Sensors Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Sensors Knowledge Base

Discussions

Sort by:
All, We've had some problems with migration of Freescale blogs over to the NXP domain.  One set of listings that gets requested a fair bit are the postings on orientation representations.  The attached is a PDF version of the same material which will be contained in the upcoming Sensor Fusion Version 7.00 User Guide.
View full article
You saw it here first! The attached zip file contains full documentation and source code (both CodeWarrior and KDS) for Version 5 of Freescale's Sensor Fusion Library for Kinetis MCUs. The 6 and 9-axis Kalman filters have been rewritten from scratch by fusion expert Mark Pedley.  The new versions have improved dynamic tracking and at-rest stability.  All documentation has been updated, and full implementation details are included.  We continue to use the BSD 3-clause software license, so you are virtually unlimited in how you use the library.   I will note that due to the Kalman filter changes, Mark made some changes to the undocumented Kalman filter packets which are utilized by the Windows Version of the Freescale Sensor Fusion Toolbox.  This breaks compatibility with older versions of the toolbox.  I will be posting a pre-release of the new one immediately after completing this post.  The Android version of the toolbox does not make use of the Kalman filter packet, and should be forward compatible - although an updated version of that is in the works as well.   Structure of the new library is very similar to Version 4.22, which was the previous production version.  There are changes, but I don't expect anyone to have problems adapting existing projects to the new version of the library.  I think you will get improved performance if you do.   Regards, Mike Stanley
View full article
This is the 9 December 2014 build of Vibration Monitoring program written by Mark Pedley in the Sensors Solutions Division systems/algorithms team.  It is compatible with Freescale FRDM-KL25Z/KL26Z/KL46Z/K64F Freedom development platforms.  You can flash your board using the File->Flash pull-down menu.    The application contains an option for controlling motor bias and feedback via optional motor control shield to be discussed in an upcoming Freescale blog.  Use the View->Motor Controls pull-down to enable those functions.
View full article
This is a pre-release version of the Sensor Fusion Toolbox for Windows.  It is essentially the same tool you already know and love.  It differs in terms of the binary images that can be downloaded to your development board.  Clicking File->Flash from the toolbar will present you with a set up updated binaries.  These were built using a brand new set of 6- and 9-axis Kalman filter algorithms.  We expect these to consume much less power (2X or 3X) and to have better gyro tracking.  We are soliciting feedback from existing users of the toolkit with regard to performance of the new filters.  We do not expect to formally release until later in Q2, primarily to give the community time to try them and give us feedback.  We are not releasing source just yet, for the same reason.
View full article
For those of you who do not have access to Google Play, here is the latest .apk file for the Android version of the Sensor Fusion Toolbox.  This version should trap problems which caused previously reported crashes.  There are no visible changes to the functionality.   IF you have access to Google Play, we recommend that you use that as your default installer, as you can automatically get updates.
View full article
Current errata for ISF 2.1
View full article
