S32 Design Studio Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

S32 Design Studio Knowledge Base

Discussions

Sort by:
Perhaps you are just using the S32DS for Power for the first time, and maybe you've seen the provided examples and want to learn a bit more about how they were created. Here are the steps to create a simple application for the MCP5748G MCU which toggles a pin causing one of the user LEDs to blink. This example includes use of the S32 SDK for Power Architecture. Please note: There are options in the steps below to cover the case of either the DEV-KIT(DEVKIT-MPC5748G) or Motherboard(X-MPC574XG-MB) with Daughtercard(X-MPC574XG-324DS) hardware EVBs. 1) Launch S32DS for Power 2) Select File -> New -> New S32DS Project 3) Enter a name for the project, such as 'BlinkingLED' 4) Locate, from the list of processors, Family MPC574xG -> MPC5748G, and select it. 5) Click Next 6) Uncheck the boxes for cores e200z4 and e200z2, leaving just e200z4 (boot) checked. This is because the application will run on the boot core and will not use either of the other two cores. 7) Click on the '…' button next to SDKs, in the column for BlinkingLED_Z4_0. 😎 Check the box next to MPC5748G_SDK_Z4_0_GCC to include support for the SDK within the new project and for the core we have selected. 9) Click OK 10) Click Finish to close the New Project wizard window and start the project generation. 11) Wait a minute or two for the project generation script to complete. 12) Go to the 'Components Library' view then locate and double-click on 'pit' component to add it to the project.  Alternatively, right-click and select Add to project. You can verify it was added by inspecting the 'Components - <project_name>' view. 13) With 'pit' selected in the 'Components - BlinkingLED_Z4_0' view, go to the 'Component Inspector' view to see the configurations for the PIT component. Locate the section for 'Configuration 0'. You may have to scroll down to see it. Change the 'Time period' setting to 500000 microsec(0.5 sec). Note that we are editing the settings for Clock configuration 'clockMan_InitConfig0', you will need the name of this configuration later. 14) Back in the 'Components' view, select 'pin_mux' component and return to the 'Component Inspector' view 15) From the 'Routing' tab, select the 'SIUL2' sub-tab and scroll down the Signals list until 'GPIO_0' (DEV-KIT) or 'GPIO_99' (Motherboard) is shown. 16) Change to the following settings: a. Pin/Signal Selection: PA[0] (DEV-KIT) / PG[3] (Motherboard) b. Direction: Output Pin PA0/PG3 is connected to user LED 2 on the evaluation board. 17) All configuration settings are now complete. Click Generate Processor Expert code button in the 'Components' view or use the menu bar Project-> Generate Processor Expert Code. 18) Wait for the code generation to complete. 19) Now, from the 'Project Explorer' view, the generated code is visible in the folder 'Generated_Code' of the project 'BlinkingLED_Z4_0'. 20) If not already open, in 'Project Explorer' open the file 'BlinkngLED_Z4_0\Sources\main.c' by double-click. This will open the file in the editor view. 21) Scroll down until the following comments are shown: /* Write your code here */ /* For example: for(;;) { } */ We need to add some code here to initialize the clocks, timers and pins. Then we will setup a timer interrupt handler to toggle the pin. 22) First we need to initialize the clocks. From the 'Components' view, expand 'clock_manager' and then drag & drop CLOCK_DRV_Init function into main() of main.c, just after the comments identified in the previous step within the text editor view. 23) Add to the function CLOCK_DRV_Init(), the parameter &clockMan1_InitConfig0 to give it the address of the user configuration structure generated by ProcessorExpert in '.../Generated_Code/clockMan1.c'. This is the clock configuration for which we edited the timer period in an earlier step. 24) Next we need to initialize the pins. Back in the 'Components' view, expand the 'pin_mux' then drag and drop the function PINS_DRV_Init after the clock initialization. 25) Again from the 'Components' view, expand 'interrupt_manager', then drag & drop INT_SYS_InstallHandler in 'main()'. This installs the PIT channel 0 interrupt handler. 