How to use the object detection model trained by eiq on imx8mp board or pc?

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

How to use the object detection model trained by eiq on imx8mp board or pc?

1,231 次查看
taotaowang
Contributor I

Hello,

I trained a model according with "eIQ_Toolkit_UG.pdf" followed below routine. 

import my dataset -> select model -> detection -> balanced -> npu -> trainer -> validate -> deploy -> export model -> tensorflow lite model saved.

Below is the validate result. 

taotaowang_0-1696902574578.png

below is the export model sumarry.

taotaowang_1-1696902783100.png

Model property is like below.

taotaowang_2-1696902857616.png

As upper properties display, this model output name is StatefulPartitionedCall and type is float32[1,2034,7] , But where can i get the output_data defination?  How can i use this model in my inference program?

In my inference program i used below codes to get the inference result but it seems not correct.

 

  output_data = interpreter.get_tensor(output_details[0]['index'])
  print(output_data)
  for i in range(output_data.shape[1]):
        score = output_data[0][i][0]
        class_id = output_data[0][i][1]
        x_min = output_data[0][i][2]
        y_min = output_data[0][i][3]
        x_max = output_data[0][i][4]
        y_max = output_data[0][i][5]
        other = output_data[0][i][6]
 
Please give me some advises about the eiq detection model inference realization.
 
Thanks !
Taotao Wang

 

 

0 项奖励
回复
2 回复数

278 次查看
jake4
Contributor I

Hi @Zhiming_Liu 

In the  eIQ Documentationcouldnt find this information.

We use the eiqtool for training a object_detection model with mobilenet ssd v3 for a imx8mp NPU.

The example given in eIQ_Toolkit_v1.16.0\workspace\models\mobilenet_ssd_v3\mobilenet_ssd_v3.ipynb

the inference is done by using the RTview and tensorflow, which our imx8mp we dont want to include . We would like to use the tensorflow lite inference.

We get a output of tensor (Since I have 1 class ) 

name: StatefulPartitionedCall:0
tensor: float32[1,2034,6]
location: 392
 

By splitting into scores and bounding box for each (1, 2034, 2), (1, 2034, 4)

And then follow the output treatment as in mobilenet_ssd_v3.ipynb, we dont get the bounding boxes and the scores as expected.

So wondering, whats the output format signature is?

We could guess (from https://community.nxp.com/t5/eIQ-Machine-Learning-Software/How-to-interpret-the-output-from-a-mobile...

The model predicts 2034 detections per class. The [1,2034,4] tensor corresponds to the box locations in terms of pixels [top, left, bottom, right] of the objects detected.

And [1,2034,2] tensor corresponds to scores of our class and background.

 

We couldnt get a correct meaningful output from the model trained by the eiq tool, which seem to follow a unique way of combining the outputs bounding boxes, that can be only interpreted by the rtview engine. But can we have a detailed explanation of the output. And example to show without using rtview or tensorflow libs?

Thanks.