Hi Everyone,   If you are interested in a simple bare metal example code illustrating the use of the magnetic threshold detection function, please find below one of my examples I created for the FXOS8700CQ while working with the NXP FRDM-KL25Z platform and FRDM-FXS-MULT2-B sensor expansion board.   The FXOS8700CQ is set to detect magnetic field exceeding 12.8uT (128 counts) for a minimum period of 100ms on the X-axis. Once an event is triggered, an active low interrupt will be generated on the INT1 pin:   void FXOS8700CQ_Init (void) { I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, M_THS_X_MSB_REG, 0x00); // Threshold value MSB I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, M_THS_X_LSB_REG, 0x80); // Threshold value LSB I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, M_THS_CFG_REG, 0xCB); // Event flag latch enabled, logic OR of enabled axes, only X-axis enabled, threshold interrupt enabled and routed to INT1 I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, M_THS_COUNT_REG, 0x0A); // 100ms at 100Hz ODR and magnetometer mode only I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, M_CTRL_REG1, 0x1D); // Max OSR, only magnetometer is active I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG3, 0x00); // Push-pull, active low interrupt I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG1, 0x19); // ODR = 100Hz, Active mode }‍‍‍‍‍‍‍‍‍‍     In the ISR, only the interrupt flag is cleared and the M_THS_SRC (0x53) register is read in order to clear the SRC_M_THS flag in the M_INT_SRC register and deassert the INT1 pin, as shown on the screenshot below.   void PORTD_IRQHandler() { PORTD_PCR4 |= PORT_PCR_ISF_MASK; // Clear the interrupt flag M_Ths_src=I2C_ReadRegister(FXOS8700CQ_I2C_ADDRESS, M_THS_SRC_REG); // Read the M_THS_SRC register to clear the SRC_M_THS flag in the M_INT_SRC register and deassert the INT1 pin Event_Counter++; }‍‍‍‍‍‍       Attached you can find the complete source code. If there are any questions regarding this simple example code, please feel free to ask below.    Regards, Tomas
View full article
Hi Everyone, As I am often asked for a simple bare metal example code illustrating the use of the accelerometer vector-magnitude function, I have decided to share here one of my examples I created for the FXLS8471Q accelerometer while working with the Freescale FRDM-KL25Z platform and FRDM-FXS-MULT2-B sensor expansion board. This example code complements the Python code snippet from the AN4692. The FXLS8471Q is set for detection of a change in tilt angle exceeding 17.25° from the horizontal plane. Once an event is triggered, an interrupt will be generated on the INT1 pin: void FXLS8471Q_Init (void) {      FXLS8471Q_WriteRegister(A_VECM_THS_MSB_REG, 0x84);            // Threshold value set to 300mg or ~17.25°    FXLS8471Q_WriteRegister(A_VECM_THS_LSB_REG, 0xCC);          FXLS8471Q_WriteRegister(A_VECM_CNT_REG, 0x01);                // Debounce timer period set to 80ms          FXLS8471Q_WriteRegister(A_VECM_INITX_MSB_REG, 0x00);    FXLS8471Q_WriteRegister(A_VECM_INITX_LSB_REG, 0x00);    FXLS8471Q_WriteRegister(A_VECM_INITY_MSB_REG, 0x00);    FXLS8471Q_WriteRegister(A_VECM_INITY_LSB_REG, 0x00);    FXLS8471Q_WriteRegister(A_VECM_INITZ_MSB_REG, 0x10);          // Set Z-axis to 1g  as a reference value    FXLS8471Q_WriteRegister(A_VECM_INITZ_LSB_REG, 0x00);          FXLS8471Q_WriteRegister(A_VECM_CFG_REG, 0x78);                // Event latch enabled, A_VECM_INITX/Y/Z used as initial reference, acceleration vector-magnitude detection feature enabled          FXLS8471Q_WriteRegister(CTRL_REG4, 0x02);                     // Acceleration vector-magnitude interrupt enabled    FXLS8471Q_WriteRegister(CTRL_REG5, 0x02);                     // Acceleration vector-magnitude interrupt routed to INT1 - PTA5          FXLS8471Q_WriteRegister(CTRL_REG1, 0x29);                     // ODR = 12.5Hz, Active mode } In the ISR, only the interrupt flag is cleared and the  INT_SOURCE (0x0C) register is read in order to clear the SRC_A_VECM status bit and deassert the INT1 pin, as shown on the screenshot below. void PORTA_IRQHandler() {    PORTA_PCR5 |= PORT_PCR_ISF_MASK;                              // Clear the interrupt flag    IntSource = FXLS8471Q_ReadRegister(INT_SOURCE_REG);           // Read the INT_SOURCE register to clear the SRC_A_VECM bit   } Attached you can find the complete source code. If there are any questions regarding this simple example code, please feel free to ask below. Your feedback or suggestions are also welcome. Regards, Tomas
View full article
Posted here in response to a query by Michael Smorto. Regards, Mike Stanley
View full article