26) Enter the parameters: PIT_Ch0_IRQn, &pitCh0Handler, NULL 27) In the User includes section at the start of main.c, add the implementation of the handler a. Create a function called pitCh0Handler b. In the function body: clear the interrupt flag and toggle LED   /* IRQ handler for PIT ch0 interrupt */   void pitCh0Handler(void)   { /* Clear PIT channel 0 interrupt flag */ PIT_DRV_ClearStatusFlags(INST_PIT1, 0U); /* Toggle LED (GPIO 0 connected to user LED 2) */ SIUL2->GPDO[0] ^= SIUL2_GPDO_PDO_4n_MASK; // DEV-KIT /* SIUL2->GPDO[99/4] ^=SIUL2_GPDO_PDO_4n3_MASK;*/ // Motherboard   } Note: Get PIT_DRV_ClearStatusFlags by drag & drop from the 'pit' component. 28) In 'Components' view, expand 'pit' component and then drag & drop PIT_DRV_Init, PIT_DRV_InitChannel & PID_DRV_StartChannel in main() after INT_SYS_InstallHandler(). 29) Fill in the second parameter of the last function(channel number): 0U 30) Build the code. Click the down arrow next to the 'Build' button and select Debug_RAM. Check that there are no build errors. 31) Enter the 'Debug Configurations' menu: a. From the menu bar, Run -> Debug Configurations... b. From the toolbar, down arrow next to Debug button -> Debug Configurations... 32) The Debug Configurations window appears. Select the configuration BlinkingLED_Z4_0_Debug_RAM from within the GDB PEMicro Interface Debugging group. 33) Select the 'Debugger' tab to setup the connection to the debugger hardware device. 34) Select the PEMicro Interface which corresponds to your setup: a. If using the motherboard, you will likely use the USB Multilink, which is connected to your PC via USB cable (type A on one end, type B on the other) and is connected to the motherboard via the 14-pin JTAG cable. b. If using the DEV-KIT board, you will likely choose the OpenSDA, which is integrated into the DEV-KIT board and is connected with just a USB cable (type A on one end, type micro on the other). 35) Click Debug To launch the debugging session. This will also open the Debug perspective. 36) In the Debug perspective, once the debugging session has fully launched, the code will be executed to the start of main(), where a breakpoint was automatically set for you. Press Resume button in the toolbar, Run -> Resume in the menu bar, or F8 on your keyboard to run the application. 37) You should now see the User LED2 on the board blink every 0.5 seconds. 38) To see the value of the output register bit for the output pin connected to the LED: a. Set a breakpoint on a line within pitCh0Handler() b. Go to the EmbSys Registers view, expand the SIUL2 module and scroll down to the GPDO register index which is accessed in the code. Double-click it to read the value. Expand it to see the individual bits. c. Press Resume a few times to see the register value change
View full article
This Example demonstrates an alternative way to multi-core projects. This is basically a single eclipse project that generates the single elf file for dual core MCU (MPC5777C) See the project structure below where the sources for each core are separated into a core specific source folder: Main core0 [e200z7_0] performs basic initialization (Clocks, ports..) Each core initializes the interrupt controller in order to service interrupts generated by PIT (Periodic Interrupt Timer): Core 0 (e200z7_0) services PIT channel 0 interrupts generated once per second. Core 1 (e200z7_1) services PIT channel 2 interrupts generated once per two seconds.
View full article
        Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Power Architecture v1.2, Update 3            September 21, 2017   What is new? S32 SDK EAR 0.8.1 supporting MPC5748G & MPC5748C. The new project wizard now offers the new version of S32 SDK: "New S32 Project from Example" offers additional demos and examples. The complete S32 SDK EAR 0.8.1 release notes attached below. Installation instructions This is a cumulative installer - all previous updates (except previous version of S32 SDK EAR 0.8.0) are included so you do not need to install any previous update. The update is available for online (Eclipse Updater) or offline (direct download link) installation. online installation go to menu "Help" -> "Install New Software..." dialog  select predefined NXP S32 Design Studio update repository select all available items http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_POWER_1_2/com.freescale.s32power.updatesite click "Next" button offline installation  go to S32 Design Studio product page -> Downloads section or use the direct download linkand download the "S32 Design Studio for Power v1.2 - Update 3" file. Start S32DS and go to "Help" -> "Install New Software..." Add a new "Archive" repository and browse to select the downloaded Update 3 archive file Select all available items and click "Next" button.
