and evkbmimxrt1170_flexspi_nor_config.h files from the project to avoid compiler conflicts. This will update the QSPI configuration for that project to be compatible with the QSPI hardware on the original EVK. As an exmaple, here is the RT1170 Hello World project with that change - the EVKB files were renamed with a .orig extension so they would not be included in the compilation:    Note that due to the new hardware features found on the EVKB board there are some EVKB SDK projects that simply can't be supported on the original EVK board. But this work-around will provide support for many MCUXpresso SDK projects that don't require those new EVKB board features. 
記事全体を表示
​​迁移重点​​: ​​检查GPIO配置​​:利用新时序建议优化设计。 ​​更新SDK至25.06+​​:确保芯片版本识别和ROM API兼容。 ​​验证SEMC设计​​:若使用CSX1/2/3,需按ERR052401调整时序。 ​​工具链升级​​:J-Link v8.38+和MCUXpresso脚本更新。   0. 本文目的    若您并未遇到RT1170 FSGPIO漂移老化问题,请忽略本文档。 若您遇到RT1170A的ERR052351(输出电压>1.98V时参数漂移)和ERR050643(上电瞬间误触发上拉脉冲)问题,并想通过迁移到新硅片RT1170B,请查看本文完成迁移。 ​ 1. 硅片变更 (Silicon Changes)​ ​ ​​GPIO修复​​: 解决了RT1170A的ERR052351(输出电压>1.98V时参数漂移)和ERR050643(上电瞬间误触发上拉脉冲)问题。 影响范围:GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank。 ​​ROM更新​​: 清理ROM补丁(不影响开放API)。 ​​HAB API向量表地址​​:从 0x0021_1C0C (A版)改为 0x0021_1C14 (B版)。 ROM_FLEXSPI_NorFlash_ClearCache() 入口地址变更(详见第6节)。 ​​芯片ID变更​​: MISC_DIFPROG 寄存器的 CHIPID 复位值变化: A版: 0x001170A0 B版: 0x001170B0 (需通过bit[7:4]区分:A版= 1011 ,B版= 1100 )。 ​​2. 数据手册变更 (Data Sheet Changes)​ ​ ​​型号命名​​:所有型号后缀从 A 改为 B (例: MIMXRT117xxxxxB )。 ​​GPIO电气规范​​: ​​表37​​:GPIO_AD/LPSR/DISP_B2的驱动电流调整(如DSE=1时IOH从-10mA→-9mA)。 ​​表40​​: 新增 Vpead 参数。 上升/下降时间调整(如DSE=0/SRE=1时从6ns→7.5ns)。 ​​关键建议​​: 3.3V模式:≥25MHz用连续范围模式(Continuous Range),<25MHz用高范围模式(High Range)。 1.8V模式:推荐低范围模式(Low Range)。 ​​其他更新​​: 存储温度范围:-40℃ → ​​-55℃​​。 SDR50/SDR104时序:输入建立时间从2.5ns→2.0ns。 FlexSPI时序:TDVO最大值从4→1,TDHO最小值从2→0。 ​​3. 参考手册变更 (Reference Manual Changes)​ ​ ​​芯片ID识别​​: MISC_DIFPROG[7:4] 复位值从固定值改为​​芯片版本标识​​(A版= 1011 ,B版= 1100 )。 ​​4. 勘误变更 (Errata Changes)​   参考资料:i.MX RT1170A Errata,  i.MX RT1170B Errata​ ​​修复问题​​: 移除ERR052351(GPIO参数漂移)和ERR050643(上电脉冲问题)。 ​​新增问题​​: ​​ERR052401​​:SEMC_CSX1/2/3信号时序退化(SYNC模式最大延迟增加2.4ns)。 ​​规避方案​​: SYNC模式:优先使用SEMC_CSX0或SEMC_RDY作为片选。 Async模式:调整SEMC配置寄存器(SRAMCR1/NORCR1的CES位)。 ​​5. SDK代码变更 (SDK Code Changes)​ ​ ​​SDK 25.06​​(2025年6月底发布)支持B版。 ​​关键代码调整​​: ChipID 和  ROM_API bootloader入口地址  变更 /*! * @brief ROM API init. */ void ROM_API_Init(void) { if (ANADIG_MISC->MISC_DIFPROG == 0x001170a0U) // A版 { g_bootloaderTree = ((bootloader_api_entry_t *)*(uint32_t *)0x0020001cU); } else // B版 { g_bootloaderTree = ((bootloader_api_entry_t *)*(uint32_t *)0x0021001cU); } } FlexSPI缓存清除函数入口地址变更 :ROM_FLEXSPI_NorFlash_ClearCache /*! @brief Software reset for the FLEXSPI logic. */ void ROM_FLEXSPI_NorFlash_ClearCache(uint32_t instance) { uint32_t clearCacheFunctionAddress; if (ANADIG_MISC->MISC_DIFPROG == 0x001170a0U) { clearCacheFunctionAddress = 0x0020426bU; } else if (ANADIG_MISC->MISC_DIFPROG == 0x001170b0U) { clearCacheFunctionAddress = 0x0021a3b7U; } else { clearCacheFunctionAddress = 0x0021a3bfU; } HAB API vector table addresses变更 :从0x0021_1C0C(i.MX RT1170A) to 0x0021_1C14(i.MX RT1170B). SDK无影响,SBL github已经解决。 ​​6. 工具变更 (Tool Changes)​ ​ ​​J-Link​​:需升级至​​v8.38或更高版本​​。 ​​MCUXpresso​​:v24.12及更早版本需更新 RT1170_reset.scp 脚本中的芯片ID检测逻辑。 ​​7. 通用数据手册更新 (Appendix A)​ ​ ​​电压范围​​: NVCC_GPIO重命名为​​NVCC_AD​​(后续版本将恢复原名)。 NVCC_AD/DISP2/LPSR最大值从1.95V→​​1.98V​​。 ​​GPIO模式定义​​: 统一命名:​​连续范围模式​​(原Normal/Derated)、​​低范围模式​​(原Low)、​​高范围模式​​(原High)。 ​​时序优化​​: LPSPI主模式频率上限从30MHz→​​60MHz​​,建立时间从10ns→3ns。 ​​新增警告​​: GPIO_AD/LPSR/DISP_B2的NVCC不可悬空,否则可能漏电​​500μA/每Bank​​。 ​​8. 其他信息​ ​ ​​文档版权​​:示例代码遵循​​BSD-3-Clause许可证​​。 ​​参考文档​: AN14716 MCUXPresso SDK i.MX RT
記事全体を表示
1. Backgroud Customers adopting multi-i.MXRT master-slave architectures (one master, multiple slaves) aim to meet functional requirements while simultaneously reducing costs and improving system efficiency through optimized hardware design. 2.  Multi-i.MXRT Architecture Design 2.1 Independent Flash Architecture (Master-Slave) In multi-i.MXRT systems, a typical design adopts a master-slave architecture where one i.MXRT acts as the master and others as slaves. Since the i.MXRT chip lacks on-chip non-volatile memory, each i.MXRT requires an independent boot device (e.g., NOR Flash connected via FlexSPI) to load programs and initiate startup.  Traditional Architecture: - Each i.MXRT has its own dedicated Flash memory, ensuring operational independence. Advantages: - Full System Independence: Each i.MXRT operates independently with its own firmware and boot configuration. Fault isolation: A failure in one Flash or i.MXRT does not affect others. - Simplified Firmware Management: Independent firmware updates for each i.MXRT without coordination. Easier OTA version control (each device has its own update path). Disadvantages: - Complex programming workflow (multiple Flash devices need individual firmware updates). - Higher hardware complexity, larger PCB footprint, and increased cost due to multiple Flash chips. 2.2 Shared Flash Architecture (Master-Slave with Flash Sharing) A single Flash device is connected to multiple i.MXRTs. The master i.MXRT controls the POR_B (Power-On Reset) signal of all slave i.MXRTs, enabling shared access to the same Flash. Boot Process: 1. The master i.MXRT boots first in Non-XIP mode. 2. The master sequentially releases the POR_B signals of slave i.MXRTs, allowing them to occupy the Flash and boot in Non-XIP mode one at a time. Advantages: - Reduced cost and simplified hardware design. - Smaller PCB footprint with only one Flash required. - Streamlined firmware programming (single Flash update) for mass production. Disadvantages: - If slave i.MXRTs require different firmware, the Flash must be partitioned into regions, leading to: - Complex OTA version management challenges. - Reduced system independence among slave devices. 