Introduction
The RT1064 is the only Crossover MCU from the RT family that comes with an on-chip flash, it has a 4MB Winbond W25Q32JV memory. It's important to remark that it's not an internal memory but an on-chip flash connected to the RT1064 through the FlexSPI2 interface. Having this flash eliminates the need of an external memory.
Although the intended use of the on-chip flash is to store your application and do XiP, there might be cases where you would like to use some space of this memory as NVM. This document will explain how to modify one of the SDK example projects to achieve this.
Prerequisites
Importing the SDK example
The RT1064-EVK comes with two external flash memories, 512 Mb Hyper Flash and 64 Mb QSPI Flash. The RT1064-SDK includes two example projects that demonstrate how to use any of these two external flash memories as NVM. In this document, we will take as a base one of these examples to modify it to use the on-chip flash as NVM.
Once you downloaded and imported the SDK into MCUXpresso IDE, you will need to import the example flexspi_nor_polling_transfer into your workspace.
Modifying the SDK example
The external NOR Flash memory of the EVK is connected to the RT1064 through the FlexSPI1 interface. Due to this, the example project that we just imported initializes the FlexSPI1 interface pins. In our case, we want to use the on-chip flash that is connected through the FlexSPI2 instance, since we will boot from this memory, the ROM bootloader will configure the pins of this FlexSPI interface. So, in the function BOARD_InitPins we can delete all the pins that were related to the FlexSPI1 interface. At the end your function should look like the following:
void BOARD_InitPins(void) {
CLOCK_EnableClock(kCLOCK_Iomuxc); /* iomuxc clock (iomuxc_clk_enable): 0x03u */
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B0_12_LPUART1_TX, /* GPIO_AD_B0_12 is configured as LPUART1_TX */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B0_13_LPUART1_RX, /* GPIO_AD_B0_13 is configured as LPUART1_RX */
0U); /* Software Input On Field: Input Path is determined by functionality */
/* Software Input On Field: Force input path of pad GPIO_SD_B1_11 */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B0_12_LPUART1_TX, /* GPIO_AD_B0_12 PAD functional properties : */
0x10B0u); /* Slew Rate Field: Slow Slew Rate
Drive Strength Field: R0/6
Speed Field: medium(100MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Keeper
Pull Up / Down Config. Field: 100K Ohm Pull Down
Hyst. Enable Field: Hysteresis Disabled */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B0_13_LPUART1_RX, /* GPIO_AD_B0_13 PAD functional properties : */
0x10B0u); /* Slew Rate Field: Slow Slew Rate
Drive Strength Field: R0/6
Speed Field: medium(100MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Keeper
Pull Up / Down Config. Field: 100K Ohm Pull Down
Hyst. Enable Field: Hysteresis Disabled */
}
Function flexspi_nor_flash_init initializes the FlexSPI interface but in our case, the ROM bootloader already did this for us. So we need to make some modifications to this function as well. The only things that we will need from this function are to update the LUT and to do a software reset of the FlexSPI2 interface. At the end your function should look like the following:
void flexspi_nor_flash_init(FLEXSPI_Type *base)
{
/* Update LUT table. */
FLEXSPI_UpdateLUT(base, 0, customLUT, CUSTOM_LUT_LENGTH);
/* Do software reset. */
FLEXSPI_SoftwareReset(base);
}
Inside the file app.h, we need to change some macros since now we will use a different memory and a different FlexSPI interface. The following macros are the ones that you need to modify:
Macro | Before | After | Observations |
---|---|---|---|
EXAMPLE_FLEXPI | FLEXSPI | FLEXSPI2 | On-chip flash is connected through FlexSPI2 interface |
FLASH_SIZE | 0x2000 | 0x200 | The size of the on-chip flash is different from the external NOR flash |
EXAMPLE_FLEXSPI_AMBA_BASE | FlexSPI_AMBA_BASE | FlexSPI2_AMBA_BASE | On-chip flash is connected through FlexSPI2 interface |
EXAMPLE_SECTOR | 4 | 100 | The size of the on-chip flash is less than the external NOR flash, hence we will decrease the sector size to avoid erasing our application |
Everything else in this file remains the same.
Finally, there are two changes that we need to make in the customLUT. To understand these changes you need to analyze the datasheets of the memories. But in the end, the two modifications are the followings:
At the end your customLUT should look like the following:
const uint32_t customLUT[CUSTOM_LUT_LENGTH] = {
/* Fast read quad mode - SDR */
[4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST_QUAD] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x6B, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
[4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST_QUAD + 1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_4PAD, 0x08, kFLEXSPI_Command_READ_SDR, kFLEXSPI_4PAD, 0x04),
/* Fast read mode - SDR */
[4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x0B, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
[4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST + 1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_1PAD, 0x08, kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04),
/* Normal read mode -SDR */
[4 * NOR_CMD_LUT_SEQ_IDX_READ_NORMAL] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x03, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
[4 * NOR_CMD_LUT_SEQ_IDX_READ_NORMAL + 1] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
/* Read extend parameters */
[4 * NOR_CMD_LUT_SEQ_IDX_READSTATUS] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x81, kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04),
/* Write Enable */
[4 * NOR_CMD_LUT_SEQ_IDX_WRITEENABLE] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x06, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
/* Erase Sector */
[4 * NOR_CMD_LUT_SEQ_IDX_ERASESECTOR] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x20, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
/* Page Program - single mode */
[4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_SINGLE] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x02, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
[4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_SINGLE + 1] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
/* Page Program - quad mode */
[4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_QUAD] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x32, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
[4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_QUAD + 1] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_4PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
/* Read ID */
[4 * NOR_CMD_LUT_SEQ_IDX_READID] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x9F, kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04),
/* Enable Quad mode */
[4 * NOR_CMD_LUT_SEQ_IDX_WRITESTATUSREG] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x01, kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04),
/* Enter QPI mode */
[4 * NOR_CMD_LUT_SEQ_IDX_ENTERQPI] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x35, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
/* Exit QPI mode */
[4 * NOR_CMD_LUT_SEQ_IDX_EXITQPI] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_4PAD, 0xF5, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
/* Read status register */
[4 * NOR_CMD_LUT_SEQ_IDX_READSTATUSREG] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x05, kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04),
/* Erase whole chip */
[4 * NOR_CMD_LUT_SEQ_IDX_ERASECHIP] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xC7, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
};
These are all the changes that you need to make to the flexspi_nor_polling_transfer to use the on-chip flash as NVM instead of the external NOR flash.
Important notes
It's important to mention that you cannot write, erase or read the on-chip flash while making XiP from this memory. So, you need to reallocate all the instructions that read, write and erase the flash to the internal FlexRAM. Fortunately, the example that we use as a base (flexspi_nor_polling_transfer) already does this. This is accomplished thanks to the files located in the linkscritps folder. To learn more about how this works, please refer to section 17.15 of the MCUXpresso IDE User Guide.
Additional resources
Datasheet of the on-chip memory (Winbond W25Q32JV).
I hope that you find this document useful!
Regards,
Victor
Hi
Note also that the uTasker i.MX RT project has inherent file system (uFileSystem or FAT) and parameter storage (uParameterSystem) support for the internal QSPI flash in the 1064, as well as for all external QSPI and Hyper flash parts of other i.MX RT parts. The project also emulates the FlexSPI interface and the flash parts operation so that all driver and application code can be tested and debugged in Visual Studio, which makes such work and general product development easier and increases product development efficiency.
Regards
Mark
[uTasker project developer for Kinetis and i.MX RT]