标记 (1)
0 项奖励
回复

1,174 次查看
Zhiming_Liu
NXP TechSupport
NXP TechSupport

Please refer the eIQ document with HELP-->eIQ Documentation

0 项奖励
回复
%3CLINGO-SUB%20id%3D%22lingo-sub-1736135%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%E5%A6%82%E4%BD%95%E5%9C%A8%20imx8mp%20%E6%9D%BF%E6%88%96%E7%94%B5%E8%84%91%E4%B8%8A%E4%BD%BF%E7%94%A8%20eiq%20%E8%AE%AD%E7%BB%83%E7%9A%84%E7%89%A9%E4%BD%93%E6%A3%80%E6%B5%8B%E6%A8%A1%E5%9E%8B%EF%BC%9F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-1736135%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%3CP%3E%E4%BD%A0%E5%A5%BD%3C%2FP%3E%3CP%3E%E6%88%91%E6%A0%B9%E6%8D%AE%22eIQ_Toolkit_UG.pdf%22%20%E6%8C%89%E7%85%A7%E4%BB%A5%E4%B8%8B%E6%AD%A5%E9%AA%A4%E8%AE%AD%E7%BB%83%E4%BA%86%E4%B8%80%E4%B8%AA%E6%A8%A1%E5%9E%8B%E3%80%82%20%3C%2FP%3E%3CP%3Eimport%20my%20dataset%20-%26gt%3B%20select%20model%20-%26gt%3B%20detection%20-%26gt%3B%20balanced%20-%26gt%3B%20npu%20-%26gt%3B%20trainer%20-%26gt%3B%20validate%20-%26gt%3B%20deploy%20-%26gt%3B%20export%20model%20-%26gt%3B%20tensorflow%20lite%20model%20saved.%3C%2FP%3E%3CP%3E%E4%BB%A5%E4%B8%8B%E6%98%AF%E9%AA%8C%E8%AF%81%E7%BB%93%E6%9E%9C%E3%80%82%20%3C%2FP%3E%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22taotaowang_0-1696902574578.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22taotaowang_0-1696902574578.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.nxp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F244193iBAC19A2C9A259C10%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22taotaowang_0-1696902574578.png%22%20alt%3D%22taotaowang_0-1696902574578.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%3CP%3E%E4%B8%8B%E9%9D%A2%E6%98%AF%E5%87%BA%E5%8F%A3%E6%A8%A1%E5%BC%8F%20sumarry%E3%80%82%3C%2FP%3E%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22taotaowang_1-1696902783100.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22taotaowang_1-1696902783100.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.nxp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F244194iFB1952283A999213%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22taotaowang_1-1696902783100.png%22%20alt%3D%22taotaowang_1-1696902783100.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%3CP%3E%E6%A0%B7%E6%9D%BF%E6%88%BF%E5%A6%82%E4%B8%8B%E3%80%82%3C%2FP%3E%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22taotaowang_2-1696902857616.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22taotaowang_2-1696902857616.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.nxp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F244195iDD439CE97B54A530%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22taotaowang_2-1696902857616.png%22%20alt%3D%22taotaowang_2-1696902857616.