Hello Freescale Community, Most of the new Freescale Sensors in our portfolio come in very small packages, some of them as small as 2x2x1mm, which is awesome! However, one of the problems that we detected last year is that many customers struggle in the evaluation stage of the project due to the small packages. They should either, buy an evaluation board or spend valuable time designing and manufacturing a PCB just for testing our devices. Our goal with this project is to share with our community the Freescale Sensors Breakout Boards we designed for this specific purpose, so you can easily manufacture your own sensor boards or modify our designs to fit  your specific application. This way you can easily evaluate Freescale sensors. The boards were designed to be used in a prototype board (DIP style pins) and they can communicate to any MCU thru IIC or SPI (depending on the sensor). These designs were made using Eagle Layout 6.5, if you want to modify the designs you can do it with the free version of Eagle CAD (for non-commercial purposes), or you can send the gerber files (included in the zip files) to your preferred PCB manufacturer. The following designs are available: + Altimeter: MPL3115A2 Breakout Board + Accelerometer: MMA845x Breakout Board MMA865x Breakout Board MMA8491 Breakout Board FXLN83xx Breakout Board FXLS8471 Breakout Board MMA690x Breakout Board + Accelerometer + Magnetometer (6-DOF): FXOS8700 Breakout Board + Gyroscope: FXAS2100x Breakout Board The above .ZIP files, contains the following design information: - Schematic Source File (.SCH) - Schematic (.PDF) - Layout Source File (.BRD) - Layout Images (.jpg) - Gerber Files (GTL, GBL, GTS, GBS, GTO, GBO, GKO, XLN). - PCB Render Image (.png created in OSH park) - BOM (.xls) Additional content: If you want to modify our designs, please download the attached library file "Freescale_Sensors_v2.lbr" and add it to your Eagle Library repository. We'll be more than glad to respond to your questions and please, let us know what you think. -Freescale Sensor's Support team.
View full article
As we develop videos on Sensor subjects for posting to QUMU and YouTube, these guidelines are a quick reminder of some important production points to remember. These lessons are relevent for any video content we develop.
View full article
Hi Everyone,   As I am often asked for a simple bare metal example code illustrating the use of the accelerometer transient detection function, I have decided to share here one of my examples I created for the FXLS8471Q accelerometer while working with the NXP FRDM-KL25Z platform and FRDM-FXS-MULT2-B sensor expansion board.   This example code complements the Python code snippet from the AN4693. The FXLS8471Q is set for detection of an “instantaneous” acceleration change exceeding 315mg for a minimum period of 40 ms on either the X or Y axes. Once an event is triggered, an interrupt will be generated on the INT1 pin:   void FXLS8471Q_Init (void) { FXLS8471Q_WriteRegister(TRANSIENT_THS_REG, 0x85); // Set threshold to 312.5mg (5 x 62.5mg ) FXLS8471Q_WriteRegister(TRANSIENT_COUNT_REG, 0x02); // Set debounce timer period to 40ms FXLS8471Q_WriteRegister(TRANSIENT_CFG_REG, 0x16); // Enable transient detection for X and Y axis, latch enabled FXLS8471Q_WriteRegister(CTRL_REG4, 0x20); // Acceleration transient interrupt enabled FXLS8471Q_WriteRegister(CTRL_REG5, 0x20); // Route acceleration transient interrupt to INT1 - PTA5 FXLS8471Q_WriteRegister(CTRL_REG1, 0x29); // ODR = 12.5Hz, Active mode } ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍     In the ISR, only the interrupt flag is cleared and the TRANSIENT_SRC (0x1E) register is read in order to clear the SRC_TRANS status bit and deassert the INT1 pin, as shown on the screenshot below.   void PORTA_IRQHandler() { PORTA_PCR5 |= PORT_PCR_ISF_MASK; // Clear the interrupt flag IntSource = FXLS8471Q_ReadRegister(TRANSIENT_SRC_REG); // Read the TRANSIENT_SRC register to clear the SRC_TRANS flag in the INT_SOURCE register EventCounter++; } ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍       Attached you can find the complete source code. If there are any questions regarding this simple example code, please feel free to ask below. Your feedback or suggestions are also welcome.   Regards, Tomas
View full article
"Android as a Platform for Sensor Fusion Education and Evaluation" presented at 2013 Sensors Expo & Conference by Michael Stanley.
