传感器知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

Sensors Knowledge Base

讨论

排序依据:
Hi Everyone,   In this document I would like to present a simple bare-metal example code/demo for the FXLN8371Q Xtrinsic three axis, low-power, low-g, analog output accelerometer. I have created it while working with the Freescale FRDM-KL25Z development platform and FXLN8371Q breakout board. The FreeMASTER tool is used to visualize the acceleration data that are read from the FXLN8371Q through ADC.   This example illustrates:   1. Initialization of the MKL25Z128 MCU (mainly ADC, PORT and PIT modules). 2. Simple offset calibration. 3. Accelerometer outputs reading using ADC and conversion of the 10-bit ADC values to real acceleration values in g’s. 4. Visualization of the output values in the FreeMASTER tool.   1. The FXLN8371Q breakout board (schematic is attached below) needs to have the following pins connected to the FRDM-KL25Z board:   J4-1 (VDD) => J9-4 (P3V3) J4-2 (XOUT) => J10-2 (PTB0/ADC0_SE8) J4-3 (YOUT) => J10-4 (PTB1/ADC0_SE9) J4-4 (ZOUT) => J10-6 (PTB2/ ADC0_SE12) J4-6 (GND) => J9-14 (GND) J3-3 (ST) => J9-14 (GND) J3-4 (EN) => J9-4 (P3V3)   The PIT (Periodic Interrupt Timer) is used to read the output data periodically at a fixed rate of ~200Hz. The MCU is, therefore, configured as follows.   void MCU_Init(void) {      //ADC0 module initialization      SIM_SCGC6 |= SIM_SCGC6_ADC0_MASK;        // Turn on clock to ADC0 module      SIM_SCGC5 |= SIM_SCGC5_PORTB_MASK;       // Turn on clock to Port B module      PORTB_PCR0 |= PORT_PCR_MUX(0x00);        // PTB0 pin is ADC0 SE8 input      PORTB_PCR1 |= PORT_PCR_MUX(0x00);        // PTB1 pin is ADC0 SE9 input      PORTB_PCR2 |= PORT_PCR_MUX(0x00);        // PTB2 pin is ADC0 SE12 input      ADC0_CFG1 |= ADC_CFG1_ADLSMP_MASK | ADC_CFG1_MODE(0x02);             // Long sample time, single-ended 10-bit conversion                           //PIT module initialization      SIM_SCGC6 |= SIM_SCGC6_PIT_MASK;         // Turn on clock to PIT module      PIT_LDVAL0 = 52400;                      // Timeout period = ~5ms (200Hz)      PIT_MCR = PIT_MCR_FRZ_MASK;              // Enable clock for PIT, freeze PIT in debug mode                               //Enable PIT interrupt on NVIC          NVIC_ICPR |= 1 << ((INT_PIT - 16) % 32);      NVIC_ISER |= 1 << ((INT_PIT - 16) % 32); }   2. The simplest offset calibration method consists of placing the board on a flat surface so that X is at 0g, Y is at 0g and Z is at +1g. 16 samples are recorded and then averaged. The known sensitivity needs to be subtracted from the +1g reading to calculate an assumed 0g offset value for Z.   void Calibrate(void) {      unsigned int Count = 0;                    do                   // Accumulate 16 samples for X, Y, Z      {         ADC0_SC1A = ADC_SC1_ADCH(0x08);               // Process ADC measurements on ADC0_SE8/XOUT                                                                while(!(ADC0_SC1A & ADC_SC1_COCO_MASK)){};         Xout_10_bit += ADC0_RA;                                                                                                      ADC0_SC1A = ADC_SC1_ADCH(0x09);               // Process ADC measurements on ADC0_SE9/YOUT                while(!(ADC0_SC1A & ADC_SC1_COCO_MASK)){};         Yout_10_bit += ADC0_RA;                                                                                                            ADC0_SC1A = ADC_SC1_ADCH(0x0C);                while(!(ADC0_SC1A & ADC_SC1_COCO_MASK)){};    // Process ADC measurements on ADC0_SE12/ZOUT               Zout_10_bit += ADC0_RA;                                                         Count++;                        } while (Count < 16);                    X_offset = (float) Xout_10_bit / 16;                             // Compute X-axis offset by averaging all 16 X-axis samples      Y_offset = (float) Yout_10_bit / 16;                             // Compute Y-axis offset by averaging all 16 Y-axis samples      Z_offset = ((float) Zout_10_bit / 16) - SENSITIVITY_2G;          // Compute Z-axis offset by averaging all 16 Z-axis samples and subtracting the known sensitivity                      PIT_TCTRL0 = PIT_TCTRL_TIE_MASK | PIT_TCTRL_TEN_MASK;          // Enable PIT interrupt and PIT                                      }   3. Reading the FXLN8371Q datasheet, the output voltage when there is no acceleration is typically 0.75V and it should typically change by 229mV per 1g of acceleration in ±2g mode. The signal from a 10-bit ADC gives me a number from 0 to 1023. I will call these “ADC units”.  0V maps to 0 ADC units, VDDA (2.95V on the FRDM-KL25Z board) maps to 1023 ADC units and let’s assume it is linear in between. This means that zero acceleration on an axis should give me a reading of 260 ADC units (0.75V / 2.95V x 1023 ADC units) on the pin for that axis. Also, a change of 1 ADC unit corresponds to a voltage difference of 2.95V / 1023 ADC units = 2.884mV/ADC unit. Since the datasheet says a 1g acceleration typically corresponds to 229mV voltage difference, I can easily convert it to ADC units/g:   229 mV/g = 229 mV/g x (1023 ADC units) / 2.95V = 79.4 ADC units/g = SENSITIVITY_2g   Using this calculated sensitivity and measured offset, I convert the 10-bit ADC values to real acceleration values in g’s in the PIT ISR as follows.   void PIT_IRQHandler() {      ADC0_SC1A = ADC_SC1_ADCH(0x08);                    // Process ADC measurements on ADC0_SE8/XOUT                                                  while(!(ADC0_SC1A & ADC_SC1_COCO_MASK)){};      Xout_10_bit = ADC0_RA;                                         ADC0_SC1A = ADC_SC1_ADCH(0x09);                    // Process ADC measurements on ADC0_SE9/YOUT                while(!(ADC0_SC1A & ADC_SC1_COCO_MASK)){};      Yout_10_bit = ADC0_RA;                                               ADC0_SC1A = ADC_SC1_ADCH(0x0C);                    // Process ADC measurements on ADC0_SE12/ZOUT                while(!(ADC0_SC1A & ADC_SC1_COCO_MASK)){};      Zout_10_bit = ADC0_RA;                    Xout_g = ((float) Xout_10_bit - X_offset) / SENSITIVITY_2G;         // Compute X-axis output value in g's      Yout_g = ((float) Yout_10_bit - Y_offset) / SENSITIVITY_2G;         // Compute Y-axis output value in g's      Zout_g = ((float) Zout_10_bit - Z_offset) / SENSITIVITY_2G;         // Compute Z-axis output value in g's                     PIT_TFLG0 |= PIT_TFLG_TIF_MASK;          // Clear PIT interrupt flag }   4. The calculated values can be watched in the "Variables" window on the top right of the Debug perspective or in the FreeMASTER application. To open and run the FreeMASTER project, install the FreeMASTER application and FreeMASTER Communication Driver.       I guess this is enough to let you start experimenting with the FXLN83xxQ family of analog accelerometers. Attached you can find the complete source code written in the CW for MCU's v10.6 including the FreeMASTER project.   If there are any questions regarding this simple application, do not hesitate to ask below. Your feedback or suggestions are also welcome.   Regards, Tomas Original Attachment has been moved to: FRDM-KL25Z-FXLN8371Q-Basic-read-using-ADC.zip Original Attachment has been moved to: FreeMASTER---FRDM-KL25Z-FXLN8371Q-Basic-read-using-ADC.zip
查看全文
The following video shows how to run the FRDM 6DOF Bare Board eCompass using the FRDM-K22. This algorithm uses the FXOS8700 contained on the Freedom Board. In order to get more information about the Sensor Fusion Library for Kinetis MCU's 5.0, please refer to the following link: Sensor Fusion|Freescale I hope this material will be useful for you. David
查看全文
Hi Everyone, In my previous tutorial, I demonstrated how to import an ISSDK based example project into MCUXpresso IDE, build and run it on the Freedom board (FRDM-KL27Z). If you want to visualize/log sensor data, easily change sensor settings (ODR, Range, Power Mode) or directly read and write sensor registers, you can use the Freedom Sensor Toolbox-Community Edition (STB-CE) as described below or in the STBCEUG. 1. Connect the SDA port (J13) on the FRDM-KL27Z board to a USB port on your computer. 2. Open STB-CE GUI by double clicking the Freedom Sensor Toolbox (CE) shortcut located on your desktop. 3. Select "Out of Box Sensor Demonstration". 4. Select the Project to be launched and click on Continue. Base Board Name – FRDM-KL27Z Shield Board Name – OnBoard Project Name – MMA8451 Accelerometer Demo 5. The ISSDK-based MMA8451 Accelerometer Demo firmware is loaded to the KL27Z MCU and the MMA8451 Accelerometer Demo v1.0 GUI launched. 6. In the Main screen you can change basic MMA8451Q accelerometer settings (ODR, Range, Power Mode), enable embedded functions (Landsacpe/Portrait, Pulse/Tap, Freefall, Transient), start/stop accelerometer data streaming and/or logging.   7. The Register screen (MMA8451) provides low-level access (R/W) to the MMA8451Q registers along with a detailed description of the selected register. 8. To change the bit value, simply click on the corresponding cell (make sure you selected the Standby mode before writing a new value to the selected register). I hope you find this simple document useful. f there are any questions, please feel free to ask below.  Regards, Tomas
查看全文
The MMA845xQ is a smart low-power, three-axis capacitive micromachined accelerometer up to 14 bits of resolution. This accelerometer is packed with embedded functions with flexible user-programmable options, configurable to two interrupt pins. Embedded interrupt functions allow for overall power savings relieving the host processor from continuously polling data. There is access to both low-pass filtered data as well as high-pass filtered data, which minimizes the data analysis required for jolt detection and faster transitions. The device can be configured to generate inertial wake-up interrupt signals from any combination of the configurable embedded functions allowing the MMA845xQ to monitor events and remain in a low-power mode during periods of inactivity. Here is a Render of the MMA845x Breakout- Board downloaded from OSH Park: And here is an image of the Layout Design for this board: In the Attachments section, you can find the Schematic Source File (.SCH), Schematic PDF File, Layout Source File (BRD), Gerber Files (GTL, GBL, GTS, GBS, GTO, GBO, GKO, XLN) and BOM for this Breakout-board. If you are interested in more designs like this breakout board for other sensors, please go to Freescale Sensors Breakout Boards Designs – HOME
查看全文