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%3CP%3E%E5%9C%A8%E4%B8%8A%E9%83%A8%E5%B1%9E%E6%80%A7%E6%98%BE%E7%A4%BA%E4%B8%AD%EF%BC%8C%E8%AF%A5%E6%A8%A1%E5%9E%8B%E7%9A%84%E8%BE%93%E5%87%BA%E5%90%8D%E7%A7%B0%E6%98%AF%3CSTRONG%3EStatefulPartitionedCall%EF%BC%8C%E7%B1%BB%E5%9E%8B%E6%98%AF%20float32%5B1%2C2034%2C7%5D%20%EF%BC%8C%E4%BD%86%E6%88%91%E4%BB%8E%E5%93%AA%E9%87%8C%E5%8F%AF%E4%BB%A5%E8%8E%B7%E5%BE%97%20output_data%20%E7%9A%84%E5%AE%9A%E4%B9%89%EF%BC%9F%20%20%E5%A6%82%E4%BD%95%E5%9C%A8%E6%8E%A8%E7%90%86%E7%A8%8B%E5%BA%8F%E4%B8%AD%E4%BD%BF%E7%94%A8%E8%AF%A5%E6%A8%A1%E5%9E%8B%EF%BC%9F%3C%2FSTRONG%3E%3C%2FP%3E%3CP%3E%3CSTRONG%3E%E5%9C%A8%E6%88%91%E7%9A%84%E6%8E%A8%E7%90%86%E7%A8%8B%E5%BA%8F%E4%B8%AD%EF%BC%8C%E6%88%91%E7%94%A8%E4%B8%8B%E9%9D%A2%E7%9A%84%E4%BB%A3%E7%A0%81%E5%BE%97%E5%88%B0%E4%BA%86%E6%8E%A8%E7%90%86%E7%BB%93%E6%9E%9C%EF%BC%8C%E4%BD%86%E4%BC%BC%E4%B9%8E%E5%B9%B6%E4%B8%8D%E6%AD%A3%E7%A1%AE%E3%80%82%3C%2FSTRONG%3E%3C%2FP%3E%3CBR%20%2F%3E%3CDIV%3E%3CDIV%3E%3CSPAN%3E%20%20%3C%2FSPAN%3E%3CSPAN%3E%E8%BE%93%E5%87%BA%E6%95%B0%E6%8D%AE%3C%2FSPAN%3E%3CSPAN%3E%3D%20%3C%2FSPAN%3E%3CSPAN%3E%E8%A7%A3%E9%87%8A%E5%99%A8%3C%2FSPAN%3E%3CSPAN%3E.get_tensor(%3C%2FSPAN%3E%3CSPAN%3Eoutput_details%3C%2FSPAN%3E%3CSPAN%3E%5B%3C%2FSPAN%3E%3CSPAN%3E0%3C%2FSPAN%3E%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%3CSPAN%3E'%E7%B4%A2%E5%BC%95%3C%2FSPAN%3E%3CSPAN%3E%5D)%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%20%20%3C%2FSPAN%3E%3CSPAN%3E%E6%89%93%E5%8D%B0%3C%2FSPAN%3E%3CSPAN%3E(%3C%2FSPAN%3E%3CSPAN%3E%E8%BE%93%E5%87%BA%E6%95%B0%E6%8D%AE%3C%2FSPAN%3E%3CSPAN%3E)%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%20%20%3C%2FSPAN%3E%3CSPAN%3E%E4%B8%BA%3C%2FSPAN%3E%20%3CSPAN%3Ei%3C%2FSPAN%3E%20%3CSPAN%3E%E5%9C%A8%3C%2FSPAN%3E%20%3CSPAN%3E%E8%8C%83%E5%9B%B4%3C%2FSPAN%3E%3CSPAN%3E(%3C%2FSPAN%3E%3CSPAN%3E%E8%BE%93%E5%87%BA%E6%95%B0%E6%8D%AE%3C%2FSPAN%3E%3CSPAN%3E.shape%5B%3C%2FSPAN%3E%3CSPAN%3E1%3C%2FSPAN%3E%3CSPAN%3E%5D)%3A%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%20%20%20%20%20%20%20%20%3C%2FSPAN%3E%3CSPAN%3E%E5%BE%97%E5%88%86%3C%2FSPAN%3E%3CSPAN%3E%3D%20%3C%2FSPAN%3E%3CSPAN%3E%E8%BE%93%E5%87%BA%E6%95%B0%E6%8D%AE%3C%2FSPAN%3E%3CSPAN%3E%5B%3C%2FSPAN%3E%3CSPAN%3E0%3C%2FSPAN%3E%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%3CSPAN%3Ei%3C%2FSPAN%3E%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%3CSPAN%3E0%3C%2FSPAN%3E%3CSPAN%3E%5D%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%20%20%20%20%20%20%20%20%3C%2FSPAN%3E%3CSPAN%3Eclass_id%3C%2FSPAN%3E%3CSPAN%3E%3D%20%3C%2FSPAN%3E%3CSPAN%3E%E8%BE%93%E5%87%BA%E6%95%B0%E6%8D%AE%3C%2FSPAN%3E%3CSPAN%3E%5B%3C%2FSPAN%3E%3CSPAN%3E0%3C%2FSPAN%3E%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%3CSPAN%3Ei%3C%2FSPAN%3E%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%3CSPAN%3E1%3C%2FSPAN%3E%3CSPAN%3E%5D%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