View full article
Build your project and choose Debug Configuration option  On the left side select Launch Group of your choice (Flash/RAM) and press Debug button Wait while debug session is fully started. If you left default startup configuration - all cores has active break-point at the beginning of main() function. You can chose any core for debugging just by clicking on the core's thread. Sometimes are init functions - including startup of other cores - inside main() of boot core (for S32R274 is boot core Z4). In this case you should let boot core perform init sequence first and then try debug other cores. On next picture are all cores halted.  On this picture are core 1 (Z4) and 2 (Z7_0) running - and third one is stopped. You can perform any debug operation on this core (memory/registers view, instruction step...) without effect on other cores.  On the last picture are running cores 1 (Z4) and 3 (Z7_1) and second core (Z7_0) is stopped and any debug operation can be performed on this core. 
View full article
Requirements:  SD card with installed Linux image connected to EVB (HOWTO: Prepare A SD Card For Linux Boot Of S32V234-EVB Using BSP From VSDK ) Serial link connection between PC and EVB (HOWTO: Setup A Remote Linux Connection in S32DS for Vision ) Static IP address on PC machine Network connection between PC and EVB Use case: This settings is useful when you don't have DHCP server available or for some reason you can't connect EVB into existing network - like on this scenario:  Procedure: Setup static IP address on your PC machine - (Windows 7) click on Start -> Control Panel -> Network and Sharing center. On the left side click on "Change adapter settings" Select network interface connected to EVB ( Local area connection ) and choose "Internet protocol Version 4 (TCP/IPv4)" option and click on Properties button.   Select "Use the Following IP address" radio button and enter IP address for PC side of network connection and click on OK button.    Turn on EVB and connect to EVB via serial link using putty or any other terminal (115200 baud, 8N1). Login as the root user. Edit network interfaces configuration file by command vi /etc/network/interfaces and modify (press INS key to switch vi editor to edit mode) the file by the way as shown on next screenshot. Set IP address from range of your PC machine network settings.  Save new settings by :w command (press ESC key to switch vi editor to command mode) and exit from vi by :q command. Restart network by command /etc/init.d/networking restart  Check the IP address by command ifconfig and try ping to your PC machine.  Troubleshooting: If you can't ping to PC machine and IP address is the same as you requested - check IP address on PC side and cable connection.  If the IP address on EVB is different than you requested - check if you commented out the dhcp configuration. You may also try to reboot EVB instead of restarting network only. 
View full article
Example show one of the methods how to create and use shared memory with symbols between cores. In source code shared_mem.c are variables which can be seen by each core. This file is built once (during s32r274_shmemZ7_0 project compilation) and is linked to other core's elf file by linker into shared_mem section (see linker file for each core) starting on the very same address for each core. Hardware semaphores are used for access shared memory. Lock/Unlock functions are implemented in the shared_func.c (build once during s32r274_shmemZ7_0 project compilation too) file and the object is linked into .text section. Each core has it's own instance of shared functions. There is counter in the shared memory for each core increased each time when shared memory can be accessed by particular core.
