wake-up from ADC input channel

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

wake-up from ADC input channel

1,849 Views
enginlee
Contributor II

Hi,

I am trying to configure my i.MX6ULL to wake from STOP mode by ADC input channel, is there any example with Linux ADC driver?

There is no useful information in "i.MX_Reference_Manual.pdf", should I need to modify "drivers/iio/adc_vf610_adc.c"?

If so, how to do that? My requirement is: wake-up if converted value is smaller than 256 from channel 8.

Thanks,

-Engin

Tags (2)
0 Kudos
10 Replies

1,438 Views
sheik
Contributor I

Hi art,

I have tried the same steps as you mentioned but device (imx6ul) was not getting wake up from sleep mode. Also this bit is not getting set.

Please provide some example code for testing this out.

Thanks,

Sheik Ajith

 

0 Kudos

1,617 Views
art
NXP Employee
NXP Employee

Q. is there any example with Linux ADC driver?

A. Unfortunately, no, there is no any ready to use example for this task.

Q. should I need to modify "drivers/iio/adc_vf610_adc.c"?

A. Yes.

Q. how to do that?

A. For the details of the ADC setup and operation, please refer to the Chapter 13 "Analog-to-Digital Converter (ADC)" of the i.MX6ULL Reference Manual document, available on the processor's Documentation web page:

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-appl...


Have a great day,
Artur

-------------------------------------------------------------------------------
Note:
- If this post answers your question, please click the "Mark Correct" button. Thank you!

- We are following threads for 7 weeks after the last post, later replies are ignored
Please open a new thread and refer to the closed one, if you have a related question at a later point in time.
-------------------------------------------------------------------------------

0 Kudos

1,617 Views
enginlee
Contributor II

Hi Artur,

I tried to add some "wake-up stuff" into "adc_vf610_adc.c" based on Reference Manual, but still not working...

I have verified that VDDA_ADC_3P3, ADC_VREFH and VDD_HIGH_IN are 3.3V.

ADACK and compare function are working fine in RUN mode, but just no function in IDLE/WAIT/STOP mode...

Here is my modified code, please give me some hint...

Thanks,

-Engin

===============================================================

/*
 * Freescale Vybrid vf610 ADC driver
 *
 * Copyright 2013-2015 Freescale Semiconductor, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/regulator/consumer.h>
#include <linux/of_platform.h>
#include <linux/err.h>
#include <linux/pm_wakeirq.h> //TEST

#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>

/* This will be the driver name the kernel reports */
#define DRIVER_NAME "vf610-adc"

/* Vybrid/IMX ADC registers */
#define VF610_REG_ADC_HC0        0x00
#define VF610_REG_ADC_HC1        0x04
#define VF610_REG_ADC_HS        0x08
#define VF610_REG_ADC_R0        0x0c
#define VF610_REG_ADC_R1        0x10
#define VF610_REG_ADC_CFG        0x14
#define VF610_REG_ADC_GC        0x18
#define VF610_REG_ADC_GS        0x1c
#define VF610_REG_ADC_CV        0x20
#define VF610_REG_ADC_OFS        0x24
#define VF610_REG_ADC_CAL        0x28
#define VF610_REG_ADC_PCTL        0x30

/* Configuration register field define */
#define VF610_ADC_MODE_BIT8        0x00
#define VF610_ADC_MODE_BIT10        0x04
#define VF610_ADC_MODE_BIT12        0x08
#define VF610_ADC_MODE_MASK        0x0c
#define VF610_ADC_BUSCLK2_SEL        0x01
#define VF610_ADC_ALTCLK_SEL        0x02
#define VF610_ADC_ADACK_SEL        0x03
#define VF610_ADC_ADCCLK_MASK        0x03
#define VF610_ADC_CLK_DIV2        0x20
#define VF610_ADC_CLK_DIV4        0x40
#define VF610_ADC_CLK_DIV8        0x60
#define VF610_ADC_CLK_MASK        0x60
#define VF610_ADC_ADLSMP_LONG        0x10
#define VF610_ADC_ADSTS_SHORT   0x100
#define VF610_ADC_ADSTS_NORMAL  0x200
#define VF610_ADC_ADSTS_LONG    0x300
#define VF610_ADC_ADSTS_MASK        0x300
#define VF610_ADC_ADLPC_EN        0x80
#define VF610_ADC_ADHSC_EN        0x400
#define VF610_ADC_REFSEL_VALT        0x800
#define VF610_ADC_REFSEL_VBG        0x1000
#define VF610_ADC_ADTRG_HARD        0x2000
#define VF610_ADC_AVGS_8        0x4000
#define VF610_ADC_AVGS_16        0x8000
#define VF610_ADC_AVGS_32        0xC000
#define VF610_ADC_AVGS_MASK        0xC000
#define VF610_ADC_OVWREN        0x10000

/* General control register field define */
#define VF610_ADC_ADACKEN        0x1
#define VF610_ADC_DMAEN            0x2
#define VF610_ADC_ACREN            0x4
#define VF610_ADC_ACFGT            0x8
#define VF610_ADC_ACFE            0x10
#define VF610_ADC_AVGEN            0x20
#define VF610_ADC_ADCON            0x40
#define VF610_ADC_CAL            0x80