%20%20%20%20%20%20%20%20%3C%2FSPAN%3E%3CSPAN%3Ex_min%3C%2FSPAN%3E%3CSPAN%3E%3D%20%3C%2FSPAN%3E%3CSPAN%3E%E8%BE%93%E5%87%BA%E6%95%B0%E6%8D%AE%3C%2FSPAN%3E%3CSPAN%3E%5B%3C%2FSPAN%3E%3CSPAN%3E0%3C%2FSPAN%3E%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%3CSPAN%3Ei%3C%2FSPAN%3E%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%3CSPAN%3E2%3C%2FSPAN%3E%3CSPAN%3E%5D%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%20%20%20%20%20%20%20%20%3C%2FSPAN%3E%3CSPAN%3Ey_min%3C%2FSPAN%3E%3CSPAN%3E%3D%20%3C%2FSPAN%3E%3CSPAN%3E%E8%BE%93%E5%87%BA%E6%95%B0%E6%8D%AE%3C%2FSPAN%3E%3CSPAN%3E%5B%3C%2FSPAN%3E%3CSPAN%3E0%3C%2FSPAN%3E%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%3CSPAN%3Ei%3C%2FSPAN%3E%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%3CSPAN%3E3%3C%2FSPAN%3E%3CSPAN%3E%5D%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%20%20%20%20%20%20%20%20%3C%2FSPAN%3E%3CSPAN%3Ex_max%3C%2FSPAN%3E%3CSPAN%3E%3D%20%3C%2FSPAN%3E%3CSPAN%3E%E8%BE%93%E5%87%BA%E6%95%B0%E6%8D%AE%3C%2FSPAN%3E%3CSPAN%3E%5B%3C%2FSPAN%3E%3CSPAN%3E0%3C%2FSPAN%3E%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%3CSPAN%3Ei%3C%2FSPAN%3E%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%3CSPAN%3E4%3C%2FSPAN%3E%3CSPAN%3E%5D%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%20%20%20%20%20%20%20%20%3C%2FSPAN%3E%3CSPAN%3Ey_max%3C%2FSPAN%3E%3CSPAN%3E%3D%20%3C%2FSPAN%3E%3CSPAN%3E%E8%BE%93%E5%87%BA%E6%95%B0%E6%8D%AE%3C%2FSPAN%3E%3CSPAN%3E%5B%3C%2FSPAN%3E%3CSPAN%3E0%3C%2FSPAN%3E%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%3CSPAN%3Ei%3C%2FSPAN%3E%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%3CSPAN%3E5%3C%2FSPAN%3E%3CSPAN%3E%5D%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%20%20%20%20%20%20%20%20%3C%2FSPAN%3E%3CSPAN%3E%E5%85%B6%E4%BB%96%3C%2FSPAN%3E%3CSPAN%3E%3D%20%3C%2FSPAN%3E%3CSPAN%3E%E8%BE%93%E5%87%BA%E6%95%B0%E6%8D%AE%3C%2FSPAN%3E%3CSPAN%3E%5B%3C%2FSPAN%3E%3CSPAN%3E0%3C%2FSPAN%3E%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%3CSPAN%3Ei%3C%2FSPAN%3E%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%3CSPAN%3E6%3C%2FSPAN%3E%3CSPAN%3E%5D%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%26nbsp%3B%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%E8%AF%B7%E7%BB%99%E6%88%91%E4%B8%80%E4%BA%9B%E5%85%B3%E4%BA%8E%20eiq%20%E6%A3%80%E6%B5%8B%E6%A8%A1%E5%9E%8B%E6%8E%A8%E7%90%86%E5%AE%9E%E7%8E%B0%E7%9A%84%E5%BB%BA%E8%AE%AE%E3%80%82%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%26nbsp%3B%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%E8%B0%A2%E8%B0%A2%E6%82%A8%EF%BC%81%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%E7%8E%8B%E6%B6%9B%E6%B6%9B%3C%2FSPAN%3E%3C%2FDIV%3E%3C%2FDIV%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-2148289%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