The FXLN83XX is a 3-axis, low-power, low-g accelerometer along with a CMOS signal conditioning and control ASIC in a small 3 x 3 x 1 mm QFN package. The analog outputs for the X, Y, and Z axes are internally compensated for zero-g offset and sensitivity, and then buffered to the output pads. The outputs have a fixed 0 g offset of 0.75 V, irrespective of the VDD supply voltage. The bandwidth of the output signal for each axis may be independently set using external capacitors. The host can place the FXLN83XXQ into a low-current shutdown mode to conserve power. Here is a Render of the FXLN83XX Breakout Board downloaded from OSH park: Layout Design for this board: In the attachments section, you can find the Schematic Source File (SCH), Schematic PDF File, Layout Source File (BRD), Gerber Files (GTL, GBL, GTS, GBS, GTO, GBO, GKO, XLN) and BOM files.    If you're interested in more designs like this breakout board for other sensors, please go to Freescale Sensors Breakout Boards Designs – HOMEFreescale Sensors Breakout Boards Designs – HOME
查看全文
Hi Everyone, In this article I would like to describe a simple bare-metal example code for the new Xtrinsic FXLS8471Q digital accelerometer. I have used recently released FRDM-FXS-MULTI(-B) sensor expansion board, that features many of the Xtrinsic sensors introduced in 2013 including the FXLS8471Q, in conjunction with the  Freescale FRDM-KL25Z development platform. The FreeMASTER tool is used to visualize the acceleration data that are read from the FXLS8471Q using an interrupt technique through the SPI interface. This example illustrates: 1. Initialization of the MKL25Z128 MCU (mainly SPI and PORT modules). 2. SPI data write and read operations. 3. Initialization of the accelerometer to achieve the highest resolution. 4. Simple offset calibration based on the AN4069. 5. Output data reading using an interrupt technique. 6. Conversion of the output values from registers 0x01 – 0x06 to real acceleration values in g’s. 7. Visualization of the output values in the FreeMASTER tool. 1. As you can see in the FRDM-FXS-MULTI(-B)/FRDM-KL25Z schematics and the image below, SPI signals are routed to the SPI0 module of the KL25Z MCU and the INT1 output is connected to the PTA5 pin (make sure that pins 2-3 of J6 on the sensor board are connected together using a jumper). The PTD0 pin (Chip select) is not controlled automatically by SPI0 module, hence it is configured as a general-purpose output. The INT1 output of the FXLS8471Q is configured as a push-pull active-low output, so the corresponding PTA5 pin configuration is GPIO with an interrupt on falling edge.The core/system clock frequency is 20.97 MHz and SPI clock is 524.25 kHz. The MCU is, therefore, configured as follows. void MCU_Init(void) {      //SPI0 module initialization      SIM_SCGC4 |= SIM_SCGC4_SPI0_MASK;        // Turn on clock to SPI0 module      SIM_SCGC5 |= SIM_SCGC5_PORTD_MASK;       // Turn on clock to Port D module      PORTD_PCR1 = PORT_PCR_MUX(0x02);         // PTD1 pin is SPI0 CLK line      PORTD_PCR2 = PORT_PCR_MUX(0x02);         // PTD2 pin is SPI0 MOSI line      PORTD_PCR3 = PORT_PCR_MUX(0x02);         // PTD3 pin is SPI0 MISO line      PORTD_PCR0 = PORT_PCR_MUX(0x01);         // PTD0 pin is configured as GPIO (CS line driven manually)      GPIOD_PSOR |= GPIO_PSOR_PTSO(0x01);      // PTD0 = 1 (CS inactive)      GPIOD_PDDR |= GPIO_PDDR_PDD(0x01);       // PTD0 pin is GPIO output          SPI0_C1 = SPI_C1_SPE_MASK | SPI_C1_MSTR_MASK;     // Enable SPI0 module, master mode      SPI0_BR = SPI_BR_SPPR(0x04) | SPI_BR_SPR(0x02);     // BaudRate = BusClock / ((SPPR+1) * 2^(SPR+1)) = 20970000 / ((4+1) * 2^(2+1)) = 524.25 kHz                        //Configure the PTA5 pin (connected to the INT1 of the FXLS8471Q) for falling edge interrupts      SIM_SCGC5 |= SIM_SCGC5_PORTA_MASK;       // Turn on clock to Port A module      PORTA_PCR5 |= (0|PORT_PCR_ISF_MASK|      // Clear the interrupt flag                       PORT_PCR_MUX(0x1)|      // PTA5 is configured as GPIO                       PORT_PCR_IRQC(0xA));    // PTA5 is configured for falling edge interrupts                 //Enable PORTA interrupt on NVIC      NVIC_ICPR |= 1 << ((INT_PORTA - 16) % 32);      NVIC_ISER |= 1 << ((INT_PORTA - 16) % 32); } 2. The FXLS8471Q uses the ‘Mode 0′ SPI protocol, which means that an inactive state of clock signal is low and data are captured on the leading edge of clock signal and changed on the falling edge. The falling edge on the SA1/CS_B pin starts the SPI communication. A write operation is initiated by transmitting a 1 for the R/W bit. Then the 8-bit register address, ADDR[7:0] is encoded in the first and second serialized bytes. Data to be written starts in the third serialized byte. The order of the bits is as follows: Byte 0: R/W, ADDR[6], ADDR[5], ADDR[4], ADDR[3], ADDR[2], ADDR[1], ADDR[0] Byte 1: ADDR[7], X, X, X, X, X, X, X Byte 2: DATA[7], DATA[6], DATA[5], DATA[4], DATA[3], DATA[2], DATA[1], DATA[0] The rising edge on the SA1/CS_B pin stops the SPI communication. Below is the write operation which writes the value 0x3D to the CTRL_REG1 (0x3A). Similarly a read operation is initiated by transmitting a 0 for the R/W bit. Then the 8-bit register address, ADDR[7:0] is encoded in the first and second serialized bytes. The data is read from the MISO pin (MSB first). The screenshot below shows the read operation which reads the correct value 0x6A from the WHO_AM_I register (0x0D). Multiple read operations are performed similar to single read except bytes are read in multiples of eight SCLK cycles. The register address is auto incremented so that every eighth next clock edges will latch the MSB of the next register. A burst read of 6 bytes from registers 0x01 to 0x06 is shown below. It also shows how the INT1 pin is automatically cleared by reading the acceleration output data. 3. At the beginning of the initialization, all accelerometer registers should be reset to their default values by setting the RST bit of the CTRL_REG2 register. However, the software reset does not work properly in SPI mode as described in Appendix A of the FXLS8471Q data sheet. Therefore the following piece of the code performing the software reset should not be used. Instead, I have shortened R46 on the FRDM-FXS-MULTI-B board to activate a hardware reset. The dynamic range is set to ±2g and to achieve the highest resolution, the LNOISE bit is set and the lowest ODR (1.56Hz) and the High Resolution mode are selected (more details in AN4075). The DRDY interrupt is enabled and routed to the INT1 interrupt pin that is configured to be a push-pull, active-low output. void FXLS8471Q_Init (void) {      unsigned char reg_val = 0;          /* The software reset does not work properly in SPI mode as described in Appendix A         of the FXLS8471Q data sheet. Therefore the following piece of the code is not used.         I have shortened R46 on the FRDM-FXS-MULTI-B board to activate a hardware reset. */          /*FXLS8471Q_WriteRegister(CTRL_REG2, 0x40);     // Reset all registers to POR values          Pause(0x631);     // ~1ms delay                 do       // Wait for the RST bit to clear      {           reg_val = FXLS8471Q_ReadRegister(CTRL_REG2) & 0x40;      } while (reg_val); */                FXLS8471Q_WriteRegister(XYZ_DATA_CFG_REG, 0x00);          // +/-2g range with ~0.244mg/LSB      FXLS8471Q_WriteRegister(CTRL_REG2, 0x02);            // High Resolution mode      FXLS8471Q_WriteRegister(CTRL_REG3, 0x00);            // Push-pull, active low interrupt      FXLS8471Q_WriteRegister(CTRL_REG4, 0x01);            // Enable DRDY interrupt      FXLS8471Q_WriteRegister(CTRL_REG5, 0x01);            // DRDY interrupt routed to INT1 - PTA5       FXLS8471Q_WriteRegister(CTRL_REG1, 0x3D);            // ODR = 1.56Hz, Reduced noise, Active mode           } 4. A simple offset calibration method is implemented according to the AN4069. void FXLS8471Q_Calibration (void) {      char Xoffset, Yoffset, Zoffset;            DataReady = 0;                while (!DataReady){}      // Is a first set of data ready?      DataReady = 0;            FXLS8471Q_WriteRegister(CTRL_REG1, 0x00);     // Standby mode                   FXLS8471Q_ReadMultiRegisters(OUT_X_MSB_REG, 6, AccData);     // Read data output registers 0x01-0x06                                                      Xout_14_bit = ((short) (AccData[0]<<8 | AccData[1])) >> 2;     // Compute 14-bit X-axis output value      Yout_14_bit = ((short) (AccData[2]<<8 | AccData[3])) >> 2;     // Compute 14-bit Y-axis output value      Zout_14_bit = ((short) (AccData[4]<<8 | AccData[5])) >> 2;     // Compute 14-bit Z-axis output value                                              Xoffset = Xout_14_bit / 8 * (-1);     // Compute X-axis offset correction value      Yoffset = Yout_14_bit / 8 * (-1);     // Compute Y-axis offset correction value      Zoffset = (Zout_14_bit - SENSITIVITY_2G) / 8 * (-1);     // Compute Z-axis offset correction value                                              FXLS8471Q_WriteRegister(OFF_X_REG, Xoffset);                FXLS8471Q_WriteRegister(OFF_Y_REG, Yoffset);         FXLS8471Q_WriteRegister(OFF_Z_REG, Zoffset);                   FXLS8471Q_WriteRegister(CTRL_REG1, 0x3D);     // Active mode again }      5. In the ISR, only the interrupt flag is cleared and the DataReady variable is set to indicate the arrival of new data. void PORTA_IRQHandler() {      PORTA_PCR5 |= PORT_PCR_ISF_MASK;     // Clear the interrupt flag      DataReady = 1;     } 6. The output values from accelerometer registers 0x01 – 0x06 are first converted to signed 14-bit values and afterwards to real values in g’s. if (DataReady)     // Is a new set of data ready? {                  DataReady = 0;                                                                                                                        FXLS8471Q_ReadMultiRegisters(OUT_X_MSB_REG, 6, AccData);     // Read data output registers 0x01-0x06                                                        Xout_14_bit = ((short) (AccData[0]<<8 | AccData[1])) >> 2;     // Compute 14-bit X-axis output value      Yout_14_bit = ((short) (AccData[2]<<8 | AccData[3])) >> 2;     // Compute 14-bit Y-axis output value      Zout_14_bit = ((short) (AccData[4]<<8 | AccData[5])) >> 2;     // Compute 14-bit Z-axis output value                                            Xout_g = ((float) Xout_14_bit) / SENSITIVITY_2G;     // Compute X-axis output value in g's      Yout_g = ((float) Yout_14_bit) / SENSITIVITY_2G;     // Compute Y-axis output value in g's      Zout_g = ((float) Zout_14_bit) / SENSITIVITY_2G;     // Compute Z-axis output value in g's } 7. The calculated values can be watched in the "Variables" window on the top right of the Debug perspective or in the FreeMASTER application. To open and run the FreeMASTER project, install the FreeMASTER 1.4 application and FreeMASTER Communication Driver. Attached you can find the complete source code written in the CW for MCU's v10.5 including the FreeMASTER project. If there are any questions regarding this simple application, please feel free to ask below. Your feedback or suggestions are also welcome. Regards, Tomas