/* Other field define */
#define VF610_ADC_ADCHC(x)        ((x) & 0x1F)
#define VF610_ADC_AIEN            (0x1 << 7)
#define VF610_ADC_CONV_DISABLE        0x1F
#define VF610_ADC_HS_COCO0        0x1
#define VF610_ADC_CALF            0x2
#define VF610_ADC_TIMEOUT        msecs_to_jiffies(100)

#define DEFAULT_SAMPLE_TIME        1000

/* V at 25°C of 696 mV */
#define VF610_VTEMP25_3V0        950
/* V at 25°C of 699 mV */
#define VF610_VTEMP25_3V3        867
/* Typical sensor slope coefficient at all temperatures */
#define VF610_TEMP_SLOPE_COEFF        1840

enum clk_sel {
    VF610_ADCIOC_BUSCLK_SET,
    VF610_ADCIOC_ALTCLK_SET,
    VF610_ADCIOC_ADACK_SET,
};

enum vol_ref {
    VF610_ADCIOC_VR_VREF_SET,
    VF610_ADCIOC_VR_VALT_SET,
    VF610_ADCIOC_VR_VBG_SET,
};

enum average_sel {
    VF610_ADC_SAMPLE_1,
    VF610_ADC_SAMPLE_4,
    VF610_ADC_SAMPLE_8,
    VF610_ADC_SAMPLE_16,
    VF610_ADC_SAMPLE_32,
};

enum conversion_mode_sel {
    VF610_ADC_CONV_NORMAL,
    VF610_ADC_CONV_HIGH_SPEED,
    VF610_ADC_CONV_LOW_POWER,
};

enum lst_adder_sel {
    VF610_ADCK_CYCLES_3,
    VF610_ADCK_CYCLES_5,
    VF610_ADCK_CYCLES_7,
    VF610_ADCK_CYCLES_9,
    VF610_ADCK_CYCLES_13,
    VF610_ADCK_CYCLES_17,
    VF610_ADCK_CYCLES_21,
    VF610_ADCK_CYCLES_25,
};

struct vf610_adc_feature {
    enum clk_sel    clk_sel;
    enum vol_ref    vol_ref;
    enum conversion_mode_sel conv_mode;

    int    clk_div;
    int     sample_rate;
    int    res_mode;
    u32 lst_adder_index;
    u32 default_sample_time;

    bool    calibration;
    bool    ovwren;
};

struct vf610_adc {
    struct device *dev;
    void __iomem *regs;
    struct clk *clk;

    u32 vref_uv;
    u32 value;
    struct regulator *vref;

    u32 max_adck_rate[3];
    struct vf610_adc_feature adc_feature;

    u32 sample_freq_avail[5];

    struct completion completion;
    u16 buffer[8];
    
#if 1 //TEST: wake up for low battery signal
    int irq;
#endif
};

static const u32 vf610_hw_avgs[] = { 1, 4, 8, 16, 32 };
static const u32 vf610_lst_adder[] = { 3, 5, 7, 9, 13, 17, 21, 25 };

static inline void vf610_adc_calculate_rates(struct vf610_adc *info)
{
    struct vf610_adc_feature *adc_feature = &info->adc_feature;
    unsigned long adck_rate, ipg_rate = clk_get_rate(info->clk);
    u32 adck_period, lst_addr_min;
    int divisor, i;

    adck_rate = info->max_adck_rate[adc_feature->conv_mode];

    if (adck_rate) {
        /* calculate clk divider which is within specification */
        divisor = ipg_rate / adck_rate;
        adc_feature->clk_div = 1 << fls(divisor + 1);
    } else {
        /* fall-back value using a safe divisor */
        adc_feature->clk_div = 8;
    }

    adck_rate = ipg_rate / adc_feature->clk_div;

    /*
     * Determine the long sample time adder value to be used based
     * on the default minimum sample time provided.
     */
    adck_period = NSEC_PER_SEC / adck_rate;
    lst_addr_min = adc_feature->default_sample_time / adck_period;
    for (i = 0; i < ARRAY_SIZE(vf610_lst_adder); i++) {
        if (vf610_lst_adder[i] > lst_addr_min) {
            adc_feature->lst_adder_index = i;
            break;
        }
    }

    /*
     * Calculate ADC sample frequencies
     * Sample time unit is ADCK cycles. ADCK clk source is ipg clock,
     * which is the same as bus clock.
     *
     * ADC conversion time = SFCAdder + AverageNum x (BCT + LSTAdder)
     * SFCAdder: fixed to 6 ADCK cycles
     * AverageNum: 1, 4, 8, 16, 32 samples for hardware average.
     * BCT (Base Conversion Time): fixed to 25 ADCK cycles for 12 bit mode
     * LSTAdder(Long Sample Time): 3, 5, 7, 9, 13, 17, 21, 25 ADCK cycles
     */
    for (i = 0; i < ARRAY_SIZE(vf610_hw_avgs); i++)
        info->sample_freq_avail[i] =
            adck_rate / (6 + vf610_hw_avgs[i] *
             (25 + vf610_lst_adder[adc_feature->lst_adder_index]));
}

static inline void vf610_adc_cfg_init(struct vf610_adc *info)
{
    struct vf610_adc_feature *adc_feature = &info->adc_feature;