View full article
The list of S32 Design Studio examples has been moved here: https://community.nxp.com/docs/DOC-341380  S32K144 EXAMPLE: S32K_printf_implementation - S32DS  EXAMPLE: S32k144 UART printf/scanf under FreeRTOS - S32DS  EXAMPLE: S32K SDK  - Function call on configurable period using LPIT timer.  EXAMPLE: FlexNVM used as code/data flash  EXAMPLE: S32K144 EEEPROM usage  EXAMPLE: S32K144 EEEPROM usage - No SDK  EXAMPLE: S32K144 .noinit section usage  For more examples and how to's: S32K1xx document &amp; example list
View full article
Create Project From Example S32DS for ARM: Create and Debug a New Project from Example Code in S32 DS IDE for ARM based MCUs. Learn how to create a new project in S32 Design Studio IDE and load an example code to blink an LED using the S32K144EVB and build and debug the project. Create New Project S32DS for ARM: Create and Debug a New Project in S32 DS IDE for ARM based MCUs Learn how to create a new project in S32 Design Studio IDE using Processor Expert and SDK to blink an LED using the S32K144EVB and build and debug the project.
View full article
Create From Example 1 | Create an ISP Project from Example A demonstration of how to load an example ISP image processing application project featuring RGB, YUV, and GS8 image formats, in the S32 Design Studio. 2 | Create an APEX2 Project from Example A demonstration of how to load an example ORB-based APEX2 image processing application project in the S32 Design Studio. https://www.nxp.com/support/training-events/getting-started-with-s32-design-studio-ide-for-vision-2018.r1:TIP-S32DS Create New Project 3 | Create a New ISP Project A demonstration of how to create a new Debayer-based ISP image processing application project in the S32 Design Studio. 4 | Create a New APEX2 Project A demonstration of how to create a new APEX2 image processing application project featuring upscaling and downscaling in the S32 Design Studio. https://www.nxp.com/support/training-events/getting-started-with-s32-design-studio-ide-for-vision-2018.r1:TIP-S32DS Debug 5 | ISP Debugging w/ S32 Debug Probe A demonstration of how to setup and debug an ISP application project using S32 Design Studio, S32 Debugger, and S32 Debug Probe. 6 | APEX2 Debugging w/ S32 Debug Probe A demonstration of how to setup and debug an APEX2 application project using S32 Design Studio, S32 Debugger, and S32 Debug Probe. 7 | APEX2 Debugging with Emulator A demonstration of how to debug an emulated-APEX2 image processing application project in the S32 Design Studio. 8 | Debug a bare-board APEX2 Project A demonstration of how to debug a bareboard APEX2 image processing application project in the S32 Design Studio with Lauterbach TRACE32. 9 | Debug a Linux A53 Project A demonstration of how to debug a Linux A53 application project in the S32 Design Studio for Vision version 2.0. The example shown also includes code for APEX, but currently GDB Remote Linux only supports debug of the A53 code. 10 | Debug a bare-board A53 Project A demonstration of how to debug a bareboard A53 image processing application project in the S32 Design Studio for Vision version 2.0 using PEMicro GDB interface. The example shown also includes code for APEX, but currently PEMicro only supports debug of the A53 code.
View full article
Getting started with APEX2 S32DS for Vision: Getting Started - APEX2 Graph Tool Tutorial  Getting started with ISP S32DS for Vision: Getting Started - ISP Graph Tool Tutorial 
View full article
        Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Vision v2.0          Austin, Texas, USA September 15, 2017 The Automotive Microcontrollers and Processors’ Embedded Tools Team at NXP Semiconductors, is pleased to announce the release of the S32 Design Studio for Vision  v2.0. The S32 Design Studio enablement simplifies and accelerates the deployment of ADAS vision and neural network solutions in automotive, transportation and industrial applications. Release Content Eclipse Neon 4.6 Framework GNU Tools for ARM® Embedded Processors (launchpad) build (4.9.3 20150529) ARM64: Linaro GCC 4.9-2015.05 Libraries included: newlib, newlib-nano and ewl2 (ewl and ewlnano) NXP Array Processor Unit (APU) Compiler P&E Multilink/Cyclone/OpenSDA (with P&E GDB Server) Fully integrated Vision SDK release v.1.0.0. (for the details on the feature set of SDK please refer to Reference Manuals) New Project wizard to create application, library and Visual Graph projects for supported devices Visual Graph tools to support ISP and APU/APEX2 program development Peripherals Register View DDR configuration and validation tools Lauterbach debugger support by new project wizard Kernel Aware debugging for FreeRTOS, OSEK. Devices supported: S32V234 Complete S32 Design Studio for Vision v2.0 release notes are available here. Installation To download the installer please visit the S32 Design Studio product page downloads section or click the direct here. The installer requires the Activation ID to be entered. You should receive a notification email including the Activation ID after the download of the installation package starts. For more information about the product installation see S32DS Vision 2.0 Installation Manual.   Technical Support S32 Design Studio issues are tracked through the S32DS Public NXP Community space. https://community.nxp.com/community/s32/s32ds  