查看全文
Hi Everyone, This tutorial is a guide on how to create a simple application in the Kinetis Design Studio that reads the data from both sensors on the FRDM-STBC-AGM01 board​ using an interrupt technique through the I 2 C interface. The Processor Expert is used to configure the I 2 C interface and GPIO on the MKL25Z128 MCU. I will not cover the Sensor Fusion libraryand the ISF​. Before you begin please make sure that both the Kinetis Design Studio (Eclipse based) and the Kinetis SDK are setup and you can already compile and debug code. If not, please refer to Erich's blog: Tutorial: Adafruit WS2812B NeoPixels with the Freescale FRDM-K64F Board – Part 2: Software Tools | MCU on Eclipse http://centaurian.co.uk/2015/05/22/toolchain-ksdk-1-2-0-with-eclipse-4-4-luna-and-gnu-arm-plugin/ 1. Create a new project in KDS Within KDS, click on "File" menu item and select "New" > "Kinetis Project" Name and set location of your project. I use the default location under the workspace area. Click Next. Select the development board used (in my case it is the FRDM-KL25Z) and click Next. Select “KSDK 1.2.0”. Set location to KSDK path, I use an absolute path. The location of my KSDK is in the default location where KSDK would install to. Ensure “Processor Expert” checkbox is checked. Press Next. Make sure that “GNU C Compiler” is selected. Click the "Finish" button. 2. Open Processor Expert Open the Processor Expert perspective, this should be a button on the top right hand side of Eclipse. If it is not there, try clicking on the “Open Perspective” button and then selecting “Processor Expert” in the form that appears. 3. Add I2C component Click on the “Components Library” tab, search for the component “fsl_i2c” and double click on it. Select the "i2cCom1:fsl_i2c" in the Components window. In the "Component Inspector" tab configure the I2C component. As you can see in the FRDM-STBC-AGM01 schematic, with jumpers J6 and J7 in their default position (2-3), the I 2 C signals are routed to the I2C1 module (PTC1 and PTC2 pins) of the KL25Z MCU. The 7-bit I 2 C slave address of the FXOS8700CQ is 0x1E (to enter hex values, switch the format to the ‘H’ mode) since both SA0 and SA1 pins are shorted to GND. The address of the FXAS21002C is 0x20 since SA0 pin is also shorted to GND. The I2C bus clock frequency is set to 400 kHz. 4. Add GPIO component Click on the “Components Library” tab, search for the component “fsl_gpio” and double click on it. Select the "gpio1:fsl_gpio" in the Components window. In the "Component Inspector" tab configure the GPIO component. The INT1_8700 output is connected to the PTD4 pin and the INT1_21002 pin to the PTA5 pin of the KL25Z MCU. These both interrupt pins are configured as push-pull active-low outputs, so the corresponding PTD4/PTA5 pin configuration is GPIO with an interrupt on falling edge. To enable both the PORTA and PORTD interrupts, select the “Events” tab and then select “generate code” next to PORTA IRQ and PORTD IRQ handlers. 5. Add Wait component​ Click on the “Components Library” tab, search for the component “Wait” and double click on it. At this point we have done all we can within Processor Expert. Make sure you save all on the project at this point then on the Components window, click on the "Generate code" button. 6. Add your code Here is the initialization of the FXOS8700CQ and FXAS21002C. /****************************************************************************** * FXOS8700CQ initialization function ******************************************************************************/ void FXOS8700CQ_Init (void) {   FXOS8700CQ_WriteRegister(CTRL_REG2, 0x40); // Reset all registers to POR values   WAIT1_Waitms(1);   FXOS8700CQ_WriteRegister(XYZ_DATA_CFG_REG, 0x00); // +/-2g range with 0.244mg/LSB   FXOS8700CQ_WriteRegister(M_CTRL_REG1, 0x1F); // Hybrid mode (accelerometer + magnetometer), max OSR   FXOS8700CQ_WriteRegister(M_CTRL_REG2, 0x20); // M_OUT_X_MSB register 0x33 follows the OUT_Z_LSB register 0x06 (used for burst read)   FXOS8700CQ_WriteRegister(CTRL_REG2, 0x02); // High Resolution mode   FXOS8700CQ_WriteRegister(CTRL_REG3, 0x00); // Push-pull, active low interrupt   FXOS8700CQ_WriteRegister(CTRL_REG4, 0x01); // Enable DRDY interrupt   FXOS8700CQ_WriteRegister(CTRL_REG5, 0x01); // DRDY interrupt routed to INT1 - PTD4   FXOS8700CQ_WriteRegister(CTRL_REG1, 0x25); // ODR = 25Hz, Reduced noise, Active mode } /****************************************************************************** * FXAS21002C initialization function ******************************************************************************/ void FXAS21002C_Init (void) {   FXAS21002C_WriteRegister(GYRO_CTRL_REG1, 0x40); // Reset all registers to POR values   WAIT1_Waitms(1);   FXAS21002C_WriteRegister(GYRO_CTRL_REG0, 0x03); // High-pass filter disabled, +/-250 dps range -> 7.8125 mdps/LSB = 128 LSB/dps   FXAS21002C_WriteRegister(GYRO_CTRL_REG2, 0x0C); // Enable DRDY interrupt, mapped to INT1 - PTA5, push-pull, active low interrupt   FXAS21002C_WriteRegister(GYRO_CTRL_REG1, 0x16); // ODR = 25Hz, Active mode } In the ISRs (look for the file Events.c), only the interrupt flags are cleared and the DataReady variables are set to indicate the arrival of new data. void PORTA_IRQHandler(void) {   /* Clear interrupt flag.*/   PORT_HAL_ClearPortIntFlag(PORTA_BASE_PTR);   /* Write your code here ... */   FXAS21002C_DataReady = 1; } void PORTD_IRQHandler(void) {   /* Clear interrupt flag.*/   PORT_HAL_ClearPortIntFlag(PORTD_BASE_PTR);   /* Write your code here ... */   FXOS8700CQ_DataReady = 1; } The output values from accelerometer registers 0x01 – 0x06 are first converted to signed 14-bit integer values and afterwards to real values in g’s. Similarly, the output values from magnetometer registers 0x33 – 0x38 are first converted to signed 16-bit integer values and afterwards to real values in microtesla (µT). if (FXOS8700CQ_DataReady)         // Is a new set of accel+mag data ready? {    FXOS8700CQ_DataReady = 0;       FXOS8700CQ_ReadRegisters(OUT_X_MSB_REG, 12, AccelMagData);         // Read FXOS8700CQ data output registers 0x01-0x06 and 0x33 - 0x38       // 14-bit accelerometer data    Xout_Accel_14_bit = ((int16_t) (AccelMagData[0]<<8 | AccelMagData[1])) >> 2;             // Compute 14-bit X-axis acceleration output value    Yout_Accel_14_bit = ((int16_t) (AccelMagData[2]<<8 | AccelMagData[3])) >> 2;             // Compute 14-bit Y-axis acceleration output value    Zout_Accel_14_bit = ((int16_t) (AccelMagData[4]<<8 | AccelMagData[5])) >> 2;             // Compute 14-bit Z-axis acceleration output value       // Accelerometer data converted to g's    Xout_g = ((float) Xout_Accel_14_bit) / SENSITIVITY_2G;         // Compute X-axis output value in g's    Yout_g = ((float) Yout_Accel_14_bit) / SENSITIVITY_2G;         // Compute Y-axis output value in g's    Zout_g = ((float) Zout_Accel_14_bit) / SENSITIVITY_2G;         // Compute Z-axis output value in g's    // 16-bit magnetometer data    Xout_Mag_16_bit = (int16_t) (AccelMagData[6]<<8 | AccelMagData[7]);        // Compute 16-bit X-axis magnetic output value    Yout_Mag_16_bit = (int16_t) (AccelMagData[8]<<8 | AccelMagData[9]);        // Compute 16-bit Y-axis magnetic output value    Zout_Mag_16_bit = (int16_t) (AccelMagData[10]<<8 | AccelMagData[11]);      // Compute 16-bit Z-axis magnetic output value    // Magnetometer data converted to microteslas    Xout_uT = (float) (Xout_Mag_16_bit) / SENSITIVITY_MAG;             // Compute X-axis output magnetic value in uT    Yout_uT = (float) (Yout_Mag_16_bit) / SENSITIVITY_MAG;             // Compute Y-axis output magnetic value in uT    Zout_uT = (float) (Zout_Mag_16_bit) / SENSITIVITY_MAG;             // Compute Z-axis output magnetic value in uT } Similarly, the output values from gyroscope registers 0x01 – 0x06 are first converted to signed 16-bit integer values and afterwards to real values in degrees per second. Temperature is also read out from the 0x12 register. if (FXAS21002C_DataReady)         // Is a new set of gyro data ready? {    FXAS21002C_DataReady = 0;    FXAS21002C_ReadRegisters(GYRO_OUT_X_MSB_REG, 6, GyroData);         // Read FXAS21002C data output registers 0x01-0x06    // 16-bit gyro data    Xout_Gyro_16_bit = (int16_t) (GyroData[0]<<8 | GyroData[1]);         // Compute 16-bit X-axis output value    Yout_Gyro_16_bit = (int16_t) (GyroData[2]<<8 | GyroData[3]);         // Compute 16-bit Y-axis output value    Zout_Gyro_16_bit = (int16_t) (GyroData[4]<<8 | GyroData[5]);         // Compute 16-bit Z-axis output value    // Gyro data converted to dps    Roll = (float) (Xout_Gyro_16_bit) / SENSITIVITY_250;               // Compute X-axis output value in dps    Pitch = (float) (Yout_Gyro_16_bit) / SENSITIVITY_250;              // Compute Y-axis output value in dps    Yaw = (float) (Zout_Gyro_16_bit) / SENSITIVITY_250;                // Compute Z-axis output value in dps    // Temperature data    FXAS21002C_ReadRegisters(GYRO_TEMP_REG, 1, GyroData);    Temp = (int8_t) (GyroData[0]); } The complete project including the I2C communication routines and sensor's header files is attached. 6. Build and debug the project To build the project, select the root folder of the project in the Project Explorer view and click the "Hammer" icon to build it. If everything goes well, no errors are shown in the "Problems" view: The .elf (binary) file has been created inside the "Debug" folder: Connect the SDA port on the FRDM-KL25Z board to a USB port on your computer. To debug the project for the first time, select the root folder of the project in the Project Explorer view and open the "Debug Configurations" window. Select the ""GDB PEMicro Interface Debugging" and click the "New launch configuration" icon. In the "Debugger" tab, select the "OpenSDA Embedded Debug - USB Port" interface and the KL25Z128M4 as a target device. Click the "Debug" button. Click the "Resume" button to run the project. You can pause the execution and look at the data using the "Suspend" button. Now you can edit, build and debug the project again. As we used a debug configuration, it is listed under the "Debug" icon, so you can start it from there. Well done if you managed to follow along and get it all working. As a bonus I have attached the FreeMASTER project that will allow you to visualize the gathered data. If there are any questions regarding this simple project, do not hesitate to ask below. Your feedback or suggestions are also welcome. Regards, Tomas