    /* set default Configuration for ADC controller */
    adc_feature->clk_sel = VF610_ADCIOC_BUSCLK_SET;
    adc_feature->vol_ref = VF610_ADCIOC_VR_VREF_SET;

    adc_feature->calibration = true;
    adc_feature->ovwren = true;

    adc_feature->res_mode = 12;
    adc_feature->sample_rate = 1;

    adc_feature->conv_mode = VF610_ADC_CONV_LOW_POWER;

    vf610_adc_calculate_rates(info);
}

static void vf610_adc_cfg_post_set(struct vf610_adc *info)
{
    struct vf610_adc_feature *adc_feature = &info->adc_feature;
    int cfg_data = 0;
    int gc_data = 0;

    switch (adc_feature->clk_sel) {
    case VF610_ADCIOC_ALTCLK_SET:
        cfg_data |= VF610_ADC_ALTCLK_SEL;
        break;
    case VF610_ADCIOC_ADACK_SET:
        cfg_data |= VF610_ADC_ADACK_SEL;
        break;
    default:
        break;
    }

    /* low power set for calibration */
    cfg_data |= VF610_ADC_ADLPC_EN;

    /* enable high speed for calibration */
    cfg_data |= VF610_ADC_ADHSC_EN;

    /* voltage reference */
    switch (adc_feature->vol_ref) {
    case VF610_ADCIOC_VR_VREF_SET:
        break;
    case VF610_ADCIOC_VR_VALT_SET:
        cfg_data |= VF610_ADC_REFSEL_VALT;
        break;
    case VF610_ADCIOC_VR_VBG_SET:
        cfg_data |= VF610_ADC_REFSEL_VBG;
        break;
    default:
        dev_err(info->dev, "error voltage reference\n");
    }

    /* data overwrite enable */
    if (adc_feature->ovwren)
        cfg_data |= VF610_ADC_OVWREN;

    writel(cfg_data, info->regs + VF610_REG_ADC_CFG);
    writel(gc_data, info->regs + VF610_REG_ADC_GC);
}

static void vf610_adc_calibration(struct vf610_adc *info)
{
    int adc_gc, hc_cfg;

    if (!info->adc_feature.calibration)
        return;

    /* enable calibration interrupt */
    hc_cfg = VF610_ADC_AIEN | VF610_ADC_CONV_DISABLE;
    writel(hc_cfg, info->regs + VF610_REG_ADC_HC0);

    adc_gc = readl(info->regs + VF610_REG_ADC_GC);
    writel(adc_gc | VF610_ADC_CAL, info->regs + VF610_REG_ADC_GC);

    if (!wait_for_completion_timeout(&info->completion, VF610_ADC_TIMEOUT))
        dev_err(info->dev, "Timeout for adc calibration\n");

    adc_gc = readl(info->regs + VF610_REG_ADC_GS);
    if (adc_gc & VF610_ADC_CALF)
        dev_err(info->dev, "ADC calibration failed\n");

    info->adc_feature.calibration = false;
}

static void vf610_adc_cfg_set(struct vf610_adc *info)
{
    struct vf610_adc_feature *adc_feature = &(info->adc_feature);
    int cfg_data;

    cfg_data = readl(info->regs + VF610_REG_ADC_CFG);

    cfg_data &= ~VF610_ADC_ADLPC_EN;
    if (adc_feature->conv_mode == VF610_ADC_CONV_LOW_POWER)
        cfg_data |= VF610_ADC_ADLPC_EN;

    cfg_data &= ~VF610_ADC_ADHSC_EN;
    if (adc_feature->conv_mode == VF610_ADC_CONV_HIGH_SPEED)
        cfg_data |= VF610_ADC_ADHSC_EN;

    writel(cfg_data, info->regs + VF610_REG_ADC_CFG);
}

static void vf610_adc_sample_set(struct vf610_adc *info)
{
    struct vf610_adc_feature *adc_feature = &(info->adc_feature);
    int cfg_data, gc_data;

    cfg_data = readl(info->regs + VF610_REG_ADC_CFG);
    gc_data = readl(info->regs + VF610_REG_ADC_GC);

    /* resolution mode */
    cfg_data &= ~VF610_ADC_MODE_MASK;
    switch (adc_feature->res_mode) {
    case 8:
        cfg_data |= VF610_ADC_MODE_BIT8;
        break;
    case 10:
        cfg_data |= VF610_ADC_MODE_BIT10;
        break;
    case 12:
        cfg_data |= VF610_ADC_MODE_BIT12;
        break;
    default:
        dev_err(info->dev, "error resolution mode\n");
        break;
    }