View full article
This tutorial walks a user through the steps to create a new application for the S32V234 MCU using S32DS for Vision and the built in ISP Visual Graph tool. The completed application will take an image from camera, processes it on ISP and put the processed image in DDR buffers. Once the image is in DDR buffer, host (A53 core running Linux) will direct the display control unit (DCU) to display it on screen. Prerequisites: Some knowledge of the S32V234 System on a Chip (SoC) Have an understanding of the ISP architecture Be familiar with the NXP Vision SDK software Looking for Interactive Tutorial? You can view this tutorial as a video: S32 Design Studio: Getting Started – ISP Graph Tool Tutorial
View full article
This tutorial walks a user through the steps to create a new application for the S32V234 MCU using S32DS for Vision and the built in APEX2 Visual Graph tool. The completed application will take a PNG image, upscale and downscale it using APEX engines and return the processed images. Prerequisites: Some knowledge of the S32V234 System on a Chip (SoC) Have an understanding of the APEX architecture and APEX Core Framework (ACF) Refer to UG-10267-03-14-ACF_User_Guide.pdf to learn about ACF Path: s32ds_installation_directory\S32DS\s32v234_sdk\docs\apex\acf Be familiar with the NXP Vision SDK software Looking for Interactive Tutorial? You can view this tutorial as a video: S32 Design Studio: Getting Started – APEX2 Graph Tool Tutorial
View full article
The list of S32 Design Studio examples has been moved here: https://community.nxp.com/docs/DOC-329623  MPC5644A Example MPC5644A BookE PinToggle - S32DS Power 2017.R1 MPC5744P Example MPC5744P PinToggleStationery S32DS_1.0  Example MPC5744P LINFlex UART with DMA S32DS_1.0  Example MPC5744P ETimerCountMode S32DS_1.0  MPC5777M Example MPC5777M PinToggleStationery S32DS_1.0 Processor Expert RAppID Suite for MPC5777M and S32 Design Studio Integration Multicore Example  MPC5775K Example MPC5775K PinToggleStationery S32DS_1.0  Example MPC5775K-DMA_Transfer S32DS_1.0  Example MPC5775K UART_with_DMA S32DS_1.0  Example MPC5775K-UART_with_Interrupts S32DS_1.0  Example MPC5775K FlexCAN_with_interrupts_v1.1 S32DS_1.1  Example MPC5775K Semaphores S32DS_1.0  Example MPC5775K eTimer_PWM S32DS_1.0  Example MPC5775K ADC_example S32DS_1.0  Example MPC5775K IIC Communication with RTC PCA8565TS/1 S32DS_1.0  Example MPC5775K DSPI_with_interrupts S32DS_1.0  MPC5748G Example MPC5748G-FlexCAN_with_interrupts S32DS_1.0  Example MPC5748G PretendedNetworkingCAN S32DS_1.0  MPC5746R Example MPC5746R FlexCAN_with_interrupts S32DS Example MPC5746R PinToggleStationery - S32DS Power 2017.R1 S32R274 Example S32R274 FlexCAN_with_Interrupts S32DS_1.1  Example S32R274 Watchdog_example S32DS_1.1  Example S32R274 multi-core shared memory - S32DS Power v1.2  MPC5777C Example MPC5777C Single ELF multi-core Pin Toggling - S32DS Power v1.2
View full article
        Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for ARM v2.0, Update 1             What is new? This update/service pack adds bareboard support for NXP S32K146 device into the S32 Design Studio for ARM v2.0   Installation instructions The update is available for online (Eclipse Updater) or offline (direct download link) installation.   online installation: go to menu "Help" -> "Install New Software..." dialog select predefined NXP S32 Design Studio update repository S32 Design Studio for ARM v2.0 - http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_ARM_2_0/com.freescale.s32arm.updatesite select all available items and click "Next" button   offline installation: go to S32 Design Studio product page -> Downloads section or use the direct download link to download the "S32 Design Studio for Power v1.2 - Update 2" file.   Start S32DS and go to "Help" -> "Install New Software..." Add a new "Archive" repository and browse to select the downloaded Update 2 archive file: Select all available items and click "Next" button. This will starts the update installation.