查看全文
Hi Everyone,   In this document I would like to go through a simple bare-metal example code I created for the recently released FRDMSTBC-A8471 development board with the NXP FXLS8471Q 3-axis linear accelerometer. This board is compatible with most NXP Freedom development boards and I decided to use one of the most popular - FRDM-KL25Z. The FreeMASTER tool is used to visualize the acceleration data that are read from the FXLS8471Q using an interrupt technique through the SPI interface. I will not cover the Sensor Toolbox software and Intelligent Sensing Framework (ISF) which also support this board.   This example illustrates:   1. Initialization of the MKL25Z128 MCU (mainly SPI and PORT modules). 2. SPI data write and read operations. 3. Initialization of the FXLS8471Q to achieve the highest resolution. 4. Simple offset calibration based on the AN4069. 5. Output data reading using an interrupt technique. 6. Conversion of the output values from registers 0x01 – 0x06 to real acceleration values in g’s. 7. Visualization of the output values in the FreeMASTER tool.     1. As you can see in the FRDMSTBC-A8471​/FRDM-KL25Z​ schematics and the image below, SPI signals are routed to the SPI0 module of the KL25Z MCU and the INT1 output is connected to the PTD4 pin. The PTD0 pin (Chip Select) is not controlled automatically by SPI0 module, hence it is configured as a general-purpose output. The INT1 output of the FXLS8471Q is configured as a push-pull active-low output, so the corresponding PTD4 pin configuration is GPIO with an interrupt on falling edge.The core/system clock frequency is 20.97 MHz and SPI clock is 524.25 kHz.     The MCU is, therefore, configured as follows.   /****************************************************************************** * MCU initialization function ******************************************************************************/   void MCU_Init(void) {   //SPI0 module initialization   SIM_SCGC4 |= SIM_SCGC4_SPI0_MASK; // Turn on clock to SPI0 module   SIM_SCGC5 |= SIM_SCGC5_PORTD_MASK; // Turn on clock to Port D module   PORTD_PCR1 = PORT_PCR_MUX(0x02); // PTD1 pin is SPI0 CLK line   PORTD_PCR2 = PORT_PCR_MUX(0x02); // PTD2 pin is SPI0 MOSI line   PORTD_PCR3 = PORT_PCR_MUX(0x02); // PTD3 pin is SPI0 MISO line   PORTD_PCR0 = PORT_PCR_MUX(0x01); // PTD0 pin is configured as GPIO (CS line driven manually)   GPIOD_PSOR |= GPIO_PSOR_PTSO(0x01); // PTD0 = 1 (CS inactive)   GPIOD_PDDR |= GPIO_PDDR_PDD(0x01); // PTD0 pin is GPIO output     SPI0_C1 = SPI_C1_SPE_MASK | SPI_C1_MSTR_MASK; // Enable SPI0 module, master mode   SPI0_BR = SPI_BR_SPPR(0x04) | SPI_BR_SPR(0x02); // BaudRate = BusClock / ((SPPR+1) * 2^(SPR+1)) = 20970000 / ((4+1) * 2^(2+1)) = 524.25 kHz     //Configure the PTD4 pin (connected to the INT1 of the FXLS8471Q) for falling edge interrupts   PORTD_PCR4 |= (0|PORT_PCR_ISF_MASK| // Clear the interrupt flag                   PORT_PCR_MUX(0x1)| // PTD4 is configured as GPIO                   PORT_PCR_IRQC(0xA)); // PTD4 is configured for falling edge interrupts     //Enable PORTD interrupt on NVIC   NVIC_ICPR |= 1 << ((INT_PORTD - 16)%32);   NVIC_ISER |= 1 << ((INT_PORTD - 16)%32); }     2. The FXLS8471Q uses the ‘Mode 0′ SPI protocol, which means that an inactive state of clock signal is low and data are captured on the leading edge of clock signal and changed on the falling edge.   The falling edge on the CS pin starts the SPI communication. A write operation is initiated by transmitting a 1 for the R/W bit. Then the 8-bit register address, ADDR[7:0] is encoded in the first and second serialized bytes. Data to be written starts in the third serialized byte. The order of the bits is as follows:   Byte 0: R/W, ADDR[6], ADDR[5], ADDR[4], ADDR[3], ADDR[2], ADDR[1], ADDR[0] Byte 1: ADDR[7], X, X, X, X, X, X, X Byte 2: DATA[7], DATA[6], DATA[5], DATA[4], DATA[3], DATA[2], DATA[1], DATA[0]   The rising edge on the CS pin stops the SPI communication.   Below is the write operation which writes the value 0x3D to the CTRL_REG1 (0x3A).   Similarly a read operation is initiated by transmitting a 0 for the R/W bit. Then the 8-bit register address, ADDR[7:0] is encoded in the first and second serialized bytes. The data is read from the MISO pin (MSB first).   The screenshot below shows the read operation which reads the correct value 0x6A from the WHO_AM_I register (0x0D).   Multiple read operations are performed similar to single read except bytes are read in multiples of eight SCLK cycles. The register address is auto incremented so that every eighth next clock edges will latch the MSB of the next register.   A burst read of 6 bytes from registers 0x01 to 0x06 is shown below. It also shows how the INT1 pin is automatically cleared by reading the acceleration output data.     3. The dynamic range is set to ±2g and to achieve the highest resolution, the LNOISE bit is set and the lowest ODR (1.56Hz) and the High Resolution mode are selected (more details in AN4075). The DRDY interrupt is enabled and routed to the INT1 interrupt pin that is configured to be a push-pull, active-low output.   /****************************************************************************** * FXLS8471Q initialization function ******************************************************************************/   void FXLS8471Q_Init (void) {   FXLS8471Q_WriteRegister(CTRL_REG2, 0x02); // High Resolution mode   FXLS8471Q_WriteRegister(CTRL_REG3, 0x00); // Push-pull, active low interrupt   FXLS8471Q_WriteRegister(CTRL_REG4, 0x01); // Enable DRDY interrupt   FXLS8471Q_WriteRegister(CTRL_REG5, 0x01); // DRDY interrupt routed to INT1-PTD4   FXLS8471Q_WriteRegister(CTRL_REG1, 0x3D); // ODR = 1.56Hz, Reduced noise, Active mode   }     4. A simple offset calibration method is implemented according to the AN4069​.   /****************************************************************************** * Simple accelerometer offset calibration ******************************************************************************/   void FXLS8471Q_Calibrate (void) {   unsigned char reg_val = 0;     while (!reg_val) // Wait for a first set of data    {     reg_val = FXLS8471Q_ReadRegister(STATUS_REG) & 0x08;   }      FXLS8471Q_ReadMultiRegisters(OUT_X_MSB_REG, 6, AccData); // Read data output registers 0x01-0x06       Xout_14_bit = ((short) (AccData[0]<<8 | AccData[1])) >> 2; // Compute 14-bit X-axis output value   Yout_14_bit = ((short) (AccData[2]<<8 | AccData[3])) >> 2; // Compute 14-bit Y-axis output value   Zout_14_bit = ((short) (AccData[4]<<8 | AccData[5])) >> 2; // Compute 14-bit Z-axis output value      Xoffset = Xout_14_bit / 8 * (-1); // Compute X-axis offset correction value   Yoffset = Yout_14_bit / 8 * (-1); // Compute Y-axis offset correction value   Zoffset = (Zout_14_bit - SENSITIVITY_2G) / 8 * (-1); // Compute Z-axis offset correction value      FXLS8471Q_WriteRegister(CTRL_REG1, 0x00); // Standby mode to allow writing to the offset registers   FXLS8471Q_WriteRegister(OFF_X_REG, Xoffset);   FXLS8471Q_WriteRegister(OFF_Y_REG, Yoffset);   FXLS8471Q_WriteRegister(OFF_Z_REG, Zoffset);      FXLS8471Q_WriteRegister(CTRL_REG1, 0x3D); // ODR = 1.56Hz, Reduced noise, Active mode }     5. In the ISR, only the interrupt flag is cleared and the DataReady variable is set to indicate the arrival of new data.   /****************************************************************************** * PORT D Interrupt handler ******************************************************************************/   void PORTD_IRQHandler() {   PORTD_PCR4 |= PORT_PCR_ISF_MASK; // Clear the interrupt flag   DataReady = 1; }     6. The output values from accelerometer registers 0x01 – 0x06 are first converted to signed 14-bit values and afterwards to real values in g’s.   if (DataReady)     // Is a new set of data ready? {   DataReady = 0;     FXLS8471Q_ReadMultiRegisters(OUT_X_MSB_REG, 6, AccData); // Read data output registers 0x01-0x06                                                    Xout_14_bit = ((short) (AccData[0]<<8 | AccData[1])) >> 2; // Compute 14-bit X-axis output value   Yout_14_bit = ((short) (AccData[2]<<8 | AccData[3])) >> 2; // Compute 14-bit Y-axis output value   Zout_14_bit = ((short) (AccData[4]<<8 | AccData[5])) >> 2; // Compute 14-bit Z-axis output value                                        Xout_g = ((float) Xout_14_bit) / SENSITIVITY_2G; // Compute X-axis output value in g's   Yout_g = ((float) Yout_14_bit) / SENSITIVITY_2G; // Compute Y-axis output value in g's   Zout_g = ((float) Zout_14_bit) / SENSITIVITY_2G; // Compute Z-axis output value in g's }     7. The calculated values can be watched in the "Variables" window on the top right of the Debug perspective or in the FreeMASTER application. To open and run the FreeMASTER project, install the FreeMASTER 2.0 application and FreeMASTER Communication Driver.         Attached you can find the complete source code written in the CW for MCU's v10.6​ including the FreeMASTER project.   If there are any questions regarding this simple application, please feel free to ask below. Your feedback or suggestions are also welcome.   Regards, Tomas
查看全文