    /* clock select and clock divider */
    cfg_data &= ~(VF610_ADC_CLK_MASK | VF610_ADC_ADCCLK_MASK);
    switch (adc_feature->clk_div) {
    case 1:
        break;
    case 2:
        cfg_data |= VF610_ADC_CLK_DIV2;
        break;
    case 4:
        cfg_data |= VF610_ADC_CLK_DIV4;
        break;
    case 8:
        cfg_data |= VF610_ADC_CLK_DIV8;
        break;
    case 16:
        switch (adc_feature->clk_sel) {
        case VF610_ADCIOC_BUSCLK_SET:
            cfg_data |= VF610_ADC_BUSCLK2_SEL | VF610_ADC_CLK_DIV8;
            break;
        default:
            dev_err(info->dev, "error clk divider\n");
            break;
        }
        break;
    }

    /*
     * Set ADLSMP and ADSTS based on the Long Sample Time Adder value
     * determined.
     */
    switch (adc_feature->lst_adder_index) {
    case VF610_ADCK_CYCLES_3:
        break;
    case VF610_ADCK_CYCLES_5:
        cfg_data |= VF610_ADC_ADSTS_SHORT;
        break;
    case VF610_ADCK_CYCLES_7:
        cfg_data |= VF610_ADC_ADSTS_NORMAL;
        break;
    case VF610_ADCK_CYCLES_9:
        cfg_data |= VF610_ADC_ADSTS_LONG;
        break;
    case VF610_ADCK_CYCLES_13:
        cfg_data |= VF610_ADC_ADLSMP_LONG;
        break;
    case VF610_ADCK_CYCLES_17:
        cfg_data |= VF610_ADC_ADLSMP_LONG;
        cfg_data |= VF610_ADC_ADSTS_SHORT;
        break;
    case VF610_ADCK_CYCLES_21:
        cfg_data |= VF610_ADC_ADLSMP_LONG;
        cfg_data |= VF610_ADC_ADSTS_NORMAL;
        break;
    case VF610_ADCK_CYCLES_25:
        cfg_data |= VF610_ADC_ADLSMP_LONG;
        cfg_data |= VF610_ADC_ADSTS_NORMAL;
        break;
    default:
        dev_err(info->dev, "error in sample time select\n");
    }

    /* update hardware average selection */
    cfg_data &= ~VF610_ADC_AVGS_MASK;
    gc_data &= ~VF610_ADC_AVGEN;
    switch (adc_feature->sample_rate) {
    case VF610_ADC_SAMPLE_1:
        break;
    case VF610_ADC_SAMPLE_4:
        gc_data |= VF610_ADC_AVGEN;
        break;
    case VF610_ADC_SAMPLE_8:
        gc_data |= VF610_ADC_AVGEN;
        cfg_data |= VF610_ADC_AVGS_8;
        break;
    case VF610_ADC_SAMPLE_16:
        gc_data |= VF610_ADC_AVGEN;
        cfg_data |= VF610_ADC_AVGS_16;
        break;
    case VF610_ADC_SAMPLE_32:
        gc_data |= VF610_ADC_AVGEN;
        cfg_data |= VF610_ADC_AVGS_32;
        break;
    default:
        dev_err(info->dev,
            "error hardware sample average select\n");
    }

    writel(cfg_data, info->regs + VF610_REG_ADC_CFG);
    writel(gc_data, info->regs + VF610_REG_ADC_GC);
}

static void vf610_adc_hw_init(struct vf610_adc *info)
{
    /* CFG: Feature set */
    vf610_adc_cfg_post_set(info);
    vf610_adc_sample_set(info);

    /* adc calibration */
    vf610_adc_calibration(info);

    /* CFG: power and speed set */
    vf610_adc_cfg_set(info);
}

static int vf610_set_conversion_mode(struct iio_dev *indio_dev,
                     const struct iio_chan_spec *chan,
                     unsigned int mode)
{
    struct vf610_adc *info = iio_priv(indio_dev);

    mutex_lock(&indio_dev->mlock);
    info->adc_feature.conv_mode = mode;
    vf610_adc_calculate_rates(info);
    vf610_adc_hw_init(info);
    mutex_unlock(&indio_dev->mlock);

    return 0;
}

static int vf610_get_conversion_mode(struct iio_dev *indio_dev,
                     const struct iio_chan_spec *chan)
{
    struct vf610_adc *info = iio_priv(indio_dev);

    return info->adc_feature.conv_mode;
}

static const char * const vf610_conv_modes[] = { "normal", "high-speed",
                         "low-power" };

static const struct iio_enum vf610_conversion_mode = {
    .items = vf610_conv_modes,
    .num_items = ARRAY_SIZE(vf610_conv_modes),
    .get = vf610_get_conversion_mode,
    .set = vf610_set_conversion_mode,
};

static const struct iio_chan_spec_ext_info vf610_ext_info[] = {
    IIO_ENUM("conversion_mode", IIO_SHARED_BY_DIR, &vf610_conversion_mode),
    {},
};

#define VF610_ADC_CHAN(_idx, _chan_type) {            \
    .type = (_chan_type),                    \
    .indexed = 1,                        \
    .channel = (_idx),                    \
    .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),        \
    .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |    \
                BIT(IIO_CHAN_INFO_SAMP_FREQ),    \
    .ext_info = vf610_ext_info,                \
    .scan_index = (_idx),            \
    .scan_type = {                    \
        .sign = 'u',                \
        .realbits = 12,                \
        .storagebits = 16,            \
    },                        \
}