View full article
Hi Everyone,   If you are interested in a simple bare metal example code illustrating the use of the FXLS8471Q orientation detection function, please find below one of my examples I created for the FXLS8471Q accelerometer while working with the NXP FRDM-KL25Z platform and FRDMSTBC-A8471 board.   This example code complements the code snippet from the  AN4068.   void FXLS8471Q_Init (void) { FXLS8471Q_WriteRegister(CTRL_REG1, 0x00); // Standby mode FXLS8471Q_WriteRegister(PL_CFG_REG, 0x40); // Enable orientation detection FXLS8471Q_WriteRegister(PL_BF_ZCOMP_REG, 0x43); // Back/Front trip point set to 75°, Z-lockout angle set to 25° FXLS8471Q_WriteRegister(P_L_THS_REG, 0x14); // Threshold angle = 45°, hysteresis = 14° FXLS8471Q_WriteRegister(PL_COUNT_REG, 0x05); // Debounce counter set to 100ms at 50Hz FXLS8471Q_WriteRegister(CTRL_REG3, 0x00); // Push-pull, active low interrupt FXLS8471Q_WriteRegister(CTRL_REG4, 0x10); // Orientation interrupt enabled FXLS8471Q_WriteRegister(CTRL_REG5, 0x10); // Route orientation interrupt to INT1 - PTD4 FXLS8471Q_WriteRegister(CTRL_REG1, 0x21); // ODR = 50Hz, Active mode }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍     In the ISR, only the interrupt flag is cleared and the PL_STATUS (0x10) register is read in order to:   - Clear the SRC_LNDPRT flag in the INT_SOURCE register and deassert the INT1 pin, as shown on the screenshot below. - Get orientation information. 0x82 in this example corresponds to "Portrait down" orientation.   void PORTD_IRQHandler() { PORTD_PCR4 |= PORT_PCR_ISF_MASK; // Clear the interrupt flag PL_Status = FXLS8471Q_ReadRegister(PL_STATUS_REG); // Read the PL_STATUS register to clear the SRC_LNDPRT flag in the INT_SOURCE register }‍‍‍‍‍‍‍‍‍‍       Attached you can find the complete source code. If there are any questions regarding this simple example code, please feel free to ask below.    Regards, Tomas
View full article
The FRDM33772BSPIEVB serves as a 6-channel and FRDM33771BSPIVB as a 14 channel battery cell controller with a passive cell balancing. A FRDM-KL25Z evaluation board is used for communication with FRDM3377xBSPIEVB and a computer through SPI interface. The kit together with BATT-6EMULATOR 6-cell battery emulator  for the FRDM33772BSPIEVB and BATT-14EMULATOR 14-cell battery emulator for FRDM33771BSPIVB or a battery pack BATT-14AAAPACK for either of them is dedicated to support customer development and evaluation. For a status reading and settings an MC3377x EvalGUI is used. Figure 1. FRDM33771SPI evaluation board Figure 2. BATT-14AAAPACK battery pack Figure 3. BATT-14EMULATOR to supply MC33771 EVBs MC3377x EvalGUI The Graphic User Interface MC3377x EvalGUI is intended to use for evaluation of MC3377x cell controllers. Figure 4. MC3377x Evaluation GUI version 4.02 Hardware setup The GUI supports two types of BMS architectures. Central, only one cluster and distributed, up to 15 clusters. For the central BMS architecture an MC33771 EVB or MC33772 EVB must be stacked on top of an FRDM-KL25Z board. One of the battery emulators or the battery pack is connected through a 34-pin cells connector. For the distributed BMS architecture a MC33664 evaluation board stacked on top of a FRDM-KL25Z is used. The MC3377x evaluation boards are connected to the MC33664 EVB through a twisted pair TPL bus. Connection to a computer is made through OpenSDA port on FRDM-KL25Z and USB on the computer side. Figure 5. FRDM-33771SPIEVB stacked on top of FRDM-KL25Z and BATT-14AAAPACK connected as central BMS architecture After hardware setup is done start the MC3377x EvalGUI and follow instructions for Initial Configuration in MC33771/772 Evaluation GUI Documentation. For access click info->Open docu in MC33771/772 Evaluation GUI. Figure 6. Access to MC33771/772 Evaluation GUI document