%20translate%3D%22no%22%3ERe%3A%20How%20to%20use%20the%20object%20detection%20model%20trained%20by%20eiq%20on%20imx8mp%20board%20or%20pc%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-2148289%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%3CP%3E%E4%BD%A0%E5%A5%BD%3CA%20href%3D%22https%3A%2F%2Fcommunity.nxp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F151788%22%20target%3D%22_blank%22%3E%40%E5%88%98%E5%BF%97%E6%98%8E%3C%2FA%3E%3C%2FP%3E%3CP%3E%E5%9C%A8%3CSTRONG%3EeIQ%20%E6%96%87%E6%A1%A3%3C%2FSTRONG%3E%E4%B8%AD%E6%89%BE%E4%B8%8D%E5%88%B0%E8%BF%99%E4%B8%80%E4%BF%A1%E6%81%AF%E3%80%82%3C%2FP%3E%3CP%3E%E6%88%91%E4%BB%AC%E4%BD%BF%E7%94%A8%20eiqtool%20%E5%9C%A8%20imx8mp%20NPU%20%E4%B8%8A%E4%BD%BF%E7%94%A8%20mobilenet%20ssd%20v3%20%E8%AE%AD%E7%BB%83%E5%AF%B9%E8%B1%A1%E6%A3%80%E6%B5%8B%E6%A8%A1%E5%9E%8B%E3%80%82%3C%2FP%3E%3CP%3EeIQ_Toolkit_v1.16.0%5Cworkspace%5Cmodels%5Cmobilenet_ssd_v3%5Cmobilenet_ssd_v3.ipynb%20%E4%B8%AD%E7%BB%99%E5%87%BA%E7%9A%84%E7%A4%BA%E4%BE%8B%3C%2FP%3E%3CP%3E%E6%8E%A8%E7%90%86%E6%98%AF%E9%80%9A%E8%BF%87%E4%BD%BF%E7%94%A8%20RTview%20%E5%92%8C%20tensorflow%20%E6%9D%A5%E5%AE%8C%E6%88%90%E7%9A%84%EF%BC%8C%E8%80%8C%E6%88%91%E4%BB%AC%E7%9A%84%20imx8mp%20%E5%B9%B6%E4%B8%8D%E6%83%B3%E5%8C%85%E5%90%AB%E8%BF%99%E4%BA%9B%E5%8A%9F%E8%83%BD%E3%80%82%E6%88%91%E4%BB%AC%E5%B8%8C%E6%9C%9B%E4%BD%BF%E7%94%A8%20tensorflow%20lite%20%E6%8E%A8%E7%90%86%E3%80%82%3C%2FP%3E%3CP%3E%E6%88%91%E4%BB%AC%E5%B0%86%E5%BE%97%E5%88%B0%E5%BC%A0%E9%87%8F%E7%9A%84%E8%BE%93%E5%87%BA%E7%BB%93%E6%9E%9C%EF%BC%88%E5%9B%A0%E4%B8%BA%E6%88%91%E6%9C%89%201%20%E4%B8%AA%E7%B1%BB%E5%88%AB%EF%BC%89%20%3C%2FP%3E%3CDIV%20class%3D%22%22%3E%3CSPAN%20class%3D%22%22%3E%E5%90%8D%E7%A7%B0%EF%BC%9A%3CSTRONG%3EStatefulPartitionedCall%3A0%3C%2FSTRONG%3E%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%20class%3D%22%22%3E%E5%BC%A0%E9%87%8F%EF%BC%9A%3CSPAN%3E%20%3C%2FSPAN%3E%3CSTRONG%3Efloat32%5B1%2C2034%2C6%5D%3C%2FSTRONG%3E%3C%2FDIV%3E%3CDIV%20class%3D%22%22%3E%E5%9C%B0%E7%82%B9%EF%BC%9A%3CSPAN%3E%3C%2FSPAN%3E%3CSTRONG%3E%20392%3C%2FSTRONG%3E%3C%2FDIV%3E%3CDIV%20class%3D%22%22%3E%26nbsp%3B%3C%2FDIV%3E%3CP%3E%E9%80%9A%E8%BF%87%E5%AF%B9%E6%AF%8F%E4%B8%AA%20(1%2C%202034%2C%202)%2C%20(1%2C%202034%2C%204)%20%E5%88%86%E5%89%B2%E6%88%90%E5%88%86%E6%95%B0%E5%92%8C%E8%BE%B9%E7%95%8C%E6%A1%86%3C%2FP%3E%3CP%3E%E7%84%B6%E5%90%8E%E6%8C%89%E7%85%A7%20mobilenet_ssd_v3.ipynb%20%E4%B8%AD%E7%9A%84%E8%BE%93%E5%87%BA%E5%A4%84%E7%90%86%E3%80%81%E6%88%91%E4%BB%AC%E6%B2%A1%E6%9C%89%E5%BE%97%E5%88%B0%E9%A2%84%E6%9C%9F%E7%9A%84%E8%BE%B9%E7%95%8C%E6%A1%86%E5%92%8C%E5%88%86%E6%95%B0%E3%80%82%3C%2FP%3E%3CP%3E%E6%88%91%E6%83%B3%E7%9F%A5%E9%81%93%E8%BE%93%E5%87%BA%E6%A0%BC%E5%BC%8F%E7%AD%BE%E5%90%8D%E6%98%AF%E4%BB%80%E4%B9%88%EF%BC%9F%3C%2FP%3E%3CP%3E%E6%88%91%E4%BB%AC%E5%8