#define VF610_ADC_TEMPERATURE_CHAN(_idx, _chan_type) {    \
    .type = (_chan_type),    \
    .channel = (_idx),        \
    .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),    \
    .scan_index = (_idx),                    \
    .scan_type = {                        \
        .sign = 'u',                    \
        .realbits = 12,                    \
        .storagebits = 16,                \
    },                            \
}

static const struct iio_chan_spec vf610_adc_iio_channels[] = {
    VF610_ADC_CHAN(0, IIO_VOLTAGE),
    VF610_ADC_CHAN(1, IIO_VOLTAGE),
    VF610_ADC_CHAN(2, IIO_VOLTAGE),
    VF610_ADC_CHAN(3, IIO_VOLTAGE),
    VF610_ADC_CHAN(4, IIO_VOLTAGE),
    VF610_ADC_CHAN(5, IIO_VOLTAGE),
    VF610_ADC_CHAN(6, IIO_VOLTAGE),
    VF610_ADC_CHAN(7, IIO_VOLTAGE),
    VF610_ADC_CHAN(8, IIO_VOLTAGE),
    VF610_ADC_CHAN(9, IIO_VOLTAGE),
    VF610_ADC_CHAN(10, IIO_VOLTAGE),
    VF610_ADC_CHAN(11, IIO_VOLTAGE),
    VF610_ADC_CHAN(12, IIO_VOLTAGE),
    VF610_ADC_CHAN(13, IIO_VOLTAGE),
    VF610_ADC_CHAN(14, IIO_VOLTAGE),
    VF610_ADC_CHAN(15, IIO_VOLTAGE),
    VF610_ADC_TEMPERATURE_CHAN(26, IIO_TEMP),
    IIO_CHAN_SOFT_TIMESTAMP(32),
    /* sentinel */
};

static int vf610_adc_read_data(struct vf610_adc *info)
{
    int result;

    result = readl(info->regs + VF610_REG_ADC_R0);

    switch (info->adc_feature.res_mode) {
    case 8:
        result &= 0xFF;
        break;
    case 10:
        result &= 0x3FF;
        break;
    case 12:
        result &= 0xFFF;
        break;
    default:
        break;
    }

    return result;
}

static irqreturn_t vf610_adc_isr(int irq, void *dev_id)
{
    struct iio_dev *indio_dev = dev_id;
    struct vf610_adc *info = iio_priv(indio_dev);
    int coco;

#if 1 //TEST: wake up for low battery signal
    dev_err(info->dev, "ISR\n");
    //pm_wakeup_event(info->dev->parent, 0);
    pm_stay_awake(info->dev->parent);
#endif

    coco = readl(info->regs + VF610_REG_ADC_HS);
    if (coco & VF610_ADC_HS_COCO0) {
        info->value = vf610_adc_read_data(info);
        if (iio_buffer_enabled(indio_dev)) {
            info->buffer[0] = info->value;
            iio_push_to_buffers_with_timestamp(indio_dev,
                    info->buffer,
                    iio_get_time_ns(indio_dev));
            iio_trigger_notify_done(indio_dev->trig);
        } else
            complete(&info->completion);
    }

    return IRQ_HANDLED;
}

static ssize_t vf610_show_samp_freq_avail(struct device *dev,
                struct device_attribute *attr, char *buf)
{
    struct vf610_adc *info = iio_priv(dev_to_iio_dev(dev));
    size_t len = 0;
    int i;

    for (i = 0; i < ARRAY_SIZE(info->sample_freq_avail); i++)
        len += scnprintf(buf + len, PAGE_SIZE - len,
            "%u ", info->sample_freq_avail[i]);

    /* replace trailing space by newline */
    buf[len - 1] = '\n';

    return len;
}

static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(vf610_show_samp_freq_avail);

static struct attribute *vf610_attributes[] = {
    &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
    NULL
};

static const struct attribute_group vf610_attribute_group = {
    .attrs = vf610_attributes,
};

static int vf610_read_raw(struct iio_dev *indio_dev,
            struct iio_chan_spec const *chan,
            int *val,
            int *val2,
            long mask)
{
    struct vf610_adc *info = iio_priv(indio_dev);
    unsigned int hc_cfg;
    long ret;

    switch (mask) {
    case IIO_CHAN_INFO_RAW:
    case IIO_CHAN_INFO_PROCESSED:
        mutex_lock(&indio_dev->mlock);
        if (iio_buffer_enabled(indio_dev)) {
            mutex_unlock(&indio_dev->mlock);
            return -EBUSY;
        }

        reinit_completion(&info->completion);
        hc_cfg = VF610_ADC_ADCHC(chan->channel);
        hc_cfg |= VF610_ADC_AIEN;
        writel(hc_cfg, info->regs + VF610_REG_ADC_HC0);
        ret = wait_for_completion_interruptible_timeout
                (&info->completion, VF610_ADC_TIMEOUT);
        if (ret == 0) {
            mutex_unlock(&indio_dev->mlock);
            return -ETIMEDOUT;
        }
        if (ret < 0) {
            mutex_unlock(&indio_dev->mlock);
            return ret;
        }