Hi Everyone,   I would like to share here one of my examples I created for the FXLS8471Q accelerometer while working with the Freescale FRDM-KL25Z platform and FRDM-FXS-MULT2-B sensor expansion board. It illustrates the use of the embedded FIFO buffer to collect the 14-bit acceleration data that are read from the FIFO using an interrupt technique through the SPI interface. For details on the configurations of the FIFO buffer as well as more specific examples and application benefits, please refer to the AN4073.   The FXLS8471Q is initialized as follows:   void FXLS8471Q_Init (void) {/* The software reset does not work properly in SPI mode as described in Appendix A of the FXLS8471Q data sheet. Therefore the following piece of the code is not used. I have shortened R46 on the FRDM-FXS-MULTI-B board to activate a hardware reset. FXLS8471Q_WriteRegister(CTRL_REG2, 0x40); // Reset all registers to POR values */   FXLS8471Q_WriteRegister(CTRL_REG1, 0x00); // Standby mode FXLS8471Q_WriteRegister(F_SETUP_REG, 0xA0); // FIFO Fill mode, 32 samples   FXLS8471Q_WriteRegister(CTRL_REG4, 0x40); // Enable FIFO interrupt, push-pull, active low   FXLS8471Q_WriteRegister(CTRL_REG5, 0x40); // Route the FIFO interrupt to INT1 - PTA5   FXLS8471Q_WriteRegister(CTRL_REG1, 0x19); // ODR = 100Hz, Active mode }       In the ISR, only the interrupt flag is cleared and the FIFO_DataReady variable is set to indicate that the FIFO is full.   void PORTA_IRQHandler() { PORTA_PCR5 |= PORT_PCR_ISF_MASK; // Clear the interrupt flag FIFO_DataReady = 1; }       Once the FIFO_DataReady variable is set, the STATUS register (0x00) is read to clear the FIFO interrupt status bit and deassert the INT1 pin. Afterwars the FIFO is read using a 192-byte (3 x 2 x 32 bytes) burst read starting from the OUT_X_MSB register (0x01). Then the raw acceleration data are converted to signed 14-bit values and real values in g’s.   if (FIFO_DataReady) { FIFO_DataReady = 0; FIFO_Status = FXLS8471Q_ReadRegister(STATUS_REG); // Read the Status register to clear the FIFO interrupt status bit FXLS8471Q_ReadMultiRegisters(OUT_X_MSB_REG, 6*Watermark_Val, AccelData); // Read the FIFO using a burst read     for (i = 0; i < Watermark_Val; i++)   { // 14-bit accelerometer data   Xout_Accel_14_bit[i] = ((short) (AccelData[0 + i*6]<<8 | AccelData[1 + i*6])) >> 2; // Compute 14-bit X-axis acceleration output values   Yout_Accel_14_bit[i] = ((short) (AccelData[2 + i*6]<<8 | AccelData[3 + i*6])) >> 2; // Compute 14-bit Y-axis acceleration output values  Zout_Accel_14_bit[i] = ((short) (AccelData[4 + i*6]<<8 | AccelData[5 + i*6])) >> 2; // Compute 14-bit Z-axis acceleration output values   // Accelerometer data converted to g's   Xout_g[i] = ((float) Xout_Accel_14_bit[i]) / SENSITIVITY_2G; // Compute X-axis output values in g's  Yout_g[i] = ((float) Yout_Accel_14_bit[i]) / SENSITIVITY_2G; // Compute Y-axis output values in g's   Zout_g[i] = ((float) Zout_Accel_14_bit[i]) / SENSITIVITY_2G; // Compute Z-axis output values in g's   } }       Deassertion of the INT1 pin after reading the STATUS register (0x00).       ODR is set to 100Hz, so the FIFO is read every 320 ms (10 ms x 32 samples).       The calculated values can be watched in the "Variables" window on the top right of the Debug perspective.       Attached you can find the complete source code written in the CW for MCU's 10.6. If there are any questions regarding this simple example project, please feel free to ask below. Your feedback or suggestions are also welcome.   Regards, Tomas Original Attachment has been moved to: FRDM-KL25Z-FXLS8471Q-FIFO.rar
查看全文
Hi Everyone, In this tutorial I intend to run through my simple bare metal example code I created for the Freescale FRDM-KL25Z platform and the FRDM-STBC-AGM01 board containing a three axis accelerometer + magnetometer (FXOS8700CQ) and a three axis gyroscope (FXAS21002C). I will not cover the Sensor Fusion library and the ISF which also support this board. The FreeMASTER tool is used to visualize all the data that are read from both sensors using an interrupt technique through the I 2 C interface. This example illustrates: 1. Initialization of the MKL25Z128 MCU (mainly I 2 C and PORT modules). 2. I 2 C data write and read operations. 3. Initialization of the FXOS8700CQ and FXAS21002C. 4. Simple accelerometer offset calibration based on the AN4069. 5. Output data reading using an interrupt technique. 6. Conversion of the output raw values to real values in g’s, µT, dps and °C. 7. Visualization of the calculated values in the FreeMASTER tool. 1. As you can see in the FRDM-STBC-AGM01 schematic, both sensors are controlled via I 2 C by default. With jumpers J6 and J7 in their default position (2-3), the I 2 C signals are routed to the I2C1 module (PTC1 and PTC2 pins) of the KL25Z MCU. The INT1_8700 output is connected to the PTD4 pin and the INT1_21002 pin to the PTA5 pin of the KL25Z MCU. These both interrupt pins are configured as push-pull active-low outputs, so the corresponding PTD4/PTA5 pin configuration is GPIO with an interrupt on falling edge. The MCU is, therefore, configured as follows. void MCU_Init(void) {      //I2C1 module initialization      SIM_SCGC4 |= SIM_SCGC4_I2C1_MASK;        // Turn on clock to I2C1 module      SIM_SCGC5 |= SIM_SCGC5_PORTC_MASK;       // Turn on clock to Port C module      PORTC_PCR1 |= PORT_PCR_MUX(0x2);         // PTC1 pin is I2C1 SCL line      PORTC_PCR2 |= PORT_PCR_MUX(0x2);         // PTC2 pin is I2C1 SDA line      I2C1_F  |= I2C_F_ICR(0x14);              // SDA hold time = 2.125us, SCL start hold time = 4.25us, SCL stop hold time = 5.125us      I2C1_C1 |= I2C_C1_IICEN_MASK;            // Enable I2C1 module                       //Configure the PTD4 pin (connected to the INT1 of the FXOS8700CQ) for falling edge interrupts      SIM_SCGC5 |= SIM_SCGC5_PORTD_MASK;       // Turn on clock to Port D module      PORTD_PCR4 |= (0|PORT_PCR_ISF_MASK|      // Clear the interrupt flag                       PORT_PCR_MUX(0x1)|      // PTD4 is configured as GPIO                       PORT_PCR_IRQC(0xA));    // PTD4 is configured for falling edge interrupts                   //Configure the PTA5 pin (connected to the INT1 of the FXAS21002) for falling edge interrupts      SIM_SCGC5 |= SIM_SCGC5_PORTA_MASK;       // Turn on clock to Port A module      PORTA_PCR5 |= (0|PORT_PCR_ISF_MASK|      // Clear the interrupt flag                       PORT_PCR_MUX(0x1)|      // PTA5 is configured as GPIO                       PORT_PCR_IRQC(0xA));    // PTA5 is configured for falling edge interrupts                          //Enable PORTD interrupt on NVIC      NVIC_ICPR |= 1 << ((INT_PORTD - 16)%32);      NVIC_ISER |= 1 << ((INT_PORTD - 16)%32);                //Enable PORTA interrupt on NVIC      NVIC_ICPR |= 1 << ((INT_PORTA - 16)%32);      NVIC_ISER |= 1 << ((INT_PORTA - 16)%32); } 2. The 7-bit I 2 C slave address of the FXOS8700CQ is 0x1E since both SA0 and SA1 pins are shorted to GND. The address of the FXAS21002C is 0x20 since SA0 pin is also shorted to GND. The two screenshots below show the write operation which writes the value 0x25 to the CTRL_REG1 (0x2A) of the FXOS8700CQ and 0x16 to the CTRL_REG1 (0x13) of the FXAS21002C. Here is the single byte read from the WHO_AM_I register. As you can see, it returns the correct value 0xC7 for the FXOS8700CQ and 0xD7 for the FXAS21002C. Finally, a burst read of 12 bytes from the FXOS8700CQ output data registers (0x01 – 0x06 and 0x33 – 0x38) and 6 bytes from the FXAS21002C output data registers (0x01 – 0x06) is shown below. 3. At the beginning of the initialization, all registers are reset to their default values by setting the RST bit of the CTRL_REG2 register. Then the FXOS8700CQ is initialized as shown below. void FXOS8700CQ_Init (void) {      I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG2, 0x40);          // Reset all registers to POR values      Pause(0x631);          // ~1ms delay            I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, XYZ_DATA_CFG_REG, 0x00);   // +/-2g range with 0.244mg/LSB              I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, M_CTRL_REG1, 0x1F);        // Hybrid mode (accelerometer + magnetometer), max OSR      I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, M_CTRL_REG2, 0x20);        // M_OUT_X_MSB register 0x33 follows the OUT_Z_LSB register 0x06 (burst read)                       I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG2, 0x02);          // High Resolution mode      I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG3, 0x00);          // Push-pull, active low interrupt      I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG4, 0x01);          // Enable DRDY interrupt      I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG5, 0x01);          // DRDY interrupt routed to INT1 - PTD4      I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG1, 0x25);          // ODR = 25Hz, Reduced noise, Active mode   } And here is the initialization of the FXAS21002C. void FXAS21002C_Init (void) {      I2C_WriteRegister(FXAS21002C_I2C_ADDRESS, GYRO_CTRL_REG1, 0x40);     // Reset all registers to POR values      Pause(0x631);        // ~1ms delay            I2C_WriteRegister(FXAS21002C_I2C_ADDRESS, GYRO_CTRL_REG0, 0x03);     // High-pass filter disabled, +/-250 dps range -> 7.8125 mdps/LSB = 128 LSB/dps      I2C_WriteRegister(FXAS21002C_I2C_ADDRESS, GYRO_CTRL_REG2, 0x0C);     // Enable DRDY interrupt, routed to INT1 - PTA5, push-pull, active low interrupt      I2C_WriteRegister(FXAS21002C_I2C_ADDRESS, GYRO_CTRL_REG1, 0x16);     // ODR = 25Hz, Active mode        } 4. A simple accelerometer offset calibration method is implemented according to the AN4069. void FXOS8700CQ_Accel_Calibration (void) {      char X_Accel_offset, Y_Accel_offset, Z_Accel_offset;            FXOS8700CQ_DataReady = 0;           while (!FXOS8700CQ_DataReady){}           // Is a first set of data ready?      