F%AF%E4%BB%A5%E7%8C%9C%E6%B5%8B%EF%BC%88%3CA%20href%3D%22https%3A%2F%2Fcommunity.nxp.com%2Ft5%2FeIQ-Machine-Learning-Software%2FHow-to-interpret-the-output-from-a-mobilenet-V3-correctly%2F%22%20target%3D%22_blank%22%3E%E6%9D%A5%E8%87%AA%3C%2FA%3E%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.nxp.com%2Ft5%2FeIQ-Machine-Learning-Software%2FHow-to-interpret-the-output-from-a-mobilenet-V3-correctly%2F%EF%BC%89%22%20target%3D%22_blank%22%3Ehttps%3A%2F%2Fcommunity.nxp.com%2Ft5%2FeIQ-Machine-Learning-Software%2FHow-to-interpret-the-output-from-a-mobilenet-V3-correctly%2F%EF%BC%89%3C%2FA%3E%20%3C%2FP%3E%3CP%3E%3CSPAN%3E%E8%AF%A5%E6%A8%A1%E5%9E%8B%E9%A2%84%E6%B5%8B%E6%AF%8F%E7%B1%BB%E6%9C%89%202034%20%E6%AC%A1%E6%A3%80%E6%B5%8B%E3%80%821%2C2034%2C4%5D%E5%BC%A0%E9%87%8F%E5%AF%B9%E5%BA%94%E4%BA%8E%E4%BB%A5%E5%83%8F%E7%B4%A0%E8%A1%A8%E7%A4%BA%E7%9A%84%E6%96%B9%E6%A1%86%E4%BD%8D%E7%BD%AE%5B...%3C%2FSPAN%3E%3CSPAN%3E%E4%B8%8A%E3%80%81%E5%B7%A6%E3%80%81%E4%B8%8B%E3%80%81%E5%8F%B3%EF%BC%BD%20%3C%2FSPAN%3E%3CSPAN%3E%E7%9A%84%E6%96%B9%E6%A1%86%E4%BD%8D%E7%BD%AE%E3%80%82%3C%2FSPAN%3E%3C%2FP%3E%3CP%3E%3CSPAN%3E%E8%80%8C%20%5B1%2C2034%2C2%5D%20%E5%BC%A0%E9%87%8F%E5%88%99%E5%AF%B9%E5%BA%94%E4%BA%8E%E6%88%91%E4%BB%AC%E7%8F%AD%E7%BA%A7%E5%92%8C%E8%83%8C%E6%99%AF%E7%9A%84%E5%88%86%E6%95%B0%E3%80%82%3C%2FSPAN%3E%3C%2FP%3E%3CBR%20%2F%3E%3CP%3E%3CSPAN%3E%E6%88%91%E4%BB%AC%E6%97%A0%E6%B3%95%E4%BB%8E%20eiq%20%E5%B7%A5%E5%85%B7%E8%AE%AD%E7%BB%83%E7%9A%84%E6%A8%A1%E5%9E%8B%E4%B8%AD%E8%8E%B7%E5%BE%97%E6%9C%89%E6%84%8F%E4%B9%89%E7%9A%84%E6%AD%A3%E7%A1%AE%E8%BE%93%E5%87%BA%EF%BC%8C%E5%AE%83%E4%BC%BC%E4%B9%8E%E9%81%B5%E5%BE%AA%E4%B8%80%E7%A7%8D%E7%8B%AC%E7%89%B9%E7%9A%84%E6%96%B9%E5%BC%8F%E6%9D%A5%E7%BB%84%E5%90%88%E8%BE%93%E5%87%BA%E8%BE%B9%E6%A1%86%EF%BC%8C%E8%80%8C%E8%BF%99%E7%A7%8D%E6%96%B9%E5%BC%8F%E5%8F%AA%E8%83%BD%E7%94%B1%20rtview%20%E5%BC%95%E6%93%8E%E6%9D%A5%E8%A7%A3%E9%87%8A%E3%80%82%E4%BD%86%E6%88%91%E4%BB%AC%E8%83%BD%E5%90%A6%E5%BE%97%E5%88%B0%E6%9C%89%E5%85%B3%E8%BE%93%E5%87%BA%E7%9A%84%E8%AF%A6%E7%BB%86%E8%A7%A3%E9%87%8A%E3%80%82%E4%B8%8D%E4%BD%BF%E7%94%A8%20rtview%20%E6%88%96%20tensorflow%20%E5%BA%93%E7%9A%84%E7%A4%BA%E4%BE%8B%EF%BC%9F%3C%2FSPAN%3E%3C%2FP%3E%3CP%3E%3CSPAN%3E%E8%B0%A2%E8%B0%A2%E3%80%82%3C%2FSPAN%3E%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-1740795%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%20translate%3D%22no%22%3ERe%3A%20How%20to%20use%20the%20object%20detection%20model%20trained%20by%20eiq%20on%20imx8mp%20board%20or%20pc%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-1740795%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%3CP%3E%E8%AF%B7%E5%8F%82%E9%98%85%20eIQ%3CSTRONG%3E%E6%96%87%E6%A1%A3%3C%2FSTRONG%3E%EF%BC%88%E5%B8%A6HELP%EF%BC%89--%26gt%3BeIQ%E6%96%87%E6%A1%A3%3C%2FP%3E%3C%2FLINGO-BODY%3E