3. Hardware Platform Setup Master Board: MIMXRT1010-EVK Slave Board: MIMXRT1010-EVK Rework: Remove U13 (Flash) from the slave board. Retain U13 on the master board and fly-wire it to U13 of the slave board (only CS, SCLK, IO0, IO1 are required for low-speed boot). Connect GPIO_11 signal of the master i.MXRT1010 to POR_B of the slave i.MXRT1010 (Pin3/4 of SW3).   4. Software Design Due to both master and slave i.MXRTs sharing a single application (differentiated via conditional branches), the app must be Non-XIP. Therefore, we designed a boot_loader project that copies and jumps to the boot_app, instead of using SPT or MCUBootUtility. 🔗 Key modules: /boards/evkmimxrt1010/demo_apps/boot_loader /boards/evkmimxrt1010/demo_apps/boot_app . ├── boards │ └── evkmimxrt1010 │ ├── demo_apps │ │ ├── boot_app │ │ ├── boot_loader │ │ ├── hello_world │ │ └── led_blinky │ └── xip │ ├── evkmimxrt1010_flexspi_nor_config.c │ └── evkmimxrt1010_flexspi_nor_config.h ├── CMSIS │ ├── Core │ ├── Driver │ ├── DSP │ ├── LICENSE.txt │ ├── NN │ └── RTOS2 ├── components │ ├── lists │ ├── serial_manager │ └── uart ├── devices │ └── MIMXRT1011 ├── LICENSE └── README.md Note: Please see the whole reference project from attchement.  4.1 boot_loader Design The boot_loader is a XiP project directly booted by the chip's BootROM. It can be based on the SDK's hello_world example ( flexspi_nor target). The FCB boot header should be modified as follows (1-bit SPI, 30MHz, Normal Read Mode): // boot_loader // xip/evkmimxrt1010_flexspi_nor_config.c const flexspi_nor_config_t qspiflash_config = { .tag = FLEXSPI_CFG_BLK_TAG, .version = FLEXSPI_CFG_BLK_VERSION, .readSampleClksrc=kFlexSPIReadSampleClkLoopbackInternally, .csHoldTime = 3u, .csSetupTime = 3u, .deviceType = kFlexSpiDeviceTypeSerialNOR, .sflashPadType = kSerialFlash_1Pad, .serialClkFreq = kFlexSpiSerialClk_30Hz, .sflashA1Size = 16u * 1024u * 1024u, .lookupTable = { // Read LUTs FLEXSPI_LUT_SEQ(CHIP_SELECT, FLEXSPI_1PAD, 0x03, RADDR_SDR, FLEXSPI_1PAD, 0x18), FLEXSPI_LUT_SEQ(READ_SDR, FLEXSPI_1PAD, 0x04, STOP, FLEXSPI_1PAD, 0x0), }, .pageSize = 256u, .sectorSize = 4u * 1024u, .blockSize = 64u * 1024u, .isUniformBlockSize = false, }; The boot_app is a Non-XIP project (based on SDK’s debug target). Its binary is imported into the boot_loader project. With proper linking address and memory layout, the copy & jump logic can be implemented with standard code. The finalized boot_loader can then be downloaded to Flash using an IDE. 4.2 boot_app Design The boot_app is also derived from the SDK's hello_world . It supports receiving simple UART commands ( A , B , etc.) for various tests. Currently, six test commands are supported:  Commands Target Device i.MX RT Description 'A' Master Drive master i.MXRT's GPIO_11 high to pull POR_B high and release slave i.MXRT from reset. 'B' Master Drive master i.MXRT's GPIO_11 low to pull POR_B low and hold slave i.MXRT in reset.   Commands Target Device Description 'F' Salve Toggle GPIO_11 periodically with a timer to blink the D25 LED.   