FXOS8700CQ_DataReady = 0;            I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG1, 0x00);          // Standby mode                 I2C_ReadMultiRegisters(FXOS8700CQ_I2C_ADDRESS, OUT_X_MSB_REG, 6, AccelMagData);          // Read data output registers 0x01-0x06                     Xout_Accel_14_bit = ((short) (AccelMagData[0]<<8 | AccelMagData[1])) >> 2;          // Compute 14-bit X-axis acceleration output value      Yout_Accel_14_bit = ((short) (AccelMagData[2]<<8 | AccelMagData[3])) >> 2;          // Compute 14-bit Y-axis acceleration output value      Zout_Accel_14_bit = ((short) (AccelMagData[4]<<8 | AccelMagData[5])) >> 2;          // Compute 14-bit Z-axis acceleration output value                   X_Accel_offset = Xout_Accel_14_bit / 8 * (-1);          // Compute X-axis offset correction value      Y_Accel_offset = Yout_Accel_14_bit / 8 * (-1);          // Compute Y-axis offset correction value      Z_Accel_offset = (Zout_Accel_14_bit - SENSITIVITY_2G) / 8 * (-1);          // Compute Z-axis offset correction value                   I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, OFF_X_REG, X_Accel_offset);                  I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, OFF_Y_REG, Y_Accel_offset);           I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, OFF_Z_REG, Z_Accel_offset);                        I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG1, 0x25);          // Active mode again } 5. In the ISRs, only the interrupt flags are cleared and the DataReady variables are set to indicate the arrival of new data. void PORTD_IRQHandler() {      PORTD_PCR4 |= PORT_PCR_ISF_MASK;          // Clear the interrupt flag      FXOS8700CQ_DataReady = 1;  } void PORTA_IRQHandler() {      PORTA_PCR5 |= PORT_PCR_ISF_MASK;          // Clear the interrupt flag      FXAS21002C_DataReady = 1;  } 6. The output values from accelerometer registers 0x01 – 0x06 are first converted to signed 14-bit integer values and afterwards to real values in g’s. Similarly, the output values from magnetometer registers 0x33 – 0x38 are first converted to signed 16-bit integer values and afterwards to real values in microtesla (µT). if (FXOS8700CQ_DataReady)          // Is a new set of accel + mag data ready? {                  FXOS8700CQ_DataReady = 0;                                                                                                                          I2C_ReadMultiRegisters(FXOS8700CQ_I2C_ADDRESS, OUT_X_MSB_REG, 12, AccelMagData);         // Read FXOS8700CQ data output registers 0x01-0x06 and 0x33 - 0x38                     // 14-bit accelerometer data      Xout_Accel_14_bit = ((short) (AccelMagData[0]<<8 | AccelMagData[1])) >> 2;        // Compute 14-bit X-axis acceleration output value      Yout_Accel_14_bit = ((short) (AccelMagData[2]<<8 | AccelMagData[3])) >> 2;        // Compute 14-bit Y-axis acceleration output value      Zout_Accel_14_bit = ((short) (AccelMagData[4]<<8 | AccelMagData[5])) >> 2;        // Compute 14-bit Z-axis acceleration output value                              // Accelerometer data converted to g's      Xout_g = ((float) Xout_Accel_14_bit) / SENSITIVITY_2G;        // Compute X-axis output value in g's      Yout_g = ((float) Yout_Accel_14_bit) / SENSITIVITY_2G;        // Compute Y-axis output value in g's      Zout_g = ((float) Zout_Accel_14_bit) / SENSITIVITY_2G;        // Compute Z-axis output value in g's                               // 16-bit magnetometer data                   Xout_Mag_16_bit = (short) (AccelMagData[6]<<8 | AccelMagData[7]);          // Compute 16-bit X-axis magnetic output value      Yout_Mag_16_bit = (short) (AccelMagData[8]<<8 | AccelMagData[9]);          // Compute 16-bit Y-axis magnetic output value      Zout_Mag_16_bit = (short) (AccelMagData[10]<<8 | AccelMagData[11]);        // Compute 16-bit Z-axis magnetic output value                                                         // Magnetometer data converted to microteslas      Xout_uT = (float) (Xout_Mag_16_bit) / SENSITIVITY_MAG;        // Compute X-axis output magnetic value in uT      Yout_uT = (float) (Yout_Mag_16_bit) / SENSITIVITY_MAG;        // Compute Y-axis output magnetic value in uT      Zout_uT = (float) (Zout_Mag_16_bit) / SENSITIVITY_MAG;        // Compute Z-axis output magnetic value in uT              } Similarly, the output values from gyroscope registers 0x01 – 0x06 are first converted to signed 16-bit integer values and afterwards to real values in degrees per second. Temperature is also read out from the 0x12 register. if (FXAS21002C_DataReady)         // Is a new set of gyro data ready? {                  FXAS21002C_DataReady = 0;                                                                                                                                       I2C_ReadMultiRegisters(FXAS21002C_I2C_ADDRESS, GYRO_OUT_X_MSB_REG, 6, GyroData);         // Read FXAS21002C data output registers 0x01-0x06                                   // 16-bit gyro data      Xout_Gyro_16_bit = (short) (GyroData[0]<<8 | GyroData[1]);           // Compute 16-bit X-axis output value      Yout_Gyro_16_bit = (short) (GyroData[2]<<8 | GyroData[3]);           // Compute 16-bit Y-axis output value      Zout_Gyro_16_bit = (short) (GyroData[4]<<8 | GyroData[5]);           // Compute 16-bit Z-axis output value                                           // Gyro data converted to dps      Roll = (float) (Xout_Gyro_16_bit) / SENSITIVITY_250;          // Compute X-axis output value in dps      Pitch = (float) (Yout_Gyro_16_bit) / SENSITIVITY_250;         // Compute Y-axis output value in dps      Yaw = (float) (Zout_Gyro_16_bit) / SENSITIVITY_250;           // Compute Z-axis output value in dps                               // Temperature data      Temp = I2C_ReadRegister(FXAS21002C_I2C_ADDRESS, GYRO_TEMP_REG);                   }   7. The calculated values can be watched in the "Variables" window on the top right of the Debug perspective or in the FreeMASTER application. To open and run the FreeMASTER project, install the FreeMASTER application​ and FreeMASTER Communication Driver. I guess this is enough to let you start experimenting with the FRDM-STBC-AGM01 board. Attached you can find the complete source code written in the CW for MCU's v10.6 including the FreeMASTER project. If there are any questions regarding this simple application, do not hesitate to ask below. Your feedback or suggestions are also welcome. Regards, Tomas
查看全文
Hi, The MMA865x, 3-axis, 10-bit/12-bit accelerometer that has industry leading performance in a small 2 x 2 x 1 mm DFN package. This accelerometer is packed with embedded functions that include flexible user-programmable options and two configurable interrupt pins. Overall power savings is achieved through inertial wake-up interrupt signals that monitor events and remain in a low-power mode during periods of inactivity. Here is a Render of the MMA865x Breakout- Board downloaded from OSH park: Layout Design for this board: In the attachments section, you can find the Schematic Source File (SCH), Schematic PDF File, Layout Source File (BRD), Gerber Files (GTL, GBL, GTS, GBS, GTO, GBO, GKO, XLN) and BOM files. If you're interested in more designs like this breakout board for other sensors, please go to Freescale Sensors Breakout Boards Designs – HOME
查看全文
Video clip associated with "Android as a Platform for Sensor Fusion Education and Evaluation" presented at 2013 Sensors Expo & Conference by Michael Stanley.
查看全文
This is a step-by-step guide document to set the FRDM-K64F-AGM01 on the Freescale Sensor Fusion Toolbox Software.
查看全文
FRDM-STBC-AGM01: 9-Axis Inertial Measurement Sensor Board FRDM-KL25Z FRDM-STBC-AGM01 - Example project in KDS 3.0.0 using KSDK 1.2.0 and Processor Expert FRDM-STBC-AGM01 - Bare metal example project   FRDMSTBC-A8471: 3-Axis Accelerometer Sensor Toolbox Development Board FRDMSTBC-A8471 - Bare metal example project FRDMSTBC-A8471 - Example project in KDS 3.0.2 using KSDK 2.0 FXLS8471Q Auto-sleep with Transient threshold trigger    MPL3115A2: 20 to 110kPa, Absolute Digital (I 2 C) Pressure Sensor MPL3115A2 - Bare metal example project FRDMKL25-P3115 - Example project in KDS 3.0.2 using KSDK 2.0 https://community.nxp.com/docs/DOC-345632    MPL115A1: 50 to 115kPa, Absolute Digital (SPI) Pressure Sensor MPL115A1- Bare metal example project    FXOS8700CQ: Digital (I 2 C/SPI) Sensor - 3-Axis Accelerometer (±2g/±4g/±8g) + 3-Axis Magnetometer FXOS8700CQ - Bare metal example project FXOS8700CQ - Magnetic threshold detection function example code  FXOS8700CQ - Auto-sleep with Magnetic threshold trigger    FXLS8471Q: ±2g/±4g/±8g, 3-Axis, 14-Bit Digital (I 2 C/SPI) Accelerometer FXLS8471Q - Bare metal example project FXLS8471Q - FIFO Fill mode example code FXLS8471Q - Accelerometer vector-magnitude function example code FXLS8471Q - Accelerometer transient detection function example code FXLS8471Q - Accelerometer motion detection function example code  FXLS8471Q - Accelerometer orientation detection function example code    MMA8652FC: ±2g/±4g/±8g, 3-Axis, 12-Bit Digital (I 2 C) Accelerometer MMA8652FC - Bare metal example project MMA8652FC - Auto-WAKE/SLEEP mode   MMA8451Q: ±2g/±4g/±8g, 3-Axis, 14-bit Digital (I 2 C) Accelerometer MMA8451Q - Bare metal example project MMA8451Q - Single Tap Detection Bare metal example project FRDM-KL27Z MMA8451Q - How to build and run an ISSDK based example project    MMA8491Q: ±8g, 3-Axis, 14-bit Digital (I 2 C) Accelerometer/Tilt Sensor MMA8491Q - Acceleration data streaming using the PIT on the Kinetis KL25Z MCU   FXLN83xxQ: 3-Axis, Low-Power, Analog Accelerometer FXLN8371Q - Bare metal example project   FXAS21002C: 3-Axis Digital (I 2 C/SPI) Gyroscope FXAS21000 – Bare metal example project FXAS21002C - Angular rate threshold detection function example code   MAG3110FC: 3-Axis Digital (I 2 C) Magnetometer MAG3110FC – Bare metal example project   LM75A: Digital temperature sensor and thermal watchdog LM75A - Temperature data streaming using the PIT on the Kinetis KL25Z MCU
查看全文
Hi Everyone,   As I am often asked for a simple bare metal example code for the Xtrinsic FXOS8700CQ 6-axis sensor, I would like to share here one of my examples I have created for this part while working with the Freescale FRDM-KL25Z platform and FRDM-FXS-MULTI(-B) sensor expansion board that features many of the Xtrinsic sensors including the FXOS8700CQ. The FreeMASTER tool is used to visualize both the acceleration and magnetic data that are read from the FXOS8700CQ using an interrupt technique through the I 2 C interface.   This example illustrates:   1. Initialization of the MKL25Z128 MCU (mainly I2C and PORT modules). 2. I 2 C data write and read operations. 3. Initialization of the FXOS8700CQ. 4. Simple accelerometer offset calibration based on the AN4069. 5. Simple magnetic hard-iron offset calibration. 6. Output data reading using an interrupt technique. 7. Conversion of the output values from registers 0x01 – 0x06 and 0x33 – 0x38 to real values in g’s and µT and simple heading angle calculation. 8. Visualization of the calculated values in the FreeMASTER tool.   1. As you can see in the FRDM-FXS-MULTI(-B)/FRDM-KL25Z schematics and the image below, I2C signals are routed to the I2C1 module (PTC1 and PTC2 pins) of the KL25Z MCU and the INT1 output is connected to the PTD4 pin (make sure that pins 1-2 of J3 on the sensor expansion board are connected together using a jumper). The INT1 output of the FXOS8700CQ is configured as a push-pull active-low output, so the corresponding PTD4 pin configuration is GPIO with an interrupt on falling edge.   The MCU is, therefore, configured as follows.   