        switch (chan->type) {
        case IIO_VOLTAGE:
            *val = info->value;
            break;
        case IIO_TEMP:
            /*
             * Calculate in degree Celsius times 1000
             * Using the typical sensor slope of 1.84 mV/°C
             * and VREFH_ADC at 3.3V, V at 25°C of 699 mV
             */
            *val = 25000 - ((int)info->value - VF610_VTEMP25_3V3) *
                    1000000 / VF610_TEMP_SLOPE_COEFF;

            break;
        default:
            mutex_unlock(&indio_dev->mlock);
            return -EINVAL;
        }

        mutex_unlock(&indio_dev->mlock);
        return IIO_VAL_INT;

    case IIO_CHAN_INFO_SCALE:
        *val = info->vref_uv / 1000;
        *val2 = info->adc_feature.res_mode;
        return IIO_VAL_FRACTIONAL_LOG2;

    case IIO_CHAN_INFO_SAMP_FREQ:
        *val = info->sample_freq_avail[info->adc_feature.sample_rate];
        *val2 = 0;
        return IIO_VAL_INT;

    default:
        break;
    }

    return -EINVAL;
}

static int vf610_write_raw(struct iio_dev *indio_dev,
            struct iio_chan_spec const *chan,
            int val,
            int val2,
            long mask)
{
    struct vf610_adc *info = iio_priv(indio_dev);
    int i;

    switch (mask) {
    case IIO_CHAN_INFO_SAMP_FREQ:
        for (i = 0;
            i < ARRAY_SIZE(info->sample_freq_avail);
            i++)
            if (val == info->sample_freq_avail[i]) {
                info->adc_feature.sample_rate = i;
                vf610_adc_sample_set(info);
                return 0;
            }
        break;

    default:
        break;
    }

    return -EINVAL;
}

static int vf610_adc_buffer_postenable(struct iio_dev *indio_dev)
{
    struct vf610_adc *info = iio_priv(indio_dev);
    unsigned int channel;
    int ret;
    int val;

    ret = iio_triggered_buffer_postenable(indio_dev);
    if (ret)
        return ret;

    val = readl(info->regs + VF610_REG_ADC_GC);
    val |= VF610_ADC_ADCON;
    writel(val, info->regs + VF610_REG_ADC_GC);

    channel = find_first_bit(indio_dev->active_scan_mask,
                        indio_dev->masklength);

    val = VF610_ADC_ADCHC(channel);
    val |= VF610_ADC_AIEN;

    writel(val, info->regs + VF610_REG_ADC_HC0);

    return 0;
}

static int vf610_adc_buffer_predisable(struct iio_dev *indio_dev)
{
    struct vf610_adc *info = iio_priv(indio_dev);
    unsigned int hc_cfg = 0;
    int val;

    val = readl(info->regs + VF610_REG_ADC_GC);
    val &= ~VF610_ADC_ADCON;
    writel(val, info->regs + VF610_REG_ADC_GC);

    hc_cfg |= VF610_ADC_CONV_DISABLE;
    hc_cfg &= ~VF610_ADC_AIEN;

    writel(hc_cfg, info->regs + VF610_REG_ADC_HC0);

    return iio_triggered_buffer_predisable(indio_dev);
}

static const struct iio_buffer_setup_ops iio_triggered_buffer_setup_ops = {
    .postenable = &vf610_adc_buffer_postenable,
    .predisable = &vf610_adc_buffer_predisable,
    .validate_scan_mask = &iio_validate_scan_mask_onehot,
};

static int vf610_adc_reg_access(struct iio_dev *indio_dev,
            unsigned reg, unsigned writeval,
            unsigned *readval)
{
    struct vf610_adc *info = iio_priv(indio_dev);

    if ((readval == NULL) ||
        ((reg % 4) || (reg > VF610_REG_ADC_PCTL)))
        return -EINVAL;

    *readval = readl(info->regs + reg);

    return 0;
}

static const struct iio_info vf610_adc_iio_info = {
    .driver_module = THIS_MODULE,
    .read_raw = &vf610_read_raw,
    .write_raw = &vf610_write_raw,
    .debugfs_reg_access = &vf610_adc_reg_access,
    .attrs = &vf610_attribute_group,
};

static const struct of_device_id vf610_adc_match[] = {
    { .compatible = "fsl,vf610-adc", },
    { /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, vf610_adc_match);

static int vf610_adc_probe(struct platform_device *pdev)
{
    struct vf610_adc *info;
    struct iio_dev *indio_dev;
    struct resource *mem;
    int irq;
    int ret;
    u32 channels;

    indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct vf610_adc));
    if (!indio_dev) {
        dev_err(&pdev->dev, "Failed allocating iio device\n");
        return -ENOMEM;
    }

    info = iio_priv(indio_dev);
    info->dev = &pdev->dev;

    mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    info->regs = devm_ioremap_resource(&pdev->dev, mem);
    if (IS_ERR(info->regs))
        return PTR_ERR(info->regs);

    irq = platform_get_irq(pdev, 0);
    if (irq < 0) {
        dev_err(&pdev->dev, "no irq resource?\n");
        return irq;
    }

    ret = devm_request_irq(info->dev, irq,
                vf610_adc_isr, 0,
                dev_name(&pdev->dev), indio_dev);
    if (ret < 0) {
        dev_err(&pdev->dev, "failed requesting irq, irq = %d\n", irq);
        return ret;
    }
#if 1 //TEST: wake up for low battery signal
    info->irq = irq;
    ret = device_init_wakeup(info->dev, true);
    dev_err(&pdev->dev, "ret1=%d\n", ret);
    //ret = dev_pm_set_wake_irq(info->dev, irq);
    //ret = enable_irq_wake(info->irq);
    //dev_err(&pdev->dev, "ret2=%d\n", ret);
#endif

    info->clk = devm_clk_get(&pdev->dev, "adc");
    if (IS_ERR(info->clk)) {
        dev_err(&pdev->dev, "failed getting clock, err = %ld\n",
                        PTR_ERR(info->clk));
        return PTR_ERR(info->clk);
    }

    info->vref = devm_regulator_get(&pdev->dev, "vref");
    if (IS_ERR(info->vref))
        return PTR_ERR(info->vref);

    ret = regulator_enable(info->vref);
    if (ret)
        return ret;

    info->vref_uv = regulator_get_voltage(info->vref);

    of_property_read_u32_array(pdev->dev.of_node, "fsl,adck-max-frequency",
            info->max_adck_rate, 3);

    ret = of_property_read_u32(pdev->dev.of_node, "min-sample-time",
            &info->adc_feature.default_sample_time);
    if (ret)
        info->adc_feature.default_sample_time = DEFAULT_SAMPLE_TIME;

    platform_set_drvdata(pdev, indio_dev);

    init_completion(&info->completion);

    ret  = of_property_read_u32(pdev->dev.of_node,
                    "num-channels", &channels);
    if (ret)
        channels = ARRAY_SIZE(vf610_adc_iio_channels);

    indio_dev->name = dev_name(&pdev->dev);
    indio_dev->dev.parent = &pdev->dev;
    indio_dev->dev.of_node = pdev->dev.of_node;
    indio_dev->info = &vf610_adc_iio_info;
    indio_dev->modes = INDIO_DIRECT_MODE;
    indio_dev->channels = vf610_adc_iio_channels;
    indio_dev->num_channels = (int)channels;

    ret = clk_prepare_enable(info->clk);
    if (ret) {
        dev_err(&pdev->dev,
            "Could not prepare or enable the clock.\n");
        goto error_adc_clk_enable;
    }

    vf610_adc_cfg_init(info);
    vf610_adc_hw_init(info);

    ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
                    NULL, &iio_triggered_buffer_setup_ops);
    if (ret < 0) {
        dev_err(&pdev->dev, "Couldn't initialise the buffer\n");
        goto error_iio_device_register;
    }

    ret = iio_device_register(indio_dev);
    if (ret) {
        dev_err(&pdev->dev, "Couldn't register the device.\n");
        goto error_adc_buffer_init;
    }

    return 0;

error_adc_buffer_init:
    iio_triggered_buffer_cleanup(indio_dev);
error_iio_device_register:
    clk_disable_unprepare(info->clk);
error_adc_clk_enable:
    regulator_disable(info->vref);

    return ret;
}

static int vf610_adc_remove(struct platform_device *pdev)
{
    struct iio_dev *indio_dev = platform_get_drvdata(pdev);
    struct vf610_adc *info = iio_priv(indio_dev);

    iio_device_unregister(indio_dev);
    iio_triggered_buffer_cleanup(indio_dev);
    regulator_disable(info->vref);
    clk_disable_unprepare(info->clk);

    return 0;
}

#ifdef CONFIG_PM_SLEEP
static int vf610_adc_suspend(struct device *dev)
{
    struct iio_dev *indio_dev = dev_get_drvdata(dev);
    struct vf610_adc *info = iio_priv(indio_dev);
    int hc_cfg;

    /* ADC controller enters to stop mode */
    hc_cfg = readl(info->regs + VF610_REG_ADC_HC0);
    hc_cfg |= VF610_ADC_CONV_DISABLE;
    writel(hc_cfg, info->regs + VF610_REG_ADC_HC0);

#if 1 //TEST: wake up for low battery signal
    dev_err(info->dev, "setting wake-up\n");
    dev_err(info->dev, "r0=%x\n", readl(info->regs + VF610_REG_ADC_R0));
    writel(0x0927, info->regs + VF610_REG_ADC_CV);
    int cfg_data = readl(info->regs + VF610_REG_ADC_CFG);
    cfg_data |= VF610_ADC_ADACK_SEL | VF610_ADC_ADLSMP_LONG;
    writel(cfg_data, info->regs + VF610_REG_ADC_CFG);
    int gc_data = readl(info->regs + VF610_REG_ADC_GC);
    gc_data = VF610_ADC_ADACKEN | VF610_ADC_ACFE | VF610_ADC_ADCON;
    writel(gc_data, info->regs + VF610_REG_ADC_GC);
    hc_cfg = VF610_ADC_ADCHC(8) | VF610_ADC_AIEN;
    writel(hc_cfg, info->regs + VF610_REG_ADC_HC0);
    enable_irq_wake(info->irq);
    