When the initial configuration is done, voltage reading of every battery cell and overall voltage of all connected batteries in series is enabled. However current measurement is disabled by default. Figure 7. Battery cells measurement with current measurement disabled Enablement of current measurement is done in Cluster view by setting a Bit9 (IMeasEn) in in SYS_CFG1 register to logic 1. The field changes from dark green to  light green and the current measurement is enabled. Figure 8. Enablement of the current measurement Figure 9. Current measurement enabled Current in the GUI is displayed in mV and for the current consumption has to be calculated. Because shunt resistor is Rshunt=100mΩ and measured voltage 1.243mV, thus for this case the current consumption is I=Ushunt/Rshunt = 12.43mA. The shunt resistor has to be chosen so the voltage doesn’t exceed +/-150mV. The voltage is sensed on SENSE_P and SENSE_N pins of the MC3377x controller. Figure 10. Shunt resistor R1 on the BATT-14AAAPACK It’s also possible to use a resistor in the battery pack as a load. The resistor is not populated. Recommended value is 1kΩ, 3W , SMT 2512. The resistor can be connected and disconnected with SW3 switch. Figure 11. Recommended load resistor R7 and toggle switch SW3
View full article
This presentation was given at the October 2014 ARM TechCon in Santa Clara, CA.  It provides a detailed description of recent changes to Freescale's sensor fusion offering.
View full article
Hi Everyone,   I would like to share a simple example code/demo that reads both the altitude and temperature data from the Xtrinsic MPL3115A2 pressure sensor and visualizes them using the FreeMASTER tool via USBDM interface. I have used recently released Xtrinsic MEMS sensors board that features three types of Xtrinsic sensors including the MPL3115A2 and is fully compatible with the Freescale FRDM-KL25Z platform.   According to the User Manual, both interrupt pins of the MPL3115A2 are connected to the PTD3 pin of KL25Z MCU through a 4.7K pull-up resistor as well as both SCL and SDA lines that are connected to the I2C1 module (PTE1 and PTE0 pins) on the KL25Z. The MCU is, therefore, configured as follows: void MCU_Init(void) {        //I2C1 module initialization            SIM_SCGC4 |= SIM_SCGC4_I2C1_MASK;        // Turn on clock to I2C1 module        SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK;       // Turn on clock to Port E module        PORTE_PCR1 = PORT_PCR_MUX(6);            // PTE1 pin is I2C1 SCL line        PORTE_PCR0 = PORT_PCR_MUX(6);            // PTE0 pin is I2C1 SDA line        I2C1_F  = 0x14;                          // SDA hold time = 2.125us, SCL start hold time = 4.25us, SCL stop hold time = 5.125us        I2C1_C1 = I2C_C1_IICEN_MASK;             // Enable I2C1 module          //Configure the PTD3 pin (connected to the INT2 of the MPL3115A2) for falling edge interrupt          SIM_SCGC5 |= SIM_SCGC5_PORTD_MASK;       // Turn on clock to Port D module        PORTD_PCR3 |= (0|PORT_PCR_ISF_MASK|      // Clear the interrupt flag        PORT_PCR_MUX(0x1)|                       // PTD3 is configured as GPIO        PORT_PCR_IRQC(0xA));                     // PTD3 is configured for falling edge interrupts                     //Enable PORTD interrupt on NVIC        NVIC_ICPR |= 1 << ((INT_PORTD - 16)%32);        NVIC_ISER |= 1 << ((INT_PORTD - 16)%32); }   In the ISR, only the interrupt flag is cleared and the DataReady variable is set to indicate the arrival of new data.   void PORTD_IRQHandler() {        PORTD_PCR3 |= PORT_PCR_ISF_MASK;         // Clear the interrupt flag        DataReady = 1; } At the beginning of the initialization, all MPL3115A2 registers are reset to their default values by setting the RST bit of the CTRL_REG1 register.The DRDY interrupt is enabled and routed