void MCU_Init(void) {      //I2C1 module initialization      SIM_SCGC4 |= SIM_SCGC4_I2C1_MASK;        // Turn on clock to I2C1 module      SIM_SCGC5 |= SIM_SCGC5_PORTC_MASK;       // Turn on clock to Port C module      PORTC_PCR1 |= PORT_PCR_MUX(0x2);         // PTC1 pin is I2C1 SCL line      PORTC_PCR2 |= PORT_PCR_MUX(0x2);         // PTC2 pin is I2C1 SDA line      I2C1_F  |= I2C_F_ICR(0x14);              // SDA hold time = 2.125us, SCL start hold time = 4.25us, SCL stop hold time = 5.125us      I2C1_C1 |= I2C_C1_IICEN_MASK;            // Enable I2C0 module               //Configure the PTD4 pin (connected to the INT1 of the FXOS8700CQ) for falling edge interrupts      SIM_SCGC5 |= SIM_SCGC5_PORTD_MASK;       // Turn on clock to Port A module      PORTD_PCR4 |= (0|PORT_PCR_ISF_MASK|      // Clear the interrupt flag                      PORT_PCR_MUX(0x1)|       // PTD4 is configured as GPIO                      PORT_PCR_IRQC(0xA));     // PTD4 is configured for falling edge interrupts                   //Enable PORTD interrupt on NVIC      NVIC_ICPR |= 1 << ((INT_PORTD - 16)%32);      NVIC_ISER |= 1 << ((INT_PORTD - 16)%32); }   2. The 7-bit I2C address of the FXOS8700CQ is 0x1E since both SA0 and SA1 lines are shorted to GND using jumpers J21 and J23 on the sensor board. As shown above, the SCL line is connected to the PTC1 pin and SDA line to the PTC2 pin. The I2C clock frequency is 125 kHz.   The screenshot below shows the write operation which writes the value 0x35 to the CTRL_REG1 (0x2A).     And here is the single byte read from the WHO_AM_I register 0x0D. As you can see, it returns the correct value 0xC7.     Multiple bytes of data can be read from sequential registers after each FXOS8700CQ acknowledgment (AK) is received until a no acknowledge (NAK) occurs from the KL25Z followed by a stop condition (SP) signaling an end of transmission. A burst read of 6 bytes from registers 0x33 to 0x38, that is performed in the calibration routine “FXOS8700CQ_Mag_Calibration()”, is shown below. It also shows when the INT1 pin is automatically cleared.     3. At the beginning of the initialization, all registers are reset to their default values by setting the RST bit of the CTRL_REG2 register. Then the FXOS8700CQ is initialized as shown below.   void FXOS8700CQ_Init (void) {      I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG2, 0x40);          // Reset all registers to POR values        Pause(0x631);        // ~1ms delay        I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, XYZ_DATA_CFG_REG, 0x00);   // +/-2g range with 0.244mg/LSB          I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, M_CTRL_REG1, 0x1F);        // Hybrid mode (accelerometer + magnetometer), max OSR      I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, M_CTRL_REG2, 0x20);        // M_OUT_X_MSB register 0x33 follows the OUT_Z_LSB register 0x06 (used for burst read)                   I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG2, 0x02);          // High Resolution mode      I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG3, 0x00);          // Push-pull, active low interrupt      I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG4, 0x01);          // Enable DRDY interrupt      I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG5, 0x01);          // DRDY interrupt routed to INT1 - PTD4      I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG1, 0x35);          // ODR = 3.125Hz, Reduced noise, Active mode   }   4. A simple accelerometer offset calibration method is implemented according to the AN4069.   void FXOS8700CQ_Accel_Calibration (void) {      char X_Accel_offset, Y_Accel_offset, Z_Accel_offset;        DataReady = 0;                while (!DataReady){}       // Is a first set of data ready?      DataReady = 0;        I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG1, 0x00);          // Standby mode             I2C_ReadMultiRegisters(FXOS8700CQ_I2C_ADDRESS, OUT_X_MSB_REG, 6, AccelMagData);          // Read data output registers 0x01-0x06                 Xout_Accel_14_bit = ((short) (AccelMagData[0]<<8 | AccelMagData[1])) >> 2;        // Compute 14-bit X-axis acceleration output value      Yout_Accel_14_bit = ((short) (AccelMagData[2]<<8 | AccelMagData[3])) >> 2;        // Compute 14-bit Y-axis acceleration output value      Zout_Accel_14_bit = ((short) (AccelMagData[4]<<8 | AccelMagData[5])) >> 2;        // Compute 14-bit Z-axis acceleration output value               X_Accel_offset = Xout_Accel_14_bit / 8 * (-1);         // Compute X-axis offset correction value      Y_Accel_offset = Yout_Accel_14_bit / 8 * (-1);         // Compute Y-axis offset correction value      Z_Accel_offset = (Zout_Accel_14_bit - SENSITIVITY_2G) / 8 * (-1);          // Compute Z-axis offset correction value               I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, OFF_X_REG, X_Accel_offset);                  I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, OFF_Y_REG, Y_Accel_offset);           I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, OFF_Z_REG, Z_Accel_offset);                    I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG1, 0x35);          // Active mode again }   5. A simple software calibration of magnetic hard-iron offset consists of recording the minimum and maximum magnetometer readings while rotating the board horizontally and vertically and then computing the calibration values from their average. The calibration time is defined by the number of samples taken during calibration (local variable “i” in the while loop) and selected ODR. In my example I use 94 samples at 3.125Hz, so the calibration routine takes 30s.   void FXOS8700CQ_Mag_Calibration (void) {      short Xout_Mag_16_bit_avg, Yout_Mag_16_bit_avg, Zout_Mag_16_bit_avg;          short Xout_Mag_16_bit_max, Yout_Mag_16_bit_max, Zout_Mag_16_bit_max;          short Xout_Mag_16_bit_min, Yout_Mag_16_bit_min, Zout_Mag_16_bit_min;      char i = 0;        DataReady = 0;            while (i < 94)             // This takes ~30s (94 samples * 1/3.125)      {               if (DataReady)             // Is a new set of data ready?         {                          DataReady = 0;                                                                                                                                                                I2C_ReadMultiRegisters(FXOS8700CQ_I2C_ADDRESS, MOUT_X_MSB_REG, 6, AccelMagData);         // Read data output registers 0x33 - 0x38                                   Xout_Mag_16_bit = (short) (AccelMagData[0]<<8 | AccelMagData[1]);        // Compute 16-bit X-axis magnetic output value              Yout_Mag_16_bit = (short) (AccelMagData[2]<<8 | AccelMagData[3]);        // Compute 16-bit Y-axis magnetic output value              Zout_Mag_16_bit = (short) (AccelMagData[4]<<8 | AccelMagData[5]);        // Compute 16-bit Z-axis magnetic output value                                            // Assign first sample to maximum and minimum values                        if (i == 0)              {                   Xout_Mag_16_bit_max = Xout_Mag_16_bit;                   Xout_Mag_16_bit_min = Xout_Mag_16_bit;                                                Yout_Mag_16_bit_max = Yout_Mag_16_bit;                   Yout_Mag_16_bit_min = Yout_Mag_16_bit;                                                Zout_Mag_16_bit_max = Zout_Mag_16_bit;                   Zout_Mag_16_bit_min = Zout_Mag_16_bit;              }                                       // Check to see if current sample is the maximum or minimum X-axis value                       if (Xout_Mag_16_bit > Xout_Mag_16_bit_max)    {Xout_Mag_16_bit_max = Xout_Mag_16_bit;}                       if (Xout_Mag_16_bit < Xout_Mag_16_bit_min)    {Xout_Mag_16_bit_min = Xout_Mag_16_bit;}                         // Check to see if current sample is the maximum or minimum Y-axis value                       if (Yout_Mag_16_bit > Yout_Mag_16_bit_max)    {Yout_Mag_16_bit_max = Yout_Mag_16_bit;}                       if (Yout_Mag_16_bit < Yout_Mag_16_bit_min)    {Yout_Mag_16_bit_min = Yout_Mag_16_bit;}                                       // Check to see if current sample is the maximum or minimum Z-axis value                       if (Zout_Mag_16_bit > Zout_Mag_16_bit_max)    {Zout_Mag_16_bit_max = Zout_Mag_16_bit;}                       if (Zout_Mag_16_bit < Zout_Mag_16_bit_min)    {Zout_Mag_16_bit_min = Zout_Mag_16_bit;}                              i++;          }           }        Xout_Mag_16_bit_avg = (Xout_Mag_16_bit_max + Xout_Mag_16_bit_min) / 2;            // X-axis hard-iron offset      Yout_Mag_16_bit_avg = (Yout_Mag_16_bit_max + Yout_Mag_16_bit_min) / 2;            // Y-axis hard-iron offset      Zout_Mag_16_bit_avg = (Zout_Mag_16_bit_max + Zout_Mag_16_bit_min) / 2;            // Z-axis hard-iron offset        // Left-shift by one as magnetometer offset registers are 15-bit only, left justified      Xout_Mag_16_bit_avg <<= 1;             Yout_Mag_16_bit_avg <<= 1;       Zout_Mag_16_bit_avg <<= 1;        I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG1, 0x00);          // Standby mode to allow writing to the offset registers        I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, MOFF_X_LSB_REG, (char) (Xout_Mag_16_bit_avg & 0xFF));             I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, MOFF_X_MSB_REG, (char) ((Xout_Mag_16_bit_avg >> 😎 & 0xFF));            I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, MOFF_Y_LSB_REG, (char) (Yout_Mag_16_bit_avg & 0xFF));      I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, MOFF_Y_MSB_REG, (char) ((Yout_Mag_16_bit_avg >> 😎 & 0xFF));                   I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, MOFF_Z_LSB_REG, (char) (Zout_Mag_16_bit_avg & 0xFF));      I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, MOFF_Z_MSB_REG, (char) ((Zout_Mag_16_bit_avg >> 😎 & 0xFF));              I2C_WriteRegister(FXOS8700CQ_I2C_ADDRESS, CTRL_REG1, 0x35);          // Active mode again       }   6. In the ISR, only the interrupt flag is cleared and the DataReady variable is set to indicate the arrival of new data.   void PORTD_IRQHandler() {      PORTD_PCR4 |= PORT_PCR_ISF_MASK;                // Clear the interrupt flag      DataReady = 1;       }   7. The output values from accelerometer registers 0x01 – 0x06 are first converted to signed 14-bit integer values and afterwards to real values in g’s. Similarly, the output values from magnetometer registers 0x33 – 0x38 are first converted to signed 16-bit integer values and afterwards to real values in microtesla (µT).   If the board remains flat, then the compass heading can be simply computed from the arctangent of the ratio of the two horizontal magnetic field components. I have used the atan2 function which returns the result in radians (-π and π), so I multiply it by 180/π to end up with degrees.   