
What are these parametrs and how to modify according to pixel size.
gst-launch-1.0 --no-position v4l2src device=/dev/video3 ! \
video/x-raw,width=640,height=480,framerate=30/1! \
tee name=t t. ! queue max-size-buffers=2 leaky=2 ! \
imxvideoconvert_g2d ! video/x-raw,width=256,height=256,format=RGBA ! \
videoconvert ! video/x-raw,format=RGB ! \
tensor_converter ! \
tensor_filter framework=tensorflow-lite model=yolov5s_quant_256.tflite \
custom=Delegate:External,ExtDelegateLib:libvx_delegate.so ! \
tensor_decoder mode=bounding_boxes option1=yolov5 option2=coco_label.txt \
option4=640:480 option5=256:256 ! \
mix. t. ! queue max-size-buffers=2 ! \
imxcompositor_g2d name=mix sink_0::zorder=2 sink_1::zorder=1 ! waylandsink
What to give option2=coco_label.txt. And what are the changes done to run model at 26-30fps? or what is the best parameter to run like pixel size, yolov5 model(small,medium,nano), number of images to train, epochs.
I want to run like nxp-demo object detection example but on custom data set.