to the INT2 pin that is configured to be an open-drain, active-low output. During the initialization of the MPL3115A2, the OSR ratio of 128 is selected and finally the part goes into Active Altimeter mode.   void MPL3115A2_Init (void) {        unsigned char reg_val = 0;                    I2C_WriteRegister(MPL3115A2_I2C_ADDRESS, CTRL_REG1, 0x04);                        // Reset all registers to POR values             do            // Wait for the RST bit to clear        {           reg_val = I2C_ReadRegister(MPL3115A2_I2C_ADDRESS, CTRL_REG1) & 0x04;        }  while (reg_val);        I2C_WriteRegister(MPL3115A2_I2C_ADDRESS, PT_DATA_CFG_REG, 0x07);                  // Enable data flags        I2C_WriteRegister(MPL3115A2_I2C_ADDRESS, CTRL_REG3, 0x11);                        // Open drain, active low interrupts        I2C_WriteRegister(MPL3115A2_I2C_ADDRESS, CTRL_REG4, 0x80);                        // Enable DRDY interrupt        I2C_WriteRegister(MPL3115A2_I2C_ADDRESS, CTRL_REG5, 0x00);                        // DRDY interrupt routed to INT2 - PTD3        I2C_WriteRegister(MPL3115A2_I2C_ADDRESS, CTRL_REG1, 0xB9);                        // Active altimeter mode, OSR = 128 }   In the main loop, the DataReady variable is periodically checked and if it is set, both altitude and temperature data are read and then calculated.   if (DataReady)          // Is a new set of data ready? {                   DataReady = 0;                  OUT_P_MSB = I2C_ReadRegister(MPL3115A2_I2C_ADDRESS, OUT_P_MSB_REG);        // High byte of integer part of altitude,        OUT_P_CSB = I2C_ReadRegister(MPL3115A2_I2C_ADDRESS, OUT_P_CSB_REG);        // Low byte of integer part of altitude        OUT_P_LSB = I2C_ReadRegister(MPL3115A2_I2C_ADDRESS, OUT_P_LSB_REG);        // Decimal part of altitude in bits 7-4        OUT_T_MSB = I2C_ReadRegister(MPL3115A2_I2C_ADDRESS, OUT_T_MSB_REG);        // Integer part of temperature        OUT_T_LSB = I2C_ReadRegister(MPL3115A2_I2C_ADDRESS, OUT_T_LSB_REG);        // Decimal part of temperature in bits 7-4                           /* Get altitude, the 20-bit measurement in meters is comprised of a signed integer component and        a fractional component. The signed 16-bit integer component is located in OUT_P_MSB and OUT_P_CSB.        The fraction component is located in bits 7-4 of OUT_P_LSB. Bits 3-0 of OUT_P_LSB are not used */                       Altitude = (float) ((short) ((OUT_P_MSB << 😎 | OUT_P_CSB)) + (float) (OUT_P_LSB >> 4) * 0.0625;                     /* Get temperature, the 12-bit temperature measurement in °C is comprised of a signed integer component and        a fractional component. The signed 8-bit integer component is located in OUT_T_MSB. The fractional component        is located in bits 7-4 of OUT_T_LSB. Bits 3-0 of OUT_T_LSB are not used. */                           Temperature = (float) ((signed char) OUT_T_MSB) + (float) (OUT_T_LSB >> 4) * 0.0625;                                                              }   The calculated values can be watched in the "Variables" window on the top right of the Debug perspective or in the FreeMASTER application. Attached you can find the complete source code written in the CW 10.3 as well as the FreeMASTER project.   If there are any questions regarding this simple application, please feel free to ask below. Your feedback or suggestions are also welcome.   Regards, Tomas Original Attachment has been moved to: FreeMASTER---XTRINSIC-SENSORS-EVK_MPL3115A2_BasicReadUsingInterrupt.zip Original Attachment has been moved to: XTRINSIC-SENSORS-EVK_MPL3115A2_BasicReadUsingInterrupt.zip
View full article