If you are interested in more complex algorithms for a tilt-compensated e-compass with soft-iron calibration, please refer to our eCompass software.   if (DataReady)             // Is a new set of data ready? {                  DataReady = 0;                                                                                                                      I2C_ReadMultiRegisters(FXOS8700CQ_I2C_ADDRESS, OUT_X_MSB_REG, 12, AccelMagData);         // Read data output registers 0x01-0x06 and 0x33 - 0x38                 // 14-bit accelerometer data      Xout_Accel_14_bit = ((short) (AccelMagData[0]<<8 | AccelMagData[1])) >> 2;        // Compute 14-bit X-axis acceleration output value      Yout_Accel_14_bit = ((short) (AccelMagData[2]<<8 | AccelMagData[3])) >> 2;        // Compute 14-bit Y-axis acceleration output value      Zout_Accel_14_bit = ((short) (AccelMagData[4]<<8 | AccelMagData[5])) >> 2;        // Compute 14-bit Z-axis acceleration output value                          // Accelerometer data converted to g's      Xout_g = ((float) Xout_Accel_14_bit) / SENSITIVITY_2G;        // Compute X-axis output value in g's      Yout_g = ((float) Yout_Accel_14_bit) / SENSITIVITY_2G;        // Compute Y-axis output value in g's      Zout_g = ((float) Zout_Accel_14_bit) / SENSITIVITY_2G;        // Compute Z-axis output value in g's                           // 16-bit magnetometer data                   Xout_Mag_16_bit = (short) (AccelMagData[6]<<8 | AccelMagData[7]);          // Compute 16-bit X-axis magnetic output value      Yout_Mag_16_bit = (short) (AccelMagData[8]<<8 | AccelMagData[9]);          // Compute 16-bit Y-axis magnetic output value      Zout_Mag_16_bit = (short) (AccelMagData[10]<<8 | AccelMagData[11]);        // Compute 16-bit Z-axis magnetic output value                                                     // Magnetometer data converted to microteslas      Xout_uT = (float) (Xout_Mag_16_bit) / SENSITIVITY_MAG;        // Compute X-axis output magnetic value in uT      Yout_uT = (float) (Yout_Mag_16_bit) / SENSITIVITY_MAG;        // Compute Y-axis output magnetic value in uT      Zout_uT = (float) (Zout_Mag_16_bit) / SENSITIVITY_MAG;        // Compute Z-axis output magnetic value in uT                      Heading = atan2 (Yout_uT, Xout_uT) * 180 / PI;         // Compute Yaw angle }     8. The calculated values can be watched in the "Variables" window on the top right of the Debug perspective or in the FreeMASTER application. To open and run the FreeMASTER project, install the FreeMASTER 1.4 application and FreeMASTER Communication Driver.       Attached you can find the complete source code written in the CW for MCU's v10.5 including the FreeMASTER project.   If there are any questions regarding this simple application, please feel free to ask below. Your feedback or suggestions are also welcome.   Regards, Tomas Original Attachment has been moved to: FRDM-KL25Z-FXOS8700CQ-Basic-read-using-I2C-and-interrupt.zip Original Attachment has been moved to: FreeMASTER---FRDM-KL25Z-FXOS8700CQ-Basic-read-using-I2C-and-interrupt.zip
查看全文
The MMA690x, a SafeAssure solution, is a dual axis, Low g, XY, Sensorbased on Freescale’s HARMEMS technology, with an embedded DSP ASIC, allowing for additional processing of the digital signals. Here is a Render of the MMA690x Breakout Board downloaded from OSH park: Layout Design for this board: In the attachments section, you can find the Schematic Source File (SCH), Schematic PDF File, Layout Source File (BRD), Gerber Files (GTL, GBL, GTS, GBS, GTO, GBO, GKO, XLN) and BOM files.   If you're interested in more designs like this breakout board for other sensors, please go to Freescale Sensors Breakout Boards Designs – HOME
查看全文
Hi Everyone,   I would like to present another example code/demo that reads acceleration data from the Xtrinsic MMA8491Q digital accelerometer and visualizes them using the FreeMASTER tool via USBDM interface. I have used recently released Xtrinsic MEMS sensors board that features three types of Xtrinsic sensors including the MMA8491Q and is fully compatible with the Freescale FRDM-KL25Z platform.   In comparison with other Xtrinsic accelerometers, the MMA8491Q is turned on at the rising edge on the EN pin and acquires only one sample for each of the three axes. It does not have any interrupt pins, instead there are three push-pull logic outputs which provide tilt detection at 45 degrees as the original target application was tamper detection. However, it is possible to read the 14-bit output values through the I2C port as demonstrated in my example below.   According to the User Manual, both SCL and SDA lines are connected through the 4.7K pull-up resistors to the I2C1 module (PTE1 and PTE0 pins) on the KL25Z128 MCU and the EN pin is connected to the PTA13 pin. The EN input needs to be kept high until a new data is ready (max. 900us) and read. In my code I use the PIT module to wait 1ms before reading the output values. This timer is also used to read the output data periodically at a fixed rate. The timeout period of the PIT is set to 500us. The MCU is, therefore, configured as follows:   void MCU_Init(void) {             //I2C1 module initialization             SIM_SCGC4 |= SIM_SCGC4_I2C1_MASK;        // Turn on clock to I2C1 module         SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK;       // Turn on clock to Port E module        PORTE_PCR1 = PORT_PCR_MUX(6);            // PTE1 pin is I2C1 SCL line        PORTE_PCR0 = PORT_PCR_MUX(6);            // PTE0 pin is I2C1 SDA line        I2C1_F  = 0x14;                          // SDA hold time = 2.125us, SCL start hold time = 4.25us, SCL stop hold time = 5.125us         I2C1_C1 = I2C_C1_IICEN_MASK;             // Enable I2C1 module                //Configure the PTA13 pin as an output to drive the EN input of the MMA8491Q        SIM_SCGC5 |= SIM_SCGC5_PORTA_MASK;       // Turn on clock to Port A module        PORTA_PCR13 = PORT_PCR_MUX(1);           // PTA13 is configured as GPIO        GPIOA_PCOR |= 1<<13;                     // Set PTA13 pin low        GPIOA_PDDR |= 1<<13;                     // PTA13 pin is an output                //PIT initialization        SIM_SCGC6 |= SIM_SCGC6_PIT_MASK;         // Turn on clock to to the PIT module        PIT_LDVAL0 = 5240;                       // Timeout period = 500us        PIT_MCR = PIT_MCR_FRZ_MASK;              // Enable clock for PIT, freeze PIT in debug mode        PIT_TCTRL0 = PIT_TCTRL_TIE_MASK |        // Enable PIT interrupt                    PIT_TCTRL_TEN_MASK;          // and PIT                //Enable PIT interrupt on NVIC           NVIC_ICPR |= 1 << ((INT_PIT - 16) % 32);        NVIC_ISER |= 1 << ((INT_PIT - 16) % 32); }   In the PIT interrupt service routine (ISR), there is a variable Counter that is increased by one on every PIT interrupt (500us) and its value is then compared with two preset values. The first preset value EN_HIGH_TIME determines how long the EN pin will remain high to ensure a valid reading of a new set of output data. The second preset value DATA_UPDATE_PERIOD corresponds to the desired output data rate. At the end of the ISR, the PIT interrupt flag is cleared.   void PIT_IRQHandler() {        static int Counter = 0;        Counter++;                                   // Each increment represents 500us        switch (Counter)     {             case 1:             GPIOA_PSOR |= 1<<13;                 // Set EN pin high                      break;             caseEN_HIGH_TIME:                        // 1ms passed             DataReady = 1;                       // Data is ready                      break;             caseDATA_UPDATE_PERIOD:                  // 100ms passed             Counter = 0;                         // Clear Counter at the end of the sample period                      break;             default:                      break;     }        PIT_TFLG0 |= PIT_TFLG_TIF_MASK;              // Clear PIT interrupt flag }   In the main loop, the DataReady variable is periodically checked and if it is set, the accelerometer data registers 0x01 - 0x06 are read and then the acceleration in units of g is calculated. Finally the EN pin is set low to reduce the current consumption and the DataReady variable is cleared.   if (DataReady)                                                                  // Is a new set of data ready? {                  AccData[0] = I2C_ReadRegister(MMA8491Q_I2C_ADDRESS, OUT_X_MSB_REG);         // [7:0] are 8 MSBs of the 14-bit X-axis sample      AccData[1] = I2C_ReadRegister(MMA8491Q_I2C_ADDRESS, OUT_X_LSB_REG);         // [7:2] are the 6 LSB of 14-bit X-axis sample      AccData[2] = I2C_ReadRegister(MMA8491Q_I2C_ADDRESS, OUT_Y_MSB_REG);         // [7:0] are 8 MSBs of the 14-bit Y-axis sample      AccData[3] = I2C_ReadRegister(MMA8491Q_I2C_ADDRESS, OUT_Y_LSB_REG);         // [7:2] are the 6 LSB of 14-bit Y-axis sample      AccData[4] = I2C_ReadRegister(MMA8491Q_I2C_ADDRESS, OUT_Z_MSB_REG);         // [7:0] are 8 MSBs of the 14-bit Z-axis sample      AccData[5] = I2C_ReadRegister(MMA8491Q_I2C_ADDRESS, OUT_Z_LSB_REG);         // [7:2] are the 6 LSB of 14-bit Z-axis sample        Xout_14_bit = ((short) (AccData[0]<<8 | AccData[1])) >> 2;           // Compute 14-bit X-axis output value      Yout_14_bit = ((short) (AccData[2]<<8 | AccData[3])) >> 2;           // Compute 14-bit Y-axis output value      Zout_14_bit = ((short) (AccData[4]<<8 | AccData[5])) >> 2;           // Compute 14-bit Z-axis output value                         Xout_g = ((float) Xout_14_bit) / SENSITIVITY;          // Compute X-axis output value in g's      Yout_g = ((float) Yout_14_bit) / SENSITIVITY;          // Compute Y-axis output value in g's      Zout_g = ((float) Zout_14_bit) / SENSITIVITY;          // Compute Z-axis output value in g's                                              GPIOA_PCOR |= 1<<13;       // Set EN pin low      DataReady = 0;                                                                                                                                 }                       The calculated values can be watched in the "Variables" window on the top right of the Debug perspective or in the FreeMASTER application.       Attached you can find the complete source code written in the CW 10.3 as well as the FreeMASTER project.   If there are any questions regarding this simple application, do not hesitate to ask below. Your feedback or suggestions are also welcome.   Regards, Tomas  
查看全文
clicktaleID