View full article
Installation & Activation HOWTO: Activate S32 Design Studio  HOWTO: Install Lauterbach TRACE32 debugger plug-in into S32 Design Studio  Create a New Project  HOWTO: Create APEX2 Project From Example in S32DS for Vision  HOWTO: Create An ISP Project From Example in S32DS for Vision  HOWTO: Create A53 Linux Project in S32DS for Vision  HOWTO: Create An ISP Project From Existing VSDK Graph in S32DS for Vision  HOWTO: Create A New Makefile Project With Existing Code From NXP Vision SDK Example Project   HOWTO: Build a Project and Setup a Debug Configuration for debugging in S32 Design Studio  HOWTO: Create A53 APEX2 and/or ISP Linux Project in S32DS for Vision DDR Configuration & Validation and Stress Test Tools HOWTO: Use DDR Configuration and Validation Tool  HOWTO: Use DDR Stress Test Tool  Hardware Setup HOWTO: Setup S32V234 EVB for debugging with S32DS for Vision and Linux BSP HOWTO: Prepare and boot S32V234 EVB from eMMC  HOWTO: Setup static IP address for S32 debug probe  Debugging HOWTO: Setup S32V234 EVB for debugging with S32DS for Vision and Linux BSP  HOWTO: S32V234-EVB debugging with Linux and gdbserver on target machine  HOWTO: Start Debug on an ISP Application Project with S32 Debugger and S32 Debug Probe  HOWTO: Start Debug on an APEX2 Application Project with S32 Debugger and S32 Debug Probe  Debugging the Startup Code with Eclipse and GDB | MCU on Eclipse   VSDK HOWTO: Change Vision SDK root in S32DS for Vision  HOWTO: Create A New Makefile Project With Existing Code From NXP Vision SDK Example Project  HOWTO: Prepare A SD Card For Linux Boot Of S32V234-EVB Using BSP From VSDK  Linux HOWTO: S32V234 EVB Linux - Static IP address configuration  HOWTO: S32V234 EVB Linux - DHCP IP address setup  HOWTO: Prepare A SD Card For Linux Boot Of S32V234-EVB Using BSP From VSDK  HOWTO: Access Linux BSP file system on S32V234-EVB from S32DS for Vision HOWTO: Setup A Remote Linux Connection in S32DS for Vision  General Usage HOWTO: S32 Design Studio Command Line Interface  HOWTO: Add user example into S32DS  HOWTO: Generate S-Record/Intel HEX/Binary file  HOWTO: Update S32 Design Studio  Troubleshooting Help! I just relaunched S32DS for Vision and my visual graph is collapsed!  Help! I just updated to new version of S32DS and now my projects have errors and I can't build!  Troubleshooting: PEmicro Debug Connection: Target Communication Speed  Troubleshooting: Indexer errors on header file  S32 Design Studio Offline activation issue hot fix  https://community.nxp.com/docs/DOC-345238 
View full article
Application based on FreeRTOS S32DS example performs prinf/scanf functionality in FreeRTOS. Application runs in two modes - standard run-time mode with two tasks maintained by scheduler and command mode implementing basic memory monitor. Application was tested with putty terminal (http://www.putty.org/). Putty serial terminal settings: 115200 8N1, no HW control. USAGE: In run-time mode is green LED blinking and on terminal are shown task counter values. To enter into COMMAND MODE - press button (next to LED diode). LED light switches to red and you can enter commands. Available commands: =================== F show free heap memory A set memory address V print value on address M set address to main() P previous mem page N next mem page ? help X Exit from command mode Putty configuration: Terminal output:
View full article
        Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for ARM v2.0             Austin, Texas, USA August 16, 2017 The Automotive Microcontrollers and Processors’ Embedded Tools Team at NXP Semiconductors, is pleased to announce the first release of the S32 Design Studio for ARM  v2.0  Release content (What is new?) • Eclipse Neon 4.6 Framework • GNU Tools for ARM® Embedded Processors (Launchpad) build (4.9.3 20150529) • ARM64: Linaro GCC 4.9-2015.05 • Libraries included: newlib, newlib-nano and ewl2 (ewl and ewlnano) • P&E Multilink/Cyclone/OpenSDA (with P&E GDB Server) - updated (v3.1.1.20180808) • SEGGER J-Link (with SEGGER GDB Server) -  (V616f_b170707) • New Project wizard to create application and library projects for supported devices • Fully integrated S32 SDK for S32K14x EAR release v.0.8.4. For the details on the feature set  of SDK please refer to SDK Release notes and Reference Manuals attached below. • SDK management included: o Sample Drivers for KEA family (Evaluation grade) o FreeMASTER Serial Communication driver for KEA and S32K families o Automotive Math and Motor Control Libraries for KEA and S32K devices v1.1.8  • Import projects from CodeWarrior for MCU v.10.6 and Kinetis Design Studio for respective supported processors • IAR v7.x compiler support by new project wizard • iSystem, Lauterbach and IAR debuggers support by new project wizard • Kernel Aware debugging for FreeRTOS, OSEK. • Devices supported: o SKEAZN8, SKEAZN16, SKEAZN32, SKEAZN64, SKEAZ128, SKEAZ64 o S32K144 v2.0, S32K148, S32K142 o S32V234 o MAC57D54H Complete S32 Design Studio for ARM v2.0 release notes are available here Installation Notes To download the installer please visit the S32DS product page downloads section. The installer requires the the NEW Activation ID to be entered during the installation. You should receive an email including the Activation ID after starting the download process:   Technical Support S32 Design Studio issues are tracked through the S32DS Public NXP Community space. https://community.nxp.com/community/s32/s32ds
View full article
Has this happened to you? You just launched S32DS for Vision and opened a visual graph but the blocks are collapsed onto one another. Probably looks something like this: There is an easy solution. Just click on the 'Arrange All' button and the graph will automatically expand to a manageable state. Here is the result:
View full article
        Product Release Announcement Automotive Microcontrollers and Processors S32 Design Studio for Power v1.2, Update 2             What is new? AMMCLIB v1.1.9 support for MPC56xx (MPC560xB, MPC560xP, MPC5643L, MPC567xF, MPC567xK) and for MPC57xxx (MPC574xC, MPC5748G, MPC574xP, MPC574xR, MPC577xC, MPC577xK, MPC577xM) updated PEmicro Eclipse Plugin Update v1.6.9 which fixes HSM mass erase problem for MPC5748G (see e.g.MPC5748G can not attach JTAG )   Installation instructions The update is available for online (Eclipse Updater) or offline (direct download link) installation.   online installation: go to menu "Help" -> "Install New Software..." dialog select predefined NXP S32 Design Studio update repository http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_POWER_1_2/com.freescale.s32power.updatesite  select all available items and click "Next" button   offline installation: go to S32 Design Studio product page -> Downloads section or use the direct download link to download the "S32 Design Studio for Power v1.2 - Update 2" file.   Start S32DS and go to "Help" -> "Install New Software..." Add a new "Archive" repository and browse to select the downloaded Update 2 archive file: Select all available items and click "Next" button.
View full article