Hi Everyone,   In this document I would like to present a simple bare-metal example code/demo for the FXLN8371Q Xtrinsic three axis, low-power, low-g, analog output accelerometer. I have created it while working with the Freescale FRDM-KL25Z development platform and FXLN8371Q breakout board. The FreeMASTER tool is used to visualize the acceleration data that are read from the FXLN8371Q through ADC.   This example illustrates:   1. Initialization of the MKL25Z128 MCU (mainly ADC, PORT and PIT modules). 2. Simple offset calibration. 3. Accelerometer outputs reading using ADC and conversion of the 10-bit ADC values to real acceleration values in g’s. 4. Visualization of the output values in the FreeMASTER tool.   1. The FXLN8371Q breakout board (schematic is attached below) needs to have the following pins connected to the FRDM-KL25Z board:   J4-1 (VDD) => J9-4 (P3V3) J4-2 (XOUT) => J10-2 (PTB0/ADC0_SE8) J4-3 (YOUT) => J10-4 (PTB1/ADC0_SE9) J4-4 (ZOUT) => J10-6 (PTB2/ ADC0_SE12) J4-6 (GND) => J9-14 (GND) J3-3 (ST) => J9-14 (GND) J3-4 (EN) => J9-4 (P3V3)   The PIT (Periodic Interrupt Timer) is used to read the output data periodically at a fixed rate of ~200Hz. The MCU is, therefore, configured as follows.   void MCU_Init(void) {      //ADC0 module initialization      SIM_SCGC6 |= SIM_SCGC6_ADC0_MASK;        // Turn on clock to ADC0 module      SIM_SCGC5 |= SIM_SCGC5_PORTB_MASK;       // Turn on clock to Port B module      PORTB_PCR0 |= PORT_PCR_MUX(0x00);        // PTB0 pin is ADC0 SE8 input      PORTB_PCR1 |= PORT_PCR_MUX(0x00);        // PTB1 pin is ADC0 SE9 input      PORTB_PCR2 |= PORT_PCR_MUX(0x00);        // PTB2 pin is ADC0 SE12 input      ADC0_CFG1 |= ADC_CFG1_ADLSMP_MASK | ADC_CFG1_MODE(0x02);             // Long sample time, single-ended 10-bit conversion                           //PIT module initialization      SIM_SCGC6 |= SIM_SCGC6_PIT_MASK;         // Turn on clock to PIT module      PIT_LDVAL0 = 52400;                      // Timeout period = ~5ms (200Hz)      PIT_MCR = PIT_MCR_FRZ_MASK;              // Enable clock for PIT, freeze PIT in debug mode                               //Enable PIT interrupt on NVIC          NVIC_ICPR |= 1 << ((INT_PIT - 16) % 32);      NVIC_ISER |= 1 << ((INT_PIT - 16) % 32); }   2. The simplest offset calibration method consists of placing the board on a flat surface so that X is at 0g, Y is at 0g and Z is at +1g. 16 samples are recorded and then averaged. The known sensitivity needs to be subtracted from the +1g reading to calculate an assumed 0g offset value for Z.   void Calibrate(void) {      unsigned int Count = 0;                    do                   // Accumulate 16 samples for X, Y, Z      {         ADC0_SC1A = ADC_SC1_ADCH(0x08);               // Process ADC measurements on ADC0_SE8/XOUT                                                                while(!(ADC0_SC1A & ADC_SC1_COCO_MASK)){};         Xout_10_bit += ADC0_RA;                                                                                                      ADC0_SC1A = ADC_SC1_ADCH(0x09);               // Process ADC measurements on ADC0_SE9/YOUT                while(!(ADC0_SC1A & ADC_SC1_COCO_MASK)){};         Yout_10_bit += ADC0_RA;                                                                                                            ADC0_SC1A = ADC_SC1_ADCH(0x0C);                while(!(ADC0_SC1A & ADC_SC1_COCO_MASK)){};    // Process ADC measurements on ADC0_SE12/ZOUT               Zout_10_bit += ADC0_RA;                                                         Count++;                        } while (Count < 16);                    X_offset = (float) Xout_10_bit / 16;                             // Compute X-axis offset by averaging all 16 X-axis samples      Y_offset = (float) Yout_10_bit / 16;                             // Compute Y-axis offset by averaging all 16 Y-axis samples      Z_offset = ((float) Zout_10_bit / 16) - SENSITIVITY_2G;          // Compute Z-axis offset by averaging all 16 Z-axis samples and subtracting the known sensitivity                      PIT_TCTRL0 = PIT_TCTRL_TIE_MASK | PIT_TCTRL_TEN_MASK;          // Enable PIT interrupt and PIT                                      }   3. Reading the FXLN8371Q datasheet, the output voltage when there is no acceleration is typically 0.75V and it should typically change by 229mV per 1g of acceleration in ±2g mode. The signal from a 10-bit ADC gives me a number from 0 to 1023. I will call these “ADC units”.  