Commands Target Device Description 'C' Master or Slave  Initialize Flash-related pins for FlexSPI functionality. 'D' Master or Slave  Restore Flash-related pins to default GPIO state. 'E' Master or Slave  Erase, program, and read U13 Flash.   Notes: Commands A and E may cause conflicts when both master and slave i.MXRT attempt to drive the same Flash through FlexSPI pins. Before executing Command A (to release the slave), the master should first execute Command D, calling the following function to restore FlexSPI pins to GPIO mode. Otherwise, the slave may fail to boot normally (BootROM configures these pins as FlexSPI during boot). void bsp_deinit_flexspi_pins(void) { IOMUXC_SetPinMux(IOMUXC_GPIO_SD_06_GPIO2_IO06, 0U); IOMUXC_SetPinMux(IOMUXC_GPIO_SD_07_GPIO2_IO07, 0U); IOMUXC_SetPinMux(IOMUXC_GPIO_SD_09_GPIO2_IO09, 0U); IOMUXC_SetPinMux(IOMUXC_GPIO_SD_10_GPIO2_IO10, 0U); IOMUXC_SetPinConfig(IOMUXC_GPIO_SD_06_GPIO2_IO06, 0x10A0U); IOMUXC_SetPinConfig(IOMUXC_GPIO_SD_07_GPIO2_IO07, 0x10A0U); IOMUXC_SetPinConfig(IOMUXC_GPIO_SD_09_GPIO2_IO09, 0x10A0U); IOMUXC_SetPinConfig(IOMUXC_GPIO_SD_10_GPIO2_IO10, 0x10A0U); } Commands C and E are typically used together. If the slave has already executed them and remains active, the master must either: The Master execute Command B to reset the slave which resets FlexSPI pin configurations The Slave to execute Command D before running C/E. 5. On-Board Testing Power up both boards. Download the boot_loader (containing embedded boot_app ) to Flash. Quick Test: Sending Command A initially may not start the slave properly. However, after executing Command D followed by Command A, the slave boots successfully. Both master and slave boards can read/write the shared Flash normally, verifying the feasibility of this innovative shared flash boot method. Note: Please see readme.md from attchement for more details. 6. Conclusion The i.MXRT master-slave architectures (Independent Flash vs. Shared Flash) offer distinct trade-offs: - Independent Flash: Prioritizes system reliability and independent firmware management at the cost of higher hardware complexity and cost. - Shared Flash: Reduces costs and PCB footprint but introduces firmware dependency and OTA management challenges. The prototype successfully validated the Shared Flash approach, demonstrating its feasibility for cost-sensitive, mass-production scenarios. Customers can choose between these designs based on their specific priorities: high reliability with independence (Independent Flash) or cost-efficiency with streamlined workflows (Shared Flash).
記事全体を表示
The table below contains notable updates to the current release of the Reference Manual. The information provided here is preliminary and subject to change without notice. ​​​​​​​​​​​​​​​​​​ Affected Modules Issue Summary Description Date QDC Incorrect Input Filter Register (FILT) configuration.  FILT_PRSC bitfield is not implemented in Design. 22 May 2025 ​ ​
記事全体を表示