    /*
    dev_err(info->dev, "irq=%x\n", info->irq);
    dev_err(info->dev, "cfg=%x\n", readl(info->regs + VF610_REG_ADC_CFG));
    dev_err(info->dev, "gc=%x\n", readl(info->regs + VF610_REG_ADC_GC));
    dev_err(info->dev, "hc=%x\n", readl(info->regs + VF610_REG_ADC_HC0));
    dev_err(info->dev, "cv=%x\n", readl(info->regs + VF610_REG_ADC_CV));
    */
#endif
#if 1 //TEST: wake up for low battery signal
    clk_disable_unprepare(info->clk);
    regulator_disable(info->vref);
#endif

    return 0;
}

static int vf610_adc_resume(struct device *dev)
{
    struct iio_dev *indio_dev = dev_get_drvdata(dev);
    struct vf610_adc *info = iio_priv(indio_dev);
    int ret;

#if 1 //TEST: wake up for low battery signal
    ret = regulator_enable(info->vref);
    if (ret)
        return ret;

    ret = clk_prepare_enable(info->clk);
    if (ret)
        goto disable_reg;
#endif
#if 1 //TEST: wake up for low battery signal
    dev_err(info->dev, "unsetting wake-up\n");
    disable_irq_wake(info->irq);
    writel(0, info->regs + VF610_REG_ADC_CV);

    int hc_cfg;

    /* ADC controller enters to stop mode */
    hc_cfg = readl(info->regs + VF610_REG_ADC_HC0);
    hc_cfg |= VF610_ADC_CONV_DISABLE;
    writel(hc_cfg, info->regs + VF610_REG_ADC_HC0);
#endif

    vf610_adc_hw_init(info);

    return 0;

disable_reg:
    regulator_disable(info->vref);
    return ret;
}
#endif

static SIMPLE_DEV_PM_OPS(vf610_adc_pm_ops, vf610_adc_suspend, vf610_adc_resume);

static struct platform_driver vf610_adc_driver = {
    .probe          = vf610_adc_probe,
    .remove         = vf610_adc_remove,
    .driver         = {
        .name   = DRIVER_NAME,
        .of_match_table = vf610_adc_match,
        .pm     = &vf610_adc_pm_ops,
    },
};

module_platform_driver(vf610_adc_driver);

MODULE_AUTHOR("Fugang Duan <B38611@freescale.com>");
MODULE_DESCRIPTION("Freescale VF610 ADC driver");
MODULE_LICENSE("GPL v2");

===============================================================

0 Kudos

1,617 Views
art
NXP Employee
NXP Employee

Does the ADC Compare function produce the interrupt correctly in the Run mode? Is the ADC interrupt enabled as the wake-up source from the low power mode? Does the ADC clock still run (is not gated) in the low power mode? Please double-check.

Best Regards,

Artur

0 Kudos

1,617 Views
enginlee
Contributor II

Does the ADC Compare function produce the interrupt correctly in the Run mode?

=> Yes, I can see "ISR" printed in my modified code.

Is the ADC interrupt enabled as the wake-up source from the low power mode?
=> Yes, I added "enable_irq_wake()" in my modified code.

Does the ADC clock still run (is not gated) in the low power mode?

=> How to confirm that? I assumed VDDA_ADC_3P3 power source enable ADACK clock generator? Am I right?

Thanks,

-Engin

0 Kudos

1,617 Views
art
NXP Employee
NXP Employee

Check which clock is selected as main operational clock in the ADC_CFG[ADICLK] field. These are ADC_CFG[1:0] bits and they should be 11 to select ADACK as the main operational clock.

Artur

0 Kudos

1,617 Views
enginlee
Contributor II

I can confirm ADACK was been selected. As you can see in my source code:

   cfg_data |= VF610_ADC_ADACK_SEL | VF610_ADC_ADLSMP_LONG;
    writel(cfg_data, info->regs + VF610_REG_ADC_CFG);

0 Kudos

1,617 Views
art
NXP Employee
NXP Employee

Please try the following.

1. Configure ADC to run from ADACK and set up the Compare function.

2. Put the processor to the low power mode.

3. Put the ADC input to the state in which the Compare condition should be met.

4. Wake up the processor from the low power mode.

5. Check whether the ADC_HS[COCO] bit is set.

0 Kudos

1,617 Views
enginlee
Contributor II

I have followed your steps, but it is still failed.

There are some guys had the same question in this forum, but it seems no one can make it so far.

It would be helpful if you can provide example code for this.

Thank you.

0 Kudos

1,617 Views
art
NXP Employee
NXP Employee

After following the steps above, do you finally see the ADC_HS[COCO] bit set or not?

0 Kudos