0V maps to 0 ADC units, VDDA (2.95V on the FRDM-KL25Z board) maps to 1023 ADC units and let’s assume it is linear in between. This means that zero acceleration on an axis should give me a reading of 260 ADC units (0.75V / 2.95V x 1023 ADC units) on the pin for that axis. Also, a change of 1 ADC unit corresponds to a voltage difference of 2.95V / 1023 ADC units = 2.884mV/ADC unit. Since the datasheet says a 1g acceleration typically corresponds to 229mV voltage difference, I can easily convert it to ADC units/g:   229 mV/g = 229 mV/g x (1023 ADC units) / 2.95V = 79.4 ADC units/g = SENSITIVITY_2g   Using this calculated sensitivity and measured offset, I convert the 10-bit ADC values to real acceleration values in g’s in the PIT ISR as follows.   void PIT_IRQHandler() {      ADC0_SC1A = ADC_SC1_ADCH(0x08);                    // Process ADC measurements on ADC0_SE8/XOUT                                                  while(!(ADC0_SC1A & ADC_SC1_COCO_MASK)){};      Xout_10_bit = ADC0_RA;                                         ADC0_SC1A = ADC_SC1_ADCH(0x09);                    // Process ADC measurements on ADC0_SE9/YOUT                while(!(ADC0_SC1A & ADC_SC1_COCO_MASK)){};      Yout_10_bit = ADC0_RA;                                               ADC0_SC1A = ADC_SC1_ADCH(0x0C);                    // Process ADC measurements on ADC0_SE12/ZOUT                while(!(ADC0_SC1A & ADC_SC1_COCO_MASK)){};      Zout_10_bit = ADC0_RA;                    Xout_g = ((float) Xout_10_bit - X_offset) / SENSITIVITY_2G;         // Compute X-axis output value in g's      Yout_g = ((float) Yout_10_bit - Y_offset) / SENSITIVITY_2G;         // Compute Y-axis output value in g's      Zout_g = ((float) Zout_10_bit - Z_offset) / SENSITIVITY_2G;         // Compute Z-axis output value in g's                     PIT_TFLG0 |= PIT_TFLG_TIF_MASK;          // Clear PIT interrupt flag }   4. The calculated values can be watched in the "Variables" window on the top right of the Debug perspective or in the FreeMASTER application. To open and run the FreeMASTER project, install the FreeMASTER application and FreeMASTER Communication Driver.       I guess this is enough to let you start experimenting with the FXLN83xxQ family of analog accelerometers. Attached you can find the complete source code written in the CW for MCU's v10.6 including the FreeMASTER project.   If there are any questions regarding this simple application, do not hesitate to ask below. Your feedback or suggestions are also welcome.   Regards, Tomas Original Attachment has been moved to: FRDM-KL25Z-FXLN8371Q-Basic-read-using-ADC.zip Original Attachment has been moved to: FreeMASTER---FRDM-KL25Z-FXLN8371Q-Basic-read-using-ADC.zip
View full article
Using this document you can simply introduce the measured data from the MPL3115A2 and you will get the expected output data for Altimeter/Barometric Pressure and Temperature measurements.
View full article
List of software examples published by NXP technical support: Sensors software examples published by NXP technical support * List of breakout boards designed by NXP technical support: Freescale Sensors Breakout Boards Designs – HOME * All of the source code placed in spaces above is for example use only. NXP does not accept liability for use of this code in